1
|
Li J, Zhang G, Li G, Zhang J, Yang Z, Yang L, Jiang S, Wang J. Harnessing nanoparticles for reshaping tumor immune microenvironment of hepatocellular carcinoma. Discov Oncol 2025; 16:121. [PMID: 39909958 PMCID: PMC11799483 DOI: 10.1007/s12672-025-01897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/03/2025] [Indexed: 02/07/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers, characterized by high morbidity and mortality rates. Recently, immunotherapy has emerged as a crucial treatment modality for HCC, following surgery, locoregional therapies, and targeted therapies. This approach harnesses the body's immune system to target and eliminate cancer cells, potentially resulting in durable antitumor responses. However, acquired resistance and the tumor immunosuppressive microenvironment (TIME) significantly hinder its clinical application. Recently, advancements in nanotechnology, coupled with a deeper understanding of cancer biology and nano-biological interactions, have led to the development of various nanoparticles aimed at enhancing therapeutic efficacy through specific targeting of tumor tissues. These nanoparticles increase the accumulation of immunotherapeutic drugs within the tumor microenvironment, thereby transforming the TIME. In this review, we provide a concise overview of the fundamental principles governing the TIME landscape in HCC and discuss the rationale for and applications of nanoparticles in this context. Additionally, we highlight existing challenges and potential opportunities for the clinical translation of cancer nanomedicines.
Collapse
Affiliation(s)
- JinSong Li
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - GuanBo Zhang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Gang Li
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Jie Zhang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Zhi Yang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Lin Yang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - ShiJie Jiang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - JiaXing Wang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Javaid A, KA A, PM S, Arora K, Mudavath SL. Innovative Approaches and Future Directions in the Management and Understanding of Varicose Veins: A Systematic Review. ACS Pharmacol Transl Sci 2024; 7:2971-2986. [PMID: 39421653 PMCID: PMC11480891 DOI: 10.1021/acsptsci.4c00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
Abstract
Varicose veins, a prevalent condition that primarily affects the lower limbs, present significant hurdles in diagnosis and treatment due to their diverse causes. This study dives into the complex hormonal, environmental, and molecular elements that influence varicose vein genesis, emphasizing the need for precise diagnostic methods and changing therapy approaches to improve patient outcomes. It investigates the epidemiology and demographic distribution of varicose veins, delves into their pathophysiology, and assesses diagnostic methods such as duplex ultrasonography and the CEAP classification system. In addition, the study discusses novel therapies such as sclerotherapy and endovenous thermal ablation, as well as the effectiveness of existing diagnostic methods in detecting chronic venous illnesses. By investigating venous wall remodeling and inflammatory pathways, it gives a thorough knowledge of varicose vein formation. The study calls for future research that focuses on patient-centered methods, bioengineering advances, digital health applications, and genetic and molecular studies to improve the accuracy and effectiveness of vascular therapy. As a result, a multidisciplinary literature analysis was done, drawing on insights from vascular medicine, epidemiology, genetics, and pharmacology, to consolidate existing knowledge and identify possibilities to enhance varicose vein diagnosis, treatment, and patient care outcomes.
Collapse
Affiliation(s)
- Aaqib Javaid
- Infectious
Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Abutwaibe KA
- Infectious
Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Sherilraj PM
- Infectious
Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Kanika Arora
- Infectious
Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Shyam Lal Mudavath
- Department
of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli Hyderabad, Telangana 500046, India
| |
Collapse
|
3
|
Rathod S, Preetam S, Pandey C, Bera SP. Exploring synthesis and applications of green nanoparticles and the role of nanotechnology in wastewater treatment. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 41:e00830. [PMID: 38332899 PMCID: PMC10850744 DOI: 10.1016/j.btre.2024.e00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Current research endeavours are progressively focussing towards discovering sustainable methods for synthesising eco-friendly materials. In this environment, nanotechnology has emerged as a key frontier, especially in bioremediation and biotechnology. A few areas of nanotechnology including membrane technology, sophisticated oxidation processes, and biosensors. It is possible to create nanoparticles (NPs) via physical, chemical, or biological pathways in a variety of sizes and forms. These days, the investigation of plants as substitutes for NP synthesis methods has drawn a lot of interest. Toxic water contaminants such as methyl blue have been shown to be removed upto 70% by nanoparticles. In our article, we aimed at focussing the environmental sustainability and cost-effectiveness towards the green synthesis of nanoparticles. Furthermore it offers a comprehensive thorough summary of green NP synthesis methods which can be distinguished by their ease of use, financial sustainability, and environmentally favourable utilization of plant extracts. This study highlights how green synthesis methods have the potential to transform manufacturing of NPs while adhering to environmental stewardship principles and resource efficiency.
Collapse
Affiliation(s)
- Shreya Rathod
- School of Sciences, P P Savani University, Surat, Gujarat, 391425, India
| | - Subham Preetam
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika, 59053, Sweden
- Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu, 42988, Republic of Korea
| | - Chetan Pandey
- Department of Botany, Hindu College, University of Delhi, New Delhi, 110007, India
| | | |
Collapse
|
4
|
Zhou Y, Yue T, Ding Y, Tan H, Weng J, Luo S, Zheng X. Nanotechnology translation in vascular diseases: From design to the bench. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1919. [PMID: 37548140 DOI: 10.1002/wnan.1919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Atherosclerosis is a systemic pathophysiological condition contributing to the development of majority of polyvascular diseases. Nanomedicine is a novel and rapidly developing science. Due to their small size, nanoparticles are freely transported in vasculature, and have been widely employed as tools in analytical imaging techniques. Furthermore, the application of nanoparticles also allows target intervention, such as drug delivery and tissue engineering regenerative methods, in the management of major vascular diseases. Therefore, by summarizing the physical and chemical characteristics of common nanoparticles used in diagnosis and treatment of vascular diseases, we discuss the details of these applications from cellular, molecular, and in vivo perspectives in this review. Furthermore, we also summarize the status and challenges of the application of nanoparticles in clinical translation. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Yongwen Zhou
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tong Yue
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yu Ding
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huiling Tan
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sihui Luo
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xueying Zheng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
5
|
Han X, Qin Y, Mei C, Jiao F, Khademolqorani S, Nooshin Banitaba S. Current trends and future perspectives of stroke management through integrating health care team and nanodrug delivery strategy. Front Cell Neurosci 2023; 17:1266660. [PMID: 38034591 PMCID: PMC10685387 DOI: 10.3389/fncel.2023.1266660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/25/2023] [Indexed: 12/02/2023] Open
Abstract
Stroke is accounted as the second-most mortality and adult disability factor in worldwide, while causes the bleeding promptly and lifetime consequences. The employed functional recovery after stroke is highly variable, allowing to deliver proper interventions to the right stroke patient at a specific time. Accordingly, the multidisciplinary nursing team, and the administrated drugs are major key-building-blocks to enhance stroke treatment efficiency. Regarding the healthcare team, adequate continuum of care have been declared as an integral part of the treatment process from the pre-hospital, in-hospital, to acute post-discharge phases. As a curative perspective, drugs administration is also vital in surviving at the early step and reducing the probability of disabilities in later. In this regard, nanotechnology-based medicinal strategy is exorbitantly burgeoning. In this review, we have highlighted the effectiveness of current clinical care considered by nursing teams to treat stroke. Also, the advancement of drugs through synthesis of miniaturized nanodrug formations relating stroke treatment is remarked. Finally, the remained challenges toward standardizing the healthcare team and minimizing the nanodrugs downsides are discussed. The findings ensure that future works on normalizing the healthcare nursing teams integrated with artificial intelligence technology, as well as advancing the operative nanodrugs can provide value-based stroke cares.
Collapse
Affiliation(s)
- Xuelu Han
- Nursing Clinic, Affiliated Hospital of Jilin Medical University, Jilin, China
| | - Yingxin Qin
- Department of Nursing, Affiliated Hospital of Jilin Medical University, Jilin, China
| | - Chunli Mei
- Nursing College, Beihua University, Jilin, China
| | - Feitong Jiao
- Nursing Training Center, School of Nursing, Jilin Medical University, Jilin, China
| | - Sanaz Khademolqorani
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran
- Emerald Experts Laboratory, Isfahan Science and Technology Town, Isfahan, Iran
| | - Seyedeh Nooshin Banitaba
- Emerald Experts Laboratory, Isfahan Science and Technology Town, Isfahan, Iran
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
6
|
Direct delivery of plasmin using clot-anchoring thrombin-responsive nanoparticles for targeted fibrinolytic therapy. J Thromb Haemost 2022; 21:983-994. [PMID: 36696210 PMCID: PMC10148984 DOI: 10.1016/j.jtha.2022.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Fibrin-rich clot formation in thrombo-occlusive pathologies is currently treated by systemic administration of plasminogen activators (e.g. tPA), to convert fibrin-associated plasminogen to plasmin for fibrinolytic action. However, this conversion is not restricted to clot site only but also occurs on circulating plasminogen, causing systemic fibrinogenolysis and bleeding risks. To address this, past research has explored tPA delivery using clot-targeted nanoparticles. OBJECTIVES We designed a nanomedicine system that can (1) target clots via binding to activated platelets and fibrin, (2) package plasmin instead of tPA as a direct fibrinolytic agent, and (3) release this plasmin triggered by thrombin for clot-localized action. METHODS Clot-targeted thrombin-cleavable nanoparticles (CTNPs) were manufactured using self-assembly of peptide-lipid conjugates. Plasmin loading and its thrombin-triggered release from CTNPs were characterized by UV-visible spectroscopy. CTNP-targeting to clots under flow was studied using microfluidics. Fibrinolytic effect of CTNP-delivered plasmin was studied in vitro using BioFlux imaging and D-dimer analysis and in vivo in a zebrafish thrombosis model. RESULTS Plasmin-loaded CTNPs significantly bound to clots under shear flow and showed thrombin-triggered enhanced release of plasmin. BioFlux studies confirmed that thrombin-triggered plasmin released from CTNPs rendered fibrinolysis similar to free plasmin, further corroborated by D-dimer analysis. In the zebrafish model, CTNP-delivered plasmin accelerated time-to-recanalization, or completely prevented occlusion when infused before thrombus formation. CONCLUSION Considering that the very short circulation half-life (<1 second) of plasmin prevents its systemic use but also makes it safer without off-target drug effects, clot-targeted delivery of plasmin using CTNPs can enable safer and more efficacious fibrinolytic therapy.
Collapse
|
7
|
Ni N, Wang W, Sun Y, Sun X, Leong DT. Inducible endothelial leakiness in nanotherapeutic applications. Biomaterials 2022; 287:121640. [PMID: 35772348 DOI: 10.1016/j.biomaterials.2022.121640] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
Abstract
All intravenous delivered nanomedicine needs to escape from the blood vessel to exert their therapeutic efficacy at their designated site of action. Failure to do so increases the possibility of detrimental side effects and negates their therapeutic intent. Many powerful anticancer nanomedicine strategies rely solely on the tumor derived enhanced permeability and retention (EPR) effect for the only mode of escaping from the tumor vasculature. However, not all tumors have the EPR effect nor can the EPR effect be induced or controlled for its location and timeliness. In recent years, there have been exciting developments along the lines of inducing endothelial leakiness at the tumor to decrease the dependence of EPR. Physical disruption of the endothelial-endothelial cell junctions with coordinated biological intrinsic pathways have been proposed that includes various modalities like ultrasound, radiotherapy, heat and even nanoparticles, appear to show good progress towards the goal of inducing endothelial leakiness. This review explains the intricate and complex biological background behind the endothelial cells with linkages on how updated reported nanomedicine strategies managed to induce endothelial leakiness. This review will also end off with fresh insights on where the future of inducible endothelial leakiness holds.
Collapse
Affiliation(s)
- Nengyi Ni
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Weiyi Wang
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yu Sun
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore; Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China
| | - Xiao Sun
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China.
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| |
Collapse
|
8
|
Desai C, Koupenova M, Machlus KR, Sen Gupta A. Beyond the thrombus: Platelet-inspired nanomedicine approaches in inflammation, immune response, and cancer. J Thromb Haemost 2022; 20:1523-1534. [PMID: 35441793 PMCID: PMC9321119 DOI: 10.1111/jth.15733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/03/2022]
Abstract
The traditional role of platelets is in the formation of blood clots for physiologic (e.g., in hemostasis) or pathologic (e.g., in thrombosis) functions. The cellular and subcellular mechanisms and signaling in platelets involved in these functions have been extensively elucidated and new knowledge continues to emerge, resulting in various therapeutic developments in this area for the management of hemorrhagic or thrombotic events. Nanomedicine, a field involving design of nanoparticles with unique biointeractive surface modifications and payload encapsulation for disease-targeted drug delivery, has become an important component of such therapeutic development. Beyond their traditional role in blood clotting, platelets have been implicated to play crucial mechanistic roles in other diseases including inflammation, immune response, and cancer, via direct cellular interactions, as well as secretion of soluble factors that aid in the disease microenvironment. To date, the development of nanomedicine systems that leverage these broader roles of platelets has been limited. Additionally, another exciting area of research that has emerged in recent years is that of platelet-derived extracellular vesicles (PEVs) that can directly and indirectly influence physiological and pathological processes. This makes PEVs a unique paradigm for platelet-inspired therapeutic design. This review aims to provide mechanistic insight into the involvement of platelets and PEVs beyond hemostasis and thrombosis, and to discuss the current state of the art in the development of platelet-inspired therapeutic technologies in these areas, with an emphasis on future opportunities.
Collapse
Affiliation(s)
- Cian Desai
- Department of PharmacologyCase Western Reserve UniversityClevelandOhioUSA
| | - Milka Koupenova
- Division of Cardiovascular MedicineDepartment of MedicineUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Kellie R. Machlus
- Department of SurgeryVascular Biology ProgramBoston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Anirban Sen Gupta
- Department of PharmacologyCase Western Reserve UniversityClevelandOhioUSA
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
9
|
Raghunathan S, Rayes J, Sen Gupta A. Platelet-inspired nanomedicine in hemostasis thrombosis and thromboinflammation. J Thromb Haemost 2022; 20:1535-1549. [PMID: 35435322 PMCID: PMC9323419 DOI: 10.1111/jth.15734] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/01/2022]
Abstract
Platelets are anucleate cell-fragments derived predominantly from megakaryocytes in the bone marrow and released in the blood circulation, with a normal count of 150 000-40 000 per μl and a lifespan of approximately 10 days in humans. A primary role of platelets is to aid in vascular injury site-specific clot formation to stanch bleeding, termed hemostasis. Platelets render hemostasis by a complex concert of mechanisms involving platelet adhesion, activation and aggregation, coagulation amplification, and clot retraction. Additionally, platelet secretome can influence coagulation kinetics and clot morphology. Therefore, platelet defects and dysfunctions result in bleeding complications. Current treatment for such complications involve prophylactic or emergency transfusion of platelets. However, platelet transfusion logistics constantly suffer from limited donor availability, challenges in portability and storage, high bacterial contamination risks, and very short shelf life (~5 days). To address these issues, an exciting area of research is focusing on the development of microparticle- and nanoparticle-based platelet surrogate technologies that can mimic various hemostatic mechanisms of platelets. On the other hand, aberrant occurrence of the platelet mechanisms lead to the pathological manifestation of thrombosis and thromboinflammation. The treatments for this are focused on inhibiting the mechanisms or resolving the formed clots. Here, platelet-inspired technologies can provide unique platforms for disease-targeted drug delivery to achieve high therapeutic efficacy while avoiding systemic side-effects. This review will provide brief mechanistic insight into the role of platelets in hemostasis, thrombosis and thromboinflammation, and present the current state-of-art in the design of platelet-inspired nanomedicine for applications in these areas.
Collapse
Affiliation(s)
- Shruti Raghunathan
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Julie Rayes
- Institute of Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Anirban Sen Gupta
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
10
|
Shaw J, Pearson RM. Nanoparticle personalized biomolecular corona: implications of pre-existing conditions for immunomodulation and cancer. Biomater Sci 2022; 10:2540-2549. [PMID: 35476072 PMCID: PMC9117514 DOI: 10.1039/d2bm00315e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Nanoparticles (NPs) have demonstrated great promise as immunotherapies for applications ranging from cancer, autoimmunity, and infectious disease. Upon encountering biological fluids, NPs rapidly adsorb biomolecules, forming the "biomolecular corona" (BC), and the altered character of NPs due to their newly acquired biological identity can impact their in vivo fate. Recently, it has been shown that the NP-BC is person-specific, and even minute differences in the biomolecule composition can give rise to altered immune recognition, cellular interactions, pharmacokinetics, and biodistribution. Given the current rise in the development of NP-based therapeutics, it is of utmost importance to better understand how pre-existing conditions, that result in the formation of a personalized BC, can be leveraged to aid in the prediction of the therapeutic outcomes of NPs. In this minireview, we will discuss the formation of the BC, implications of the BC for NP-biological interactions, and its clinical importance in the context of immunomodulation and cancer therapeutics.
Collapse
Affiliation(s)
- Jacob Shaw
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, USA.
| | - Ryan M Pearson
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, USA.
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
11
|
Zeng Q, Ma X, Song Y, Chen Q, Jiao Q, Zhou L. Targeting regulated cell death in tumor nanomedicines. Am J Cancer Res 2022; 12:817-841. [PMID: 34976215 PMCID: PMC8692918 DOI: 10.7150/thno.67932] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/21/2021] [Indexed: 12/17/2022] Open
Abstract
Nanomedicines hold great potential in anticancer therapy by modulating the biodistribution of nanomaterials and initiating targeted oxidative stress damage, but they are also limited by the inherent self-protection mechanism and the evolutionary treatment resistance of cancer cells. New emerging explorations of regulated cell death (RCD), including processes related to autophagy, ferroptosis, pyroptosis, and necroptosis, substantially contribute to the augmented therapeutic efficiency of tumors by increasing the sensitivity of cancer cells to apoptosis. Herein, paradigmatic studies of RCD-mediated synergistic tumor nanotherapeutics are introduced, such as regulating autophagy-enhanced photodynamic therapy (PDT), targeting ferroptosis-sensitized sonodynamic therapy (SDT), inducing necroptosis-augmented photothermal therapy (PTT), and initiating pyroptosis-collaborative chemodynamic therapy (CDT), and the coordination mechanisms are discussed in detail. Multiangle analyses addressing the present challenges and upcoming prospects of RCD-based nanomedicines have also been highlighted and prospected for their further strengthening and the broadening of their application scope. It is believed that up-and-coming coadjutant therapeutic methodologies based on RCDs will considerably impact precision nanomedicine for cancer.
Collapse
|
12
|
Zhang L, Li Z, Ye X, Chen Z, Chen ZS. Mechanisms of thrombosis and research progress on targeted antithrombotic drugs. Drug Discov Today 2021; 26:2282-2302. [PMID: 33895314 DOI: 10.1016/j.drudis.2021.04.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/26/2022]
Abstract
Globally, the incidence of thromboembolic diseases has increased in recent years, accompanied by an increase in patient mortality. Currently, several targeting delivery strategies have been developed to treat thromboembolic diseases. In this review, we discuss the mechanisms of thrombolysis and current anticoagulant drugs, particularly those with targeting capability, highlighting advances in the accurate treatment of thrombolysis with fewer adverse effects. Such approaches include magnetic drug-loading systems combined with molecular imaging to recanalize blood vessels and systems based on chimeric Arg-Gly-Asp (RGD) sequences that can target platelet glycoprotein receptor. With such progress in targeted antithrombotic drugs, targeted thrombolysis treatment shows significant potential benefit for patients.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Li
- Fujian Cancer Hospital, Fujian Provincial Cancer Hospital of Fujian Medical University, Fuzhou 350014, China
| | - Xianren Ye
- Fujian Cancer Hospital, Fujian Provincial Cancer Hospital of Fujian Medical University, Fuzhou 350014, China.
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, NY 11439, USA.
| |
Collapse
|
13
|
Sun M, Miyazawa K, Pendekanti T, Razmi A, Firlar E, Yang S, Shokuhfar T, Li O, Li W, Sen Gupta A. Combination targeting of 'platelets + fibrin' enhances clot anchorage efficiency of nanoparticles for vascular drug delivery. NANOSCALE 2020; 12:21255-21270. [PMID: 33063812 PMCID: PMC8112300 DOI: 10.1039/d0nr03633a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Occlusive thrombosis is a central pathological event in heart attack, stroke, thromboembolism, etc. Therefore, pharmacological thrombolysis or anticoagulation is used for treating these diseases. However, systemic administration of such drugs causes hemorrhagic side-effects. Therefore, there is significant clinical interest in strategies for enhanced drug delivery to clots while minimizing systemic effects. One such strategy is by using drug-carrying nanoparticles surface-decorated with clot-binding ligands. Efforts in this area have focused on binding to singular targets in clots, e.g. platelets, fibrin, collagen, vWF or endothelium. Targeting vWF, collagen or endothelium maybe sub-optimal since in vivo these entities will be rapidly covered by platelets and leukocytes, and thus inaccessible for sufficient nanoparticle binding. In contrast, activated platelets and fibrin are majorly accessible for particle-binding, but their relative distribution in clots is highly heterogeneous. We hypothesized that combination-targeting of 'platelets + fibrin' will render higher clot-binding efficacy of nanoparticles, compared to targeting platelets or fibrin singularly. To test this, we utilized liposomes as model nanoparticles, decorated their surface with platelet-binding peptides (PBP) or fibrin-binding peptides (FBP) or combination (PBP + FBP) at controlled compositions, and evaluated their binding to human blood clots in vitro and in a mouse thrombosis model in vivo. In parallel, we developed a computational model of nanoparticle binding to single versus combination entities in clots. Our studies indicate that combination targeting of 'platelets + fibrin' enhances the clot-anchorage efficacy of nanoparticles while utilizing lower ligand densities, compared to targeting platelets or fibrin only. These findings provide important insights for vascular nanomedicine design.
Collapse
Affiliation(s)
- Michael Sun
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bragazzi NL. Nanomedicine: Insights from a Bibliometrics-Based Analysis of Emerging Publishing and Research Trends. ACTA ACUST UNITED AC 2019; 55:medicina55120785. [PMID: 31847454 PMCID: PMC6956084 DOI: 10.3390/medicina55120785] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 01/21/2023]
Abstract
Background and Objectives: Nanomedicine, a term coined by the American engineer Eric Drexler (1955) and Robert Freitas Jr. (1952) in the nineties, can be defined as a complex, multi-disciplinary branch of medicine, in which nano-technologies, molecular biotechnologies, and other nano-sciences are applied at every step of disease management, from diagnosis (nano-diagnostics) to treatment (nano-therapeutics), prognosis, and monitoring of biological parameters and biomarkers. Nanomedicine is a relatively young discipline, which is increasingly and exponentially growing, characterized by emerging ethical issues and implications. Nanomedicine has branched out in hundreds of different sub-fields. Materials and Methods: A bibliometrics-based analysis was applied mining the entire content of PubMed/MEDLINE, using “nanomedicine” as a Medical Subject Heading (MeSH) search term. Results: A sample of 6696 articles were extracted from PubMed/MEDLINE and analyzed. Articles had been published in the period from 2003 to 2019, showing an increasing trend throughout the time. Six thematic clusters emerged (first cluster: molecular methods; second cluster: molecular biology and nano-characterization; third cluster: nano-diagnostics and nano-theranostics; fourth cluster: clinical applications, in the sub-fields of nano-oncology, nano-immunology and nano-vaccinology; fifth cluster: clinical applications, in the sub-fields of nano-oncology and nano-infectiology; and sixth cluster: nanodrugs). The countries with the highest percentages of articles in the field of nanomedicine were the North America (38.3%) and Europe (35.1%). Conclusions: The present study showed that there is an increasing trend in publishing and performing research in the super-specialty of nanomedicine. Most productive countries were the USA and European countries, with China as an emerging region. Hot topics in the last years were nano-diagnostics and nano-theranostics and clinical applications in the sub-fields of nano-oncology and nano-infectiology.
Collapse
Affiliation(s)
- Nicola Luigi Bragazzi
- Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|