1
|
Liu D, Liu L, Zhang X, Zhao X, Li X, Che X, Wu G. Decoding driver and phenotypic genes in cancer: Unveiling the essence behind the phenomenon. Mol Aspects Med 2025; 103:101358. [PMID: 40037122 DOI: 10.1016/j.mam.2025.101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/25/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Gray hair, widely regarded as a hallmark of aging. While gray hair is associated with aging, reversing this trait through gene targeting does not alter the fundamental biological processes of aging. Similarly, certain oncogenes (such as CXCR4, MMP-related genes, etc.) can serve as markers of tumor behavior, such as malignancy or prognosis, but targeting these genes alone may not lead to tumor regression. We pioneered the name of this class of genes as "phenotypic genes". Historically, cancer genetics research has focused on tumor driver genes, while genes influencing cancer phenotypes have been relatively overlooked. This review explores the critical distinction between driver genes and phenotypic genes in cancer, using the MAPK and PI3K/AKT/mTOR pathways as key examples. We also discuss current research techniques for identifying driver and phenotypic genes, such as whole-genome sequencing (WGS), RNA sequencing (RNA-seq), RNA interference (RNAi), CRISPR-Cas9, and other genomic screening methods, alongside the concept of synthetic lethality in driver genes. The development of these technologies will help develop personalized treatment strategies and precision medicine based on the characteristics of relevant genes. By addressing the gap in discussions on phenotypic genes, this review significantly contributes to clarifying the roles of driver and phenotypic genes, aiming at advancing the field of targeted cancer therapy.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Lei Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaoman Zhang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xinming Zhao
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaorui Li
- Department of Oncology, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China.
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
2
|
Osonoi S, Takebe T. Organoid-guided precision hepatology for metabolic liver disease. J Hepatol 2024; 80:805-821. [PMID: 38237864 PMCID: PMC11828489 DOI: 10.1016/j.jhep.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 03/09/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease affects millions of people worldwide. Progress towards a definitive cure has been incremental and treatment is currently limited to lifestyle modification. Hepatocyte-specific lipid accumulation is the main trigger of lipotoxic events, driving inflammation and fibrosis. The underlying pathology is extraordinarily heterogenous, and the manifestations of steatohepatitis are markedly influenced by metabolic communications across non-hepatic organs. Synthetic human tissue models have emerged as powerful platforms to better capture the mechanistic diversity in disease progression, while preserving person-specific genetic traits. In this review, we will outline current research efforts focused on integrating multiple synthetic tissue models of key metabolic organs, with an emphasis on organoid-based systems. By combining functional genomics and population-scale en masse profiling methodologies, human tissues derived from patients can provide insights into personalised genetic, transcriptional, biochemical, and metabolic states. These collective efforts will advance our understanding of steatohepatitis and guide the development of rational solutions for mechanism-directed diagnostic and therapeutic investigation.
Collapse
Affiliation(s)
- Sho Osonoi
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Takanori Takebe
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; WPI Premium Institute for Human Metaverse Medicine (WPI-PRIMe) and Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan; Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Communication Design Center, Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan.
| |
Collapse
|
3
|
Adlat S, Vázquez Salgado AM, Lee M, Yin D, Wangensteen KJ. Emerging and potential use of CRISPR in human liver disease. Hepatology 2023:01515467-990000000-00538. [PMID: 37607734 PMCID: PMC10881897 DOI: 10.1097/hep.0000000000000578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/13/2023] [Indexed: 08/24/2023]
Abstract
CRISPR is a gene editing tool adapted from naturally occurring defense systems from bacteria. It is a technology that is revolutionizing the interrogation of gene functions in driving liver disease, especially through genetic screens and by facilitating animal knockout and knockin models. It is being used in models of liver disease to identify which genes are critical for liver pathology, especially in genetic liver disease, hepatitis, and in cancer initiation and progression. It holds tremendous promise in treating human diseases directly by editing DNA. It could disable gene function in the case of expression of a maladaptive protein, such as blocking transthyretin as a therapy for amyloidosis, or to correct gene defects, such as restoring the normal functions of liver enzymes fumarylacetoacetate hydrolase or alpha-1 antitrypsin. It is also being studied for treatment of hepatitis B infection. CRISPR is an exciting, evolving technology that is facilitating gene characterization and discovery in liver disease and holds the potential to treat liver diseases safely and permanently.
Collapse
Affiliation(s)
- Salah Adlat
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | |
Collapse
|
4
|
Saito Y, Yin D, Kubota N, Wang X, Filliol A, Remotti H, Nair A, Fazlollahi L, Hoshida Y, Tabas I, Wangensteen KJ, Schwabe RF. A Therapeutically Targetable TAZ-TEAD2 Pathway Drives the Growth of Hepatocellular Carcinoma via ANLN and KIF23. Gastroenterology 2023; 164:1279-1292. [PMID: 36894036 PMCID: PMC10335360 DOI: 10.1053/j.gastro.2023.02.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 01/24/2023] [Accepted: 02/14/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND & AIMS Despite recent progress, long-term survival remains low for hepatocellular carcinoma (HCC). The most effective HCC therapies target the tumor immune microenvironment (TIME), and there are almost no therapies that directly target tumor cells. Here, we investigated the regulation and function of tumor cell-expressed Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) in HCC. METHODS HCC was induced in mice by Sleeping Beauty-mediated expression of MET, CTNNB1-S45Y, or TAZ-S89A, or by diethylnitrosamine plus CCl4. Hepatocellular TAZ and YAP were deleted in floxed mice via adeno-associated virus serotype 8-mediated expression of Cre. TAZ target genes were identified from RNA sequencing, confirmed by chromatin immunoprecipitation, and evaluated in a clustered regularly interspaced short palindromic repeats interference (CRISPRi) screen. TEA domain transcription factors (TEADs), anillin (ANLN), Kif23, and programmed cell death protein ligand 1 were knocked down by guide RNAs in dead clustered regularly interspaced short palindromic repeats-associated protein 9 (dCas9) knock-in mice. RESULTS YAP and TAZ were up-regulated in murine and human HCC, but only deletion of TAZ consistently decreased HCC growth and mortality. Conversely, overexpression of activated TAZ was sufficient to trigger HCC. TAZ expression in HCC was regulated by cholesterol synthesis, as demonstrated by pharmacologic or genetic inhibition of 3-hydroxy-3-methylglutaryl- coenzyme A reductase (HMGCR), farnesyl pyrophosphate synthase, farnesyl-diphosphate farnesyltransferase 1 (FDFT1), or sterol regulatory element-binding protein 2 (SREBP2). TAZ- and MET/CTNNB1-S45Y-driven HCC required the expression of TEAD2 and, to a lesser extent, TEAD4. Accordingly, TEAD2 displayed the most profound effect on survival in patients with HCC. TAZ and TEAD2 promoted HCC via increased tumor cell proliferation, mediated by TAZ target genes ANLN and kinesin family member 23 (KIF23). Therapeutic targeting of HCC, using pan-TEAD inhibitors or the combination of a statin with sorafenib or anti-programmed cell death protein 1, decreased tumor growth. CONCLUSIONS Our results suggest the cholesterol-TAZ-TEAD2-ANLN/KIF23 pathway as a mediator of HCC proliferation and tumor cell-intrinsic therapeutic target that could be synergistically combined with TIME-targeted therapies.
Collapse
Affiliation(s)
- Yoshinobu Saito
- Department of Medicine, Columbia University, New York, New York.
| | - Dingzi Yin
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; Mayo Clinic, Rochester, Minnesota
| | - Naoto Kubota
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xiaobo Wang
- Department of Medicine, Columbia University, New York, New York
| | - Aveline Filliol
- Department of Medicine, Columbia University, New York, New York
| | - Helen Remotti
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Ajay Nair
- Department of Medicine, Columbia University, New York, New York
| | - Ladan Fazlollahi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ira Tabas
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York; Institute of Human Nutrition, New York, New York
| | - Kirk J Wangensteen
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; Mayo Clinic, Rochester, Minnesota.
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, New York; Institute of Human Nutrition, New York, New York.
| |
Collapse
|
5
|
Haley RM, Chan A, Billingsley MM, Gong N, Padilla MS, Kim EH, Wang HH, Yin D, Wangensteen KJ, Tsourkas A, Mitchell MJ. Lipid Nanoparticle Delivery of Small Proteins for Potent In Vivo RAS Inhibition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21877-21892. [PMID: 37115558 PMCID: PMC10727849 DOI: 10.1021/acsami.3c01501] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Mutated RAS proteins are potent oncogenic drivers and have long been considered "undruggable". While RAS-targeting therapies have recently shown promise, there remains a clinical need for RAS inhibitors with more diverse targets. Small proteins represent a potential new therapeutic option, including K27, a designed ankyrin repeat protein (DARPin) engineered to inhibit RAS. However, K27 functions intracellularly and is incapable of entering the cytosol on its own, currently limiting its utility. To overcome this barrier, we have engineered a lipid nanoparticle (LNP) platform for potent delivery of functional K27-D30─a charge-modified version of the protein─intracellularly in vitro and in vivo. This system efficiently encapsulates charge-modified proteins, facilitates delivery in up to 90% of cells in vitro, and maintains potency after at least 45 days of storage. In vivo, these LNPs deliver K27-D30 to the cytosol of cancerous cells in the liver, inhibiting RAS-driven growth and ultimately reducing tumor load in an HTVI-induced mouse model of hepatocellular carcinoma. This work shows that K27 holds promise as a new cancer therapeutic when delivered using this LNP platform. Furthermore, this technology has the potential to broaden the use of LNPs to include new cargo types─beyond RNA─for diverse therapeutic applications.
Collapse
Affiliation(s)
- Rebecca M. Haley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Alexander Chan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Marshall S. Padilla
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Emily H. Kim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania
| | - Hejia Henry Wang
- Department of Biochemistry and Molecular Biophysics, University of Pennsylvania
| | - Dingzi Yin
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55902
| | - Kirk J. Wangensteen
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55902
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Michael J. Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
6
|
Chiu CH. CRISPR/Cas9 genetic screens in hepatocellular carcinoma gene discovery. CURRENT RESEARCH IN BIOTECHNOLOGY 2023; 5:100127. [DOI: 10.1016/j.crbiot.2023.100127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
7
|
Sequera C, Grattarola M, Holczbauer A, Dono R, Pizzimenti S, Barrera G, Wangensteen KJ, Maina F. MYC and MET cooperatively drive hepatocellular carcinoma with distinct molecular traits and vulnerabilities. Cell Death Dis 2022; 13:994. [PMID: 36433941 PMCID: PMC9700715 DOI: 10.1038/s41419-022-05411-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022]
Abstract
Enhanced activation of the transcription factor MYC and of the receptor tyrosine kinase MET are among the events frequently occurring in hepatocellular carcinoma (HCC). Both genes individually act as drivers of liver cancer initiation and progression. However, their concomitant alteration in HCC has not been explored, nor functionally documented. Here, we analysed databases of five independent human HCC cohorts and found a subset of patients with high levels of MYC and MET (MYChigh/METhigh) characterised by poor prognosis. This clinical observation drove us to explore the functionality of MYC and MET co-occurrence in vivo, combining hydrodynamic tail vein injection for MYC expression in the R26stopMet genetic setting, in which wild-type MET levels are enhanced following the genetic deletion of a stop cassette. Results showed that increased MYC and MET expression in hepatocytes is sufficient to induce liver tumorigenesis even in the absence of pre-existing injuries associated with a chronic disease state. Intriguingly, ectopic MYC in MET tumours increases expression of the Mki67 proliferation marker, and switches them into loss of Afp, Spp1, Gpc3, Epcam accompanied by an increase in Hgma1, Vim, and Hep-Par1 levels. We additionally found a switch in the expression of specific immune checkpoints, with an increase in the Ctla-4 and Lag3 lymphocyte co-inhibitory responses, and in the Icosl co-stimulatory responses of tumour cells. We provide in vitro evidence on the vulnerability of some human HCC cell lines to combined MYC and MET targeting, which are otherwise resistant to single inhibition. Mechanistically, combined blockage of MYC and MET converts a partial cytostatic effect, triggered by individual blockage of MYC or MET, into a cytotoxic effect. Together, these findings highlight a subgroup of HCC characterised by MYChigh/METhigh, and document functional cooperativity between MYC and MET in liver tumorigenesis. Thus, the MYC-R26Met model is a relevant setting for HCC biology, patient classification and treatment.
Collapse
Affiliation(s)
- Celia Sequera
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Turing Center for Living Systems, Parc Scientifique de Luminy, Marseille, France
| | - Margherita Grattarola
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Turing Center for Living Systems, Parc Scientifique de Luminy, Marseille, France ,grid.7605.40000 0001 2336 6580Department of Clinical and Biological Science, University of Turin, 10125 Turin, Italy
| | - Agnes Holczbauer
- grid.66875.3a0000 0004 0459 167XDivision of Gastroenterology, Department of Medicine, Mayo Clinic, Rochester, NY USA
| | - Rosanna Dono
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Turing Center for Living Systems, Parc Scientifique de Luminy, Marseille, France
| | - Stefania Pizzimenti
- grid.7605.40000 0001 2336 6580Department of Clinical and Biological Science, University of Turin, 10125 Turin, Italy
| | - Giuseppina Barrera
- grid.7605.40000 0001 2336 6580Department of Clinical and Biological Science, University of Turin, 10125 Turin, Italy
| | - Kirk J. Wangensteen
- grid.66875.3a0000 0004 0459 167XDivision of Gastroenterology, Department of Medicine, Mayo Clinic, Rochester, NY USA
| | - Flavio Maina
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Turing Center for Living Systems, Parc Scientifique de Luminy, Marseille, France
| |
Collapse
|
8
|
Chen Z, Huang L, Wang K, Zhang L, Zhong X, Yan Z, Liu B, Zhu P. rtcisE2F promotes the self-renewal and metastasis of liver tumor-initiating cells via N 6-methyladenosine-dependent E2F3/E2F6 mRNA stability. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1840-1854. [PMID: 35266112 DOI: 10.1007/s11427-021-2038-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Liver cancer is highly heterogeneous, and the tumor tissue harbors a variety of cell types. Liver tumor initiating cells (TICs) well contribute to tumor heterogeneity and account for tumor initiation and metastasis, but the molecular mechanisms of liver TIC self-renewal are elusive. Here, we identified a functional read-through rt-circRNA, termed rtcisE2F, that is highly expressed in liver cancer and liver TICs. rtcisE2F plays essential roles in the self-renewal and activities of liver TICs. rtcisE2F targets E2F6 and E2F3 mRNAs, attenuates mRNA turnover, and increases E2F6/E2F3 expression. Mechanistically, rtcisE2F functions as a scaffold of N-methyladenosine (m6A) reader IGF2BP2 and E2F6/E2F3 mRNA. rtcisE2F promotes the association of E2F6/E2F3 mRNAs with IGF2BP2, and inhibits their association with another m6A reader, YTHDF2. IGF2BP2 inhibits E2F6/E2F3 mRNA decay, whereas YTHDF2 promotes E2F6/E2F3 mRNA decay. By switching m6A readers, rtcisE2F enhances E2F6/E2F3 mRNA stability. E2F6 and E2F3 are both required for liver TIC self-renewal and Wnt/β-catenin activation, and inhibition of these pathways is a potential strategy for preventing liver tumorigenesis and metastasis. In conclusion, the rtcisE2F-IGF2BP2/YTHDF2-E2F6/E2F3-Wnt/β-catenin axis drives liver TIC self-renewal and initiates liver tumorigenesis and metastasis, and may provide a strategy to eliminate liver TICs.
Collapse
Affiliation(s)
- Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Lan Huang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Kaili Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lulu Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiang Zhong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhongyi Yan
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Benyu Liu
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
9
|
Vázquez Salgado A, Preziosi M, Yin D, Holczbauer A, Zahm A, Erez N, Kieckhaefer J, Ackerman D, Gade T, Kaestner K, Wangensteen K. In Vivo Screen Identifies Liver X Receptor Alpha Agonism Potentiates Sorafenib Killing of Hepatocellular Carcinoma. GASTRO HEP ADVANCES 2022; 1:905-908. [PMID: 36117551 PMCID: PMC9481113 DOI: 10.1016/j.gastha.2022.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022]
Affiliation(s)
- A.M. Vázquez Salgado
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - M.E. Preziosi
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - D. Yin
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - A. Holczbauer
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - A.M. Zahm
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - N. Erez
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - J. Kieckhaefer
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - D. Ackerman
- Penn Image-Guided Interventions Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - T.P. Gade
- Penn Image-Guided Interventions Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - K.H. Kaestner
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - K.J. Wangensteen
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Hussain Y, Khan H, Ahmad I, Efferth T, Alam W. Nanoscale delivery of phytochemicals targeting CRISPR/Cas9 for cancer therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153830. [PMID: 34775359 DOI: 10.1016/j.phymed.2021.153830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND With growing global prevalence, cancer is a major cause of disease-related deaths. The understanding of the fundamental tumor pathology has contributed to the development of agents targeting oncogenic signaling pathways. Although these agents have increased survival for defined cancers, the therapeutic choices are still limited due to the development of drug resistance. CRISPR/Cas9 is a powerful new technology in cancer therapy by facilitating the identification of novel treatment targets and development of cell-based treatment strategies. PURPOSE We focused on applications of the CRISPR/Cas9 system in cancer therapy and discuss nanoscale delivery of cytotoxic phytochemical targeting the CRISPR/Cas9 system. RESULTS Genome engineering has been significantly accelerated by the advancement of the CRISPR/Cas9 technique. Phytochemicals play a key role in treating cancer by targeting various mechanisms and pathways. CONCLUSIONS The use of CRISPR/Cas9 for nanoscale delivery of phytochemicals opens new avenues in cancer therapy. One of the main obstacles in the clinical application of CRISPR/Cas9 is safe and efficient delivery. As viral delivery methods have certain drawbacks, there is an urgent need to develop non-viral delivery systems for therapeutic applications.
Collapse
Affiliation(s)
- Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Haroon Khan
- Department of Pharmacy, Abasyn University, Peshawar, Pakistan.
| | - Imad Ahmad
- Department of Pharmacy, Abasyn University, Peshawar, Pakistan
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| | - Waqas Alam
- Department of Pharmacy, Abasyn University, Peshawar, Pakistan
| |
Collapse
|
11
|
Exploring liver cancer biology through functional genetic screens. Nat Rev Gastroenterol Hepatol 2021; 18:690-704. [PMID: 34163045 DOI: 10.1038/s41575-021-00465-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
As the fourth leading cause of cancer-related death in the world, liver cancer poses a major threat to human health. Although a growing number of therapies have been approved for the treatment of hepatocellular carcinoma in the past few years, most of them only provide a limited survival benefit. Therefore, an urgent need exists to identify novel targetable vulnerabilities and powerful drug combinations for the treatment of liver cancer. The advent of functional genetic screening has contributed to the advancement of liver cancer biology, uncovering many novel genes involved in tumorigenesis and cancer progression in a high-throughput manner. In addition, this unbiased screening platform also provides an efficient tool for the exploration of the mechanisms involved in therapy resistance as well as identifying potential targets for therapy. In this Review, we describe how functional screens can help to deepen our understanding of liver cancer and guide the development of new therapeutic strategies.
Collapse
|
12
|
Chen Z, Lu T, Huang L, Wang Z, Yan Z, Guan Y, Hu W, Fan Z, Zhu P. circular RNA cia-MAF drives self-renewal and metastasis of liver tumor-initiating cells via transcription factor MAFF. J Clin Invest 2021; 131:e148020. [PMID: 34403373 DOI: 10.1172/jci148020] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022] Open
Abstract
Liver tumor-initiating cells (TICs) are involved in liver tumorigenesis, metastasis, drug resistance and relapse, but the regulatory mechanisms of liver TICs are largely unknown. Here, we have identified a functional circular RNA, termed circRNA activating MAFF (cia-MAF), that is robustly expressed in liver cancer and liver TICs. cia-MAF knockout primary cells and cia-maf knockout liver tumors harbor decreased ratios of TICs, and display impaired liver tumorigenesis, self-renewal and metastatic capacities. In contrast, cia-MAF overexpression drives liver TIC propagation, self-renewal and metastasis. Mechanistically, cia-MAF binds to the MAFF promoter, recruits the TIP60 complex to the MAFF promoter, and finally promotes MAFF expression. Loss of cia-MAF function attenuates the combination between the TIP60 complex and the MAFF promoter. MAFF is highly expressed in liver tumors and liver TICs, and its antisense oligo (ASO) has therapeutic potential in treating liver cancer without MAFA/MAFG gene copy number alterations (CNAs). This study reveal an additional layer for liver TIC regulation as well as circRNA function, and also provide an additional target for eliminating liver TICs, especially for liver tumor without MAFA/MAFG gene CNAs.
Collapse
Affiliation(s)
- Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Tiankun Lu
- Key Laboratory of Infection and Immunity, University of Chinese Academy of Sciences, Beijing, China
| | - Lan Huang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiwei Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhongyi Yan
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yubo Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenjing Hu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zusen Fan
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Tian Z, Liang G, Cui K, Liang Y, Wang Q, Lv S, Cheng X, Zhang L. Insight Into the Prospects for RNAi Therapy of Cancer. Front Pharmacol 2021; 12:644718. [PMID: 33796026 PMCID: PMC8007863 DOI: 10.3389/fphar.2021.644718] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
RNA interference (RNAi), also known as gene silencing, is a biological process that prevents gene expression in certain diseases such as cancer. It can be used to improve the accuracy, efficiency, and stability of treatments, particularly genetic therapies. However, challenges such as delivery of oligonucleotide drug to less accessible parts of the body and the high incidence of toxic side effects are encountered. It is therefore imperative to improve their delivery to target sites and reduce their harmful effects on noncancerous cells to harness their full potential. In this study, the role of RNAi in the treatment of COVID-19, the novel coronavirus disease plaguing many countries, has been discussed. This review aims to ascertain the mechanism and application of RNAi and explore the current challenges of RNAi therapy by identifying some of the cancer delivery systems and providing drug information for their improvement. It is worth mentioning that delivery systems such as lipid-based delivery systems and exosomes have revolutionized RNAi therapy by reducing their immunogenicity and improving their cellular affinity. A deeper understanding of the mechanism and challenges associated with RNAi in cancer therapy can provide new insights into RNAi drug development.
Collapse
Affiliation(s)
- Zhili Tian
- Institute of Molecular Medicine, Henan University, Kaifeng, China.,School of Clinical Medical Sciences, Henan University, Kaifeng, China
| | - Guohui Liang
- Institute of Molecular Medicine, Henan University, Kaifeng, China.,School of Clinical Medical Sciences, Henan University, Kaifeng, China
| | - Kunli Cui
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yayu Liang
- Institute of Molecular Medicine, Henan University, Kaifeng, China.,School of Stomatology, Henan University, Kaifeng, China
| | - Qun Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shuangyu Lv
- Institute of Molecular Medicine, Henan University, Kaifeng, China
| | - Xiaoxia Cheng
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Lei Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
14
|
Wangensteen KJ, Chang KM. Multiple Roles for Hepatitis B and C Viruses and the Host in the Development of Hepatocellular Carcinoma. Hepatology 2021; 73 Suppl 1:27-37. [PMID: 32737895 PMCID: PMC7855312 DOI: 10.1002/hep.31481] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/21/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis B and C viral infections are major risk factors for hepatocellular carcinoma (HCC) in the United States and worldwide. Direct and indirect mechanisms of viral infection lead to the development of HCC. Chronic viral infection leads to inflammation and liver damage, culminating in cirrhosis, the penultimate step in the progression toward HCC. Host, viral, and environmental factors likely interact to promote oncogenesis. Clinical considerations include recommendations for screening for HCC in persons at risk, treatment with antivirals, and an emerging role for immunotherapy in HCC. We pose unanswered questions regarding HCC susceptibility and pathogenesis in the setting of chronic hepatitis B and C.
Collapse
Affiliation(s)
- Kirk J Wangensteen
- Gastroenterology Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Kyong-Mi Chang
- The Corporal Michael J. Crescenz VA Medical Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
15
|
Chopra M, Sgro A, Norret M, Blancafort P, Iyer KS, Evans CW. A peptide-functionalised dendronised polymer for selective transfection in human liver cancer cells. NEW J CHEM 2021. [DOI: 10.1039/d1nj01566d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dendronised polymer functionalised with SP94 targeting peptide achieves highly selective transient transfection of liver cancer cells over normal non-transformed hepatocytes.
Collapse
Affiliation(s)
- Meenu Chopra
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Agustin Sgro
- The Harry Perkins Institute of Medical Research, 6 Verdun St, Nedlands, WA 6009, Australia
- School of Human Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Marck Norret
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Pilar Blancafort
- The Harry Perkins Institute of Medical Research, 6 Verdun St, Nedlands, WA 6009, Australia
- School of Human Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - K. Swaminathan Iyer
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Cameron W. Evans
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| |
Collapse
|
16
|
Hazafa A, Mumtaz M, Farooq MF, Bilal S, Chaudhry SN, Firdous M, Naeem H, Ullah MO, Yameen M, Mukhtiar MS, Zafar F. CRISPR/Cas9: A powerful genome editing technique for the treatment of cancer cells with present challenges and future directions. Life Sci 2020; 263:118525. [PMID: 33031826 PMCID: PMC7533657 DOI: 10.1016/j.lfs.2020.118525] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
Cancer is one of the most leading causes of death and a major public health problem, universally. According to accumulated data, annually, approximately 8.5 million people died because of the lethality of cancer. Recently, a novel RNA domain-containing endonuclease-based genome engineering technology, namely the clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein-9 (Cas9) have been proved as a powerful technique in the treatment of cancer cells due to its multifunctional properties including high specificity, accuracy, time reducing and cost-effective strategies with minimum off-target effects. The present review investigates the overview of recent studies on the newly developed genome-editing strategy, CRISPR/Cas9, as an excellent pre-clinical therapeutic option in the reduction and identification of new tumor target genes in the solid tumors. Based on accumulated data, we revealed that CRISPR/Cas9 significantly inhibited the robust tumor cell growth (breast, lung, liver, colorectal, and prostate) by targeting the oncogenes, tumor-suppressive genes, genes associated to therapies by inhibitors, genes associated to chemotherapies drug resistance, and suggested that CRISPR/Cas9 could be a potential therapeutic target in inhibiting the tumor cell growth by suppressing the cell-proliferation, metastasis, invasion and inducing the apoptosis during the treatment of malignancies in the near future. The present review also discussed the current challenges and barriers, and proposed future recommendations for a better understanding.
Collapse
Affiliation(s)
- Abu Hazafa
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Muhammad Mumtaz
- Department of Chemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Fras Farooq
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shahid Bilal
- Department of Agronomy, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sundas Nasir Chaudhry
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Musfira Firdous
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Huma Naeem
- Department of Computer Science, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Obaid Ullah
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Yameen
- Department of Biochemistry, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Muhammad Shahid Mukhtiar
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Fatima Zafar
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Pakistan
| |
Collapse
|
17
|
Wang J, Yang J, Li D, Li J. Technologies for targeting DNA methylation modifications: Basic mechanism and potential application in cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188454. [PMID: 33075468 DOI: 10.1016/j.bbcan.2020.188454] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/14/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
DNA methylation abnormalities are regarded as critical event for cancer initiation and development. Tumor-associated genes encompassing aberrant DNA methylation alterations at specific locus are correlated with chromatin remodeling and dysregulation of gene expression in various malignancies. Thus, technologies designed to manipulate DNA methylation at specific loci of genome are necessary for the functional study and therapeutic application in the context of cancer management. Traditionally, the method for DNA methylation modifications demonstrates an unspecific feature, adversely causing global-genome epigenetic alterations and confusing the function of desired gene. Novel approaches for targeted DNA methylation regulation have a great advantage of manipulating gene epigenetic alterations in a more specific and efficient method. In this review, we described different targeting DNA methylation techniques, including both their advantages and limitations. Through a comprehensive understanding of these targeting tools, we hope to open a new perspective for cancer treatment.
Collapse
Affiliation(s)
- Jie Wang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Jing Yang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Dandan Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
| |
Collapse
|
18
|
Alves-Bezerra M, Furey N, Johnson CG, Bissig KD. Using CRISPR/Cas9 to model human liver disease. JHEP Rep 2019; 1:392-402. [PMID: 32039390 PMCID: PMC7005665 DOI: 10.1016/j.jhepr.2019.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/15/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023] Open
Abstract
CRISPR/Cas9 gene editing has revolutionised biomedical research. The ease of design has allowed many groups to apply this technology for disease modelling in animals. While the mouse remains the most commonly used organism for embryonic editing, CRISPR is now increasingly performed with high efficiency in other species. The liver is also amenable to somatic genome editing, and some delivery methods already allow for efficient editing in the whole liver. In this review, we describe CRISPR-edited animals developed for modelling a broad range of human liver disorders, such as acquired and inherited hepatic metabolic diseases and liver cancers. CRISPR has greatly expanded the repertoire of animal models available for the study of human liver disease, advancing our understanding of their pathophysiology and providing new opportunities to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Michele Alves-Bezerra
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.,Stem Cells and Regenerative Medicine Center (STAR), Baylor College of Medicine, Houston, TX, USA
| | - Nika Furey
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.,Stem Cells and Regenerative Medicine Center (STAR), Baylor College of Medicine, Houston, TX, USA.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Collin G Johnson
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.,Stem Cells and Regenerative Medicine Center (STAR), Baylor College of Medicine, Houston, TX, USA
| | - Karl-Dimiter Bissig
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.,Stem Cells and Regenerative Medicine Center (STAR), Baylor College of Medicine, Houston, TX, USA.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA
| |
Collapse
|
19
|
Wang AW, Wang YJ, Zahm AM, Morgan AR, Wangensteen KJ, Kaestner KH. The Dynamic Chromatin Architecture of the Regenerating Liver. Cell Mol Gastroenterol Hepatol 2019; 9:121-143. [PMID: 31629814 PMCID: PMC6909351 DOI: 10.1016/j.jcmgh.2019.09.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The adult liver is the main detoxification organ and routinely is exposed to environmental insults but retains the ability to restore its mass and function upon tissue damage. However, extensive injury can lead to liver failure, and chronic injury causes fibrosis, cirrhosis, and hepatocellular carcinoma. Currently, the transcriptional regulation of organ repair in the adult liver is incompletely understood. METHODS We isolated nuclei from quiescent as well as repopulating hepatocytes in a mouse model of hereditary tyrosinemia, which recapitulates the injury and repopulation seen in toxic liver injury in human beings. We then performed the assay for transposase accessible chromatin with high-throughput sequencing specifically in repopulating hepatocytes to identify differentially accessible chromatin regions and nucleosome positioning. In addition, we used motif analysis to predict differential transcription factor occupancy and validated the in silico results with chromatin immunoprecipitation followed by sequencing for hepatocyte nuclear factor 4α (HNF4α) and CCCTC-binding factor (CTCF). RESULTS Chromatin accessibility in repopulating hepatocytes was increased in the regulatory regions of genes promoting proliferation and decreased in the regulatory regions of genes involved in metabolism. The epigenetic changes at promoters and liver enhancers correspond with the regulation of gene expression, with enhancers of many liver function genes showing a less accessible state during the regenerative process. Moreover, increased CTCF occupancy at promoters and decreased HNF4α binding at enhancers implicate these factors as key drivers of the transcriptomic changes in replicating hepatocytes that enable liver repopulation. CONCLUSIONS Our analysis of hepatocyte-specific epigenomic changes during liver repopulation identified CTCF and HNF4α as key regulators of hepatocyte proliferation and regulation of metabolic programs. Thus, liver repopulation in the setting of toxic injury makes use of both general transcription factors (CTCF) for promoter activation, and reduced binding by a hepatocyte-enriched factor (HNF4α) to temporarily limit enhancer activity. All sequencing data in this study were deposited to the Gene Expression Omnibus database and can be downloaded with accession number GSE109466.
Collapse
Affiliation(s)
- Amber W Wang
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yue J Wang
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida
| | - Adam M Zahm
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ashleigh R Morgan
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kirk J Wangensteen
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Klaus H Kaestner
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|