1
|
Li HH, Liu Y, Kramer S. Benzylic C(sp 3)-H Phosphonylation via Dual Photo and Copper Catalysis. Angew Chem Int Ed Engl 2025; 64:e202420613. [PMID: 39579061 DOI: 10.1002/anie.202420613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/25/2024]
Abstract
Alkyl phosphonates are important motifs in medicinal chemistry, yet their efficient synthesis by direct C(sp3)-H functionalization remains a challenge. Here, we report straightforward access to benzylic phosphonates by direct C(sp3)-H functionalization in a cross-dehydrogenative-coupling reaction between non-specialized alkylarenes and unfunctionalized phosphites. Notably, the C-H substrates are used as the limiting reagents. The scope of benzylic C-H substrates is broad, and the mild reaction conditions allow for good functional group tolerance. Mechanistic studies indicate that the reaction proceeds via a radical pathway rather than the cationic pathway followed for specialized benzylic C-H substrates in previous methods.
Collapse
Affiliation(s)
- Heng-Hui Li
- Department of Chemistry, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Yuwen Liu
- Department of Chemistry, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Søren Kramer
- Department of Chemistry, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| |
Collapse
|
2
|
Marcos Anghinoni J, Irum, Ur Rashid H, João Lenardão E, Santos Silva M. 31P Nuclear Magnetic Resonance Spectroscopy for Monitoring Organic Reactions and Organic Compounds. CHEM REC 2024; 24:e202400132. [PMID: 39499103 DOI: 10.1002/tcr.202400132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Indexed: 11/07/2024]
Abstract
31P NMR spectroscopy is a consolidated tool for the characterization of organophosphorus compounds and, more recently, for reaction monitoring. The evolution of organic synthesis, mainly due to the combination of elaborated building blocks with enabling technologies, generated great challenges to understand and to optimize the synthetic methodologies. In this sense, 31P NMR experiments also became a routine technique for reaction monitoring, accessing products and side products yields, chiral recognition, kinetic data, intermediates, as well as basic organic parameters, such as acid-base and hydrogen-bonding. This review deals with these aspects demonstrating the essential role of the 31P NMR spectroscopy. The recent publications (the last ten years) will be explored, discussing the experiments of 31P NMR and the strategies accomplished to detect and/or quantify distinct organophosphorus molecules, approaching reaction mechanism, stability, stereochemistry, and the utility as a probe.
Collapse
Affiliation(s)
- João Marcos Anghinoni
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, P. O. box 354, CEP 96010-900, Pelotas, RS, Brazil
| | - Irum
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, P. O. box 354, CEP 96010-900, Pelotas, RS, Brazil
| | - Haroon Ur Rashid
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, P. O. box 354, CEP 96010-900, Pelotas, RS, Brazil
| | - Eder João Lenardão
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, P. O. box 354, CEP 96010-900, Pelotas, RS, Brazil
| | - Márcio Santos Silva
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, P. O. box 354, CEP 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
3
|
Banjare SK, Lezius L, Horst ES, Leifert D, Daniliuc CG, Alasmary FA, Studer A. Thermal and Photoinduced Radical Cascade Annulation using Aryl Isonitriles: An Approach to Quinoline-Derived Benzophosphole Oxides. Angew Chem Int Ed Engl 2024; 63:e202404275. [PMID: 38687058 DOI: 10.1002/anie.202404275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Herein, we present a radical cascade addition cyclization sequence to access quinoline-based benzophosphole oxides from ortho-alkynylated aromatic phosphine oxides using various aryl isonitriles as radical acceptors and inexpensive tert-butyl-hydroperoxide (TBHP) as a terminal oxidant in the presence of a catalytic amount of silver acetate. Alternatively, the same cascade can be realized through a sustainable photochemical approach utilizing 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) as an organic photocatalyst at room temperature. The introduced modular approach shows broad functional group tolerance and offers straightforward access to complex P,N-containing polyheterocyclic arenes. These novel π-extended benzophosphole oxides exhibit interesting photophysical and electrochemical properties such as absorption in the visible region, emission and reversible reduction at low potentials, which makes them promising for potential materials science applications. The photophysical properties can further be tuned by the addition of external Lewis and Brønsted acids.
Collapse
Affiliation(s)
- Shyam Kumar Banjare
- Organisch-Chemisches Institut, Chemistry Department, University of Münster, 48149, Münster, Germany
| | - Lena Lezius
- Organisch-Chemisches Institut, Chemistry Department, University of Münster, 48149, Münster, Germany
| | - Elena S Horst
- Organisch-Chemisches Institut, Chemistry Department, University of Münster, 48149, Münster, Germany
| | - Dirk Leifert
- Organisch-Chemisches Institut, Chemistry Department, University of Münster, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Chemistry Department, University of Münster, 48149, Münster, Germany
| | - Fatmah A Alasmary
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Armido Studer
- Organisch-Chemisches Institut, Chemistry Department, University of Münster, 48149, Münster, Germany
| |
Collapse
|
4
|
Wang J, Zhang Y, Zhu L, Xue XS, Li C. Photoinduced Remote C(sp 3)-H Phosphonylation of Amides. Angew Chem Int Ed Engl 2024; 63:e202400856. [PMID: 38570332 DOI: 10.1002/anie.202400856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
The present study reports an unprecedented protocol for the phosphonylation of unactivated C(sp3)-H bonds. By utilizing 1 mol % 4DPAIPN (1,2,3,5-tetrakis(diphenylamino)-4,6-dicyanobenzene) as the catalyst, satisfactory yields of γ-phosphonylated amides are obtained through a visible-light-induced reaction between N-((4-cyanobenzoyl)oxy)alkanamides and 9-fluorenyl o-phenylene phosphite at room temperature. This protocol demonstrates broad substrate scope and wide functional group compatibility.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yuchen Zhang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Lin Zhu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiao-Song Xue
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Chaozhong Li
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
5
|
Xu S, Mi R, Zheng G, Li X. Cobalt- or rhodium-catalyzed synthesis of 1,2-dihydrophosphete oxides via C-H activation and formal phosphoryl migration. Chem Sci 2024; 15:6012-6021. [PMID: 38665527 PMCID: PMC11040647 DOI: 10.1039/d4sc00649f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
A highly stereo- and chemoselective intermolecular coupling of diverse heterocycles with dialkynylphosphine oxides has been realized via cobalt/rhodium-catalyzed C-H bond activation. This protocol provides an efficient synthetic entry to functionalized 1,2-dihydrophosphete oxides in excellent yields via the merger of C-H bond activation and formal 1,2-migration of the phosphoryl group. Compared with traditional methods of synthesis of 1,2-dihydrophosphetes that predominantly relied on stoichiometric metal reagents, this catalytic system features high efficiency, a relatively short reaction time, atom-economy, and operational simplicity. Photophysical properties of selected 1,2-dihydrophosphete oxides are also disclosed.
Collapse
Affiliation(s)
- Shengbo Xu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU) Xi'an 710062 P. R. China
| | - Ruijie Mi
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University Qingdao 266237 P. R. China
| | - Guangfan Zheng
- Department of Chemistry, Northeast Normal University Changchun 130024 P. R. China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU) Xi'an 710062 P. R. China
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University Qingdao 266237 P. R. China
| |
Collapse
|
6
|
Mo JN, Sun S, Xu H, Shu H, Zhao J. Synthesis of γ-Oxo-phosphonates via N-Heterocyclic Carbene-Catalyzed Acylphosphorylation of Alkenes. Org Lett 2024; 26:2197-2201. [PMID: 38451224 DOI: 10.1021/acs.orglett.4c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
In this study, we present an N-heterocyclic carbene-catalyzed method for the radical acylphosphorylation of alkenes. Electrochemical investigations were employed to identify an appropriate class of oxime phosphonates capable of undergoing a single-electron transfer (SET) with Breslow enolates. The resulting phosphoryl radicals were effectively coupled with diverse styrenes and aldehydes to yield a variety of γ-oxo-phosphonates. Both radical clock experiments and electrochemical studies support our reaction design, and a plausible mechanism for the organocatalytic transformation is proposed.
Collapse
Affiliation(s)
- Jia-Nan Mo
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Shengbin Sun
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Huiwei Xu
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Hanyu Shu
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jiannan Zhao
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
7
|
Zhou H, Wu C, Han Y, Huang B, Wang C, Mei S, Yang J. Photocatalyzed Aerobic Cross-Dehydrogenative Coupling of Diarylphosphine Oxides with Alcohols and Phenols. Org Lett 2024. [PMID: 38501966 DOI: 10.1021/acs.orglett.4c00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
A photocatalytic cross-dehydrogenative coupling of diarylphosphine oxides with alcohols and phenols has been developed. Using organic dye Rose Bengal as the photocatalyst and air as the oxidant, the reaction proceeded smoothly at room temperature. Both alcohols and phenols were feasible, affording various organophosphinates in high yields. The absence of a halogenating reagent, the absence of a transition-metal catalyst, a green oxidant, and mild conditions make this strategy environmentally benign and sustainable. Mechanistic studies indicated that the reaction is enabled by the cooperation of photoredox catalysis and photosensitization.
Collapse
Affiliation(s)
- Hongyan Zhou
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Chengqi Wu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yating Han
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Bao Huang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Cunhui Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Shouying Mei
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jingya Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
8
|
Cui R, Wang Y, Yuwen L, Gao L, Huang Z, Wang WH, Zhang QW. Ni-Catalyzed Asymmetric C-P Cross-Coupling Reaction for the Synthesis of Chiral Heterocyclic Phosphine Oxides. Org Lett 2023; 25:6139-6142. [PMID: 37565674 DOI: 10.1021/acs.orglett.3c02216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Nickel performs excellently in C-C and C-X cross-coupling reactions. Here, we disclose a Ni(II)-catalyzed asymmetric C-P cross-coupling reaction to afford valuable chiral heterocyclic tertiary phosphine oxides. The method is mild and efficient, which invokes a self-sustained nickel catalytic cycle without an external reductant, light irradiation, or electricity.
Collapse
Affiliation(s)
- Ranran Cui
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yinqi Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Liyan Yuwen
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Li Gao
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zhuo Huang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wei-Han Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qing-Wei Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Pagire S, Shu C, Reich D, Noble A, Aggarwal VK. Convergent Deboronative and Decarboxylative Phosphonylation Enabled by the Phosphite Radical Trap "BecaP". J Am Chem Soc 2023; 145:18649-18657. [PMID: 37552886 PMCID: PMC10450818 DOI: 10.1021/jacs.3c06524] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 08/10/2023]
Abstract
Carbon-phosphorus bond formation is significant in synthetic chemistry because phosphorus-containing compounds offer numerous indispensable biochemical roles. While there is a plethora of methods to access organophosphorus compounds, phosphonylations of readily accessible alkyl radicals to form aliphatic phosphonates are rare and not commonly used in synthesis. Herein, we introduce a novel phosphorus radical trap "BecaP" that enables facile and efficient phosphonylation of alkyl radicals under visible light photocatalytic conditions. Importantly, the ambiphilic nature of BecaP allows redox neutral reactions with both nucleophilic (activated by single-electron oxidation) and electrophilic (activated by single-electron reduction) alkyl radical precursors. Thus, a broad scope of feedstock alkyl potassium trifluoroborate salts and redox active carboxylate esters could be employed, with each class of substrate proceeding through a distinct mechanistic pathway. The mild conditions are applicable to the late-stage installation of phosphonate motifs into medicinal agents and natural products, which is showcased by the straightforward conversion of baclofen (muscle relaxant) to phaclofen (GABAB antagonist).
Collapse
Affiliation(s)
- Santosh
K. Pagire
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Chao Shu
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- National
Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Dominik Reich
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Adam Noble
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Varinder K. Aggarwal
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
10
|
Zhu PW, Ma HM, Li Y, Miao LZ, Zhu J. Electro-Triggered Cascade Cyclization to Access Phosphinyl-Substituted N-Containing Heterocycles. J Org Chem 2023; 88:2069-2078. [PMID: 36701209 DOI: 10.1021/acs.joc.2c02377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An electro-triggered cascade cyclization strategy was disclosed with concomitant phosphinylation and N-heterocycle construction. It provides a novel and environmentally friendly approach to access phosphinyl-substituted N-heterocycles with no external metal catalyst, oxidant, or heating. Mechanistic studies have revealed that anodic oxidation of H-phosphorus compounds occurs first to generate the key P-centered radical directly and cathodic reduction leads to the concurrent release of molecular hydrogen or methane. This protocol features simple operation, broad substrate scope, clean and mild conditions, and atom and step economy to form heterocycle-containing organophosphorus scaffolds.
Collapse
Affiliation(s)
- Peng-Wei Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Hong-Mei Ma
- Laboratory and Research Base Management, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yang Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Ling-Zhen Miao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jie Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
11
|
Abstract
The emergence of modern photocatalysis, characterized by mildness and selectivity, has significantly spurred innovative late-stage C-H functionalization approaches that make use of low energy photons as a controllable energy source. Compared to traditional late-stage functionalization strategies, photocatalysis paves the way toward complementary and/or previously unattainable regio- and chemoselectivities. Merging the compelling benefits of photocatalysis with the late-stage functionalization workflow offers a potentially unmatched arsenal to tackle drug development campaigns and beyond. This Review highlights the photocatalytic late-stage C-H functionalization strategies of small-molecule drugs, agrochemicals, and natural products, classified according to the targeted C-H bond and the newly formed one. Emphasis is devoted to identifying, describing, and comparing the main mechanistic scenarios. The Review draws a critical comparison between established ionic chemistry and photocatalyzed radical-based manifolds. The Review aims to establish the current state-of-the-art and illustrate the key unsolved challenges to be addressed in the future. The authors aim to introduce the general readership to the main approaches toward photocatalytic late-stage C-H functionalization, and specialist practitioners to the critical evaluation of the current methodologies, potential for improvement, and future uncharted directions.
Collapse
Affiliation(s)
- Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, 201210Shanghai, China
| | - Teresa Faber
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| |
Collapse
|
12
|
Mahmood Z, He J, Cai S, Yuan Z, Liang H, Chen Q, Huo Y, König B, Ji S. Tuning the Photocatalytic Performance of Ruthenium(II) Polypyridine Complexes Via Ligand Modification for Visible-Light-Induced Phosphorylation of Tertiary Aliphatic Amines. Chemistry 2023; 29:e202202677. [PMID: 36250277 DOI: 10.1002/chem.202202677] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Indexed: 11/16/2022]
Abstract
Tuning the redox potential of commonly available photocatalyst to improve the catalytic performance or expand its scope for challenging synthetic conversions is an ongoing demand in synthetic chemistry. Herein, the excited state properties and redox potential of commercially available [Ru(bpy)3 ]2+ photocatalyst were tuned by modifying the structure of the bipyridine ligands with electron-donating/withdrawing units. The visible-light-mediated photoredox phosphorylation of tertiary aliphatic amines was demonstrated under mild conditions. A series of cross-dehydrogenative coupling reactions were performed employing the RuII complexes as photocatalyst giving the corresponding α-aminophosphinoxides and α-aminophosphonates via carbon-phosphorus (C-P) bond formation.
Collapse
Affiliation(s)
- Zafar Mahmood
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Jia He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Shuqing Cai
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Zhanxiang Yuan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Hui Liang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Burkhard König
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| |
Collapse
|
13
|
Ma W, Zhang S, Xu L, Zhang B, Li G, Rao B, Zhang M, He G. Pyrene-tethered bismoviologens for visible light-induced C(sp3)–P and C(sp2)–P bonds formation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Yu J, Cheng Y, Chen B, Tung C, Wu L. Cobaloxime Photocatalysis for the Synthesis of Phosphorylated Heteroaromatics. Angew Chem Int Ed Engl 2022; 61:e202209293. [DOI: 10.1002/anie.202209293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Ji‐Xin Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yuan‐Yuan Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
15
|
Yu JX, Cheng YY, Chen B, Tung CH, Wu LZ. Cobaloxime Photocatalysis for Phosphorylated Heteroaromatics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ji-Xin Yu
- Technical Institute of Physics and Chemistry Technical Institute of Physics and Chemistry, CAS CHINA
| | - Yuan-Yuan Cheng
- Technical Institute of Physics and Chemistry Technical Institute of Physics and Chemistry, CAS CHINA
| | - Bin Chen
- Technical Institute of Physics and Chemistry Technical Institute of Physics and Chemistry, CAS CHINA
| | - Chen-Ho Tung
- Technical Institute of Physics and Chemistry Technical Institute of Physics and Chemistry, CAS CHINA
| | - Li-Zhu Wu
- Technical Institute of Physics and Chemistry Chinese Academy of Science Zhongguancun east road 29#, haidian district, Beijing 100190, China 100190 Beijing CHINA
| |
Collapse
|
16
|
Zhang Y, Yuan J, Huang G, Yu H, Liu J, Chen J, Meng S, Zhong JJ, Dang L, Yu GA, Che CM. Direct visible-light-induced synthesis of P-stereogenic phosphine oxides under air conditions. Chem Sci 2022; 13:6519-6524. [PMID: 35756532 PMCID: PMC9172294 DOI: 10.1039/d2sc00036a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Over the past two decades, visible-light-induced transformations have been regarded as being among the most environmentally benign and powerful strategies for constructing complex molecules and diverse synthetic building blocks in organic synthesis. However, the development of efficient photochemical processes for assembling enantiomerically pure molecules remains a significant challenge. Herein, we describe a simple and efficient visible-light-induced C-P bond forming reaction for the synthesis of P-chiral heteroaryl phosphine oxides in moderate to high yields with excellent ee values (97-99% ee). Even in the absence of transition metal or photoredox catalysts, a variety of P-chiral heteroaryl phosphine oxides, including chiral diphosphine oxide 41, have been directly obtained under air conditions. Density functional theory (DFT) calculations have shown that the reaction involves intersystem crossing and single electron transfer to give a diradical intermediate under visible light irradiation.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Jia Yuan
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Guanglong Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory Guangdong 515063 P. R. China
| | - Hong Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Jinpeng Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Jian Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Sixuan Meng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Jian-Ji Zhong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory Guangdong 515063 P. R. China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory Guangdong 515063 P. R. China
| | - Guang-Ao Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Chi-Ming Che
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory Guangdong 515063 P. R. China
| |
Collapse
|
17
|
Patel RI, Singh J, Sharma A. Visible Light‐Mediated Manipulation of 1,n‐Enynes in Organic Synthesis. ChemCatChem 2022. [DOI: 10.1002/cctc.202200260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Roshan I. Patel
- IIT Roorkee: Indian Institute of Technology Roorkee CHEMISTRY INDIA
| | - Jitender Singh
- IIT Roorkee: Indian Institute of Technology Roorkee CHEMISTRY INDIA
| | - Anuj Sharma
- Indian Institute of Technoology Roorkee Deptartment of Chemistry Room 303DDepartment of Chemistry, IIT Roorkee 247667 Roorkee INDIA
| |
Collapse
|
18
|
Saha S, Bagdi AK. Visible light-promoted photocatalyst-free activation of persulfates: a promising strategy for C-H functionalization reactions. Org Biomol Chem 2022; 20:3249-3262. [PMID: 35363233 DOI: 10.1039/d2ob00109h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The employment of renewable energy resources is highly desirable according to the twelve principles of green chemistry. In this context, visible light promoted organic transformations have gained much attention from synthetic chemists due to the employment of renewable energy. However, the inability of the majority of organic molecules to absorb visible light encouraged the use of photocatalysts in visible light-mediated organic transformations. As a result, different types of photocatalysts like transition-metal containing photoredox catalysts, organophotoredox catalysts, heterogeneous photocatalysts, etc. have emerged over the years. On the other hand, persulphates (K2S2O8, Na2S2O8, and (NH4)2S2O8) have been widely used as oxidants in various oxidative organic transformations under thermal and photochemical conditions. The initial formation of an active persulfate radical anion from a persulfate anion is the crucial step for these oxidative transformations and the conversions under visible light are generally carried out employing different photocatalysts. Although numerous methodologies have been successfully developed employing these photocatalysts, the development of new processes under photocatalyst-free conditions are more preferable from the viewpoint of sustainable development. Persulphates could be very useful for various organic transformations through C-H functionalizations under photocatalyst-free visible light irradiation. In this review, we will exemplify the efficiency of persulphates in various oxidative organic transformations under visible light irradiation without the employment of any photocatalysts. The utilities and mechanistic pathways of the methodologies will also be highlighted.
Collapse
Affiliation(s)
- Sudipta Saha
- Department of Chemistry, Triveni Devi Bhalotia College (UG+PG), Raniganj, WB-713347, India.
| | - Avik Kumar Bagdi
- Department of Chemistry, University of Kalyani, Kalyani, WB-741235, India
| |
Collapse
|
19
|
Zhou H, Wang G, Wang C, Yang J. Visible-Light-Promoted Aerobic Oxyphosphorylation of α-Diazoesters with H-Phosphine Oxides. Org Lett 2022; 24:1530-1535. [DOI: 10.1021/acs.orglett.2c00198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hongyan Zhou
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ganggang Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Cunhui Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jingya Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
20
|
Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2022; 122:2487-2649. [PMID: 34751568 PMCID: PMC10021920 DOI: 10.1021/acs.chemrev.1c00384] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox processes are at the heart of synthetic methods that rely on either electrochemistry or photoredox catalysis, but how do electrochemistry and photoredox catalysis compare? Both approaches provide access to high energy intermediates (e.g., radicals) that enable bond formations not constrained by the rules of ionic or 2 electron (e) mechanisms. Instead, they enable 1e mechanisms capable of bypassing electronic or steric limitations and protecting group requirements, thus enabling synthetic chemists to disconnect molecules in new and different ways. However, while providing access to similar intermediates, electrochemistry and photoredox catalysis differ in several physical chemistry principles. Understanding those differences can be key to designing new transformations and forging new bond disconnections. This review aims to highlight these differences and similarities between electrochemistry and photoredox catalysis by comparing their underlying physical chemistry principles and describing their impact on electrochemical and photochemical methods.
Collapse
Affiliation(s)
- Nicholas E. S. Tay
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| |
Collapse
|
21
|
Dou Q, Wang T, Cheng B, Li CJ, Zeng H. Recent advances in photochemical construction of aromatic C–P bonds via C–hetero bond cleavage. Org Biomol Chem 2022; 20:8818-8832. [DOI: 10.1039/d2ob01524b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photochemical C–P bond cross-coupling in aromatics via C–X (X = F, Cl, Br, I), C–N bond and C–O bond cleavages with/without photosensitizer were summarized in this review.
Collapse
Affiliation(s)
- Qian Dou
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China
- The State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Road, Lanzhou, 730000, China
| | - Taimin Wang
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Bin Cheng
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Chao-Jun Li
- Department of Chemistry, and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St West, Montreal, Quebec H3A 0B8, Canada
| | - Huiying Zeng
- The State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Road, Lanzhou, 730000, China
| |
Collapse
|
22
|
Juliá F, Constantin T, Leonori D. Applications of Halogen-Atom Transfer (XAT) for the Generation of Carbon Radicals in Synthetic Photochemistry and Photocatalysis. Chem Rev 2021; 122:2292-2352. [PMID: 34882396 DOI: 10.1021/acs.chemrev.1c00558] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The halogen-atom transfer (XAT) is one of the most important and applied processes for the generation of carbon radicals in synthetic chemistry. In this review, we summarize and highlight the most important aspects associated with XAT and the impact it has had on photochemistry and photocatalysis. The organization of the material starts with the analysis of the most important mechanistic aspects and then follows a subdivision based on the nature of the reagents used in the halogen abstraction. This review aims to provide a general overview of the fundamental concepts and main agents involved in XAT processes with the objective of offering a tool to understand and facilitate the development of new synthetic radical strategies.
Collapse
Affiliation(s)
- Fabio Juliá
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Timothée Constantin
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Daniele Leonori
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
23
|
Yang F, Zhou Q, Wang H, Tang L. Copper‐Catalyzed Cross‐Dehydrogenative Phosphorylation of 2‐Amino‐1,4‐naphthoquinones with
H
‐Phosphonates. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fang Yang
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 P. R. China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 P. R. China
| | - Heyan Wang
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 P. R. China
| | - Lin Tang
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 P. R. China
- Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan Xinyang 464000 P. R. China
| |
Collapse
|
24
|
Bembenek BM, Petersen MMS, Lilly JA, Haugen AL, Jiter NJ, Johnson AJ, Ripp EE, Winchell SA, Harvat AN, McNulty C, Thein SA, Grieger AM, Lyle BJ, Mraz GL, Stitgen AM, Foss S, Schmid ML, Scanlon JD, Willoughby PH. The Aryne-Abramov Reaction as a 1,2-Benzdiyne Platform for the Generation and Solvent-Dependent Trapping of 3-Phosphonyl Benzynes. J Org Chem 2021; 86:10724-10746. [PMID: 34236859 DOI: 10.1021/acs.joc.1c01382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Synthetic methodology utilizing two aryne intermediates (i.e., a formal benzdiyne) enables the rapid generation of structurally complex molecules with diverse functionality. This report describes the sequential generation of two ortho-benzyne intermediates for the synthesis of 2,3-disubstituted aryl phosphonates. Aryl phosphonates have proven useful in medicinal chemistry and materials science, and the reported methodology provides a two-step route to functionally dense variants by way of 3-phosphonyl benzyne intermediates. The process begins with regioselective trapping of a 3-trifloxybenzyne intermediate by an O-silyl phosphite in an Abramov-like reaction to bond the strained Csp carbons with phosphorus and silicon. Standard aryne-generating conditions follow to convert the resulting 2-silylphenyl triflate into a 3-phosphonyl benzyne, which readily reacts with numerous aryne trapping reactants to form a variety of 2,3-difunctionalized aryl phosphonate products. DFT computational studies shed light on important mechanistic details and revealed that 3-phosphonyl benzynes are highly polarizable. Specifically, the distortion in the internal bond angles at each of the Csp atoms was strongly influenced by both the electronegativity of the phosphonate ester groups as well as the dielectric of the computational solvation model. These effects were verified experimentally as the regioselectivity of benzyl azide trapping increased with more electronegative esters and/or increasingly polar solvents. Conversely, replacing the conventional solvent, acetonitrile, with nonpolar alternatives provided attenuated or even inverted selectivities. Overall, these studies showcase new reactivity of benzyne intermediates and extend the aryne relay methodology to include organophosphonates. Furthermore, this work demonstrates that the regioselectivity of aryne trapping reactions could be tuned by simply changing the solvent.
Collapse
Affiliation(s)
- Brianna M Bembenek
- Chemistry Department, Ripon College, 300 West Seward Street, Ripon, Wisconsin 54971, United States
| | - Maya M S Petersen
- Chemistry Department, Ripon College, 300 West Seward Street, Ripon, Wisconsin 54971, United States
| | - Julia A Lilly
- Chemistry Department, Ripon College, 300 West Seward Street, Ripon, Wisconsin 54971, United States
| | - Amber L Haugen
- Chemistry Department, Ripon College, 300 West Seward Street, Ripon, Wisconsin 54971, United States
| | - Naomi J Jiter
- Chemistry Department, Ripon College, 300 West Seward Street, Ripon, Wisconsin 54971, United States
| | - Andrew J Johnson
- Chemistry Department, Ripon College, 300 West Seward Street, Ripon, Wisconsin 54971, United States
| | - Ethan E Ripp
- Chemistry Department, Ripon College, 300 West Seward Street, Ripon, Wisconsin 54971, United States
| | - Shelby A Winchell
- Chemistry Department, Ripon College, 300 West Seward Street, Ripon, Wisconsin 54971, United States
| | - Alisha N Harvat
- Chemistry Department, Ripon College, 300 West Seward Street, Ripon, Wisconsin 54971, United States
| | - Caitlin McNulty
- Chemistry Department, Ripon College, 300 West Seward Street, Ripon, Wisconsin 54971, United States
| | - Sierra A Thein
- Chemistry Department, Ripon College, 300 West Seward Street, Ripon, Wisconsin 54971, United States
| | - Abbigail M Grieger
- Chemistry Department, Ripon College, 300 West Seward Street, Ripon, Wisconsin 54971, United States
| | - Brandon J Lyle
- Chemistry Department, Ripon College, 300 West Seward Street, Ripon, Wisconsin 54971, United States
| | - Gabriella L Mraz
- Chemistry Department, Ripon College, 300 West Seward Street, Ripon, Wisconsin 54971, United States
| | - Abigail M Stitgen
- Chemistry Department, Ripon College, 300 West Seward Street, Ripon, Wisconsin 54971, United States
| | - Samuel Foss
- Chemistry Department, Ripon College, 300 West Seward Street, Ripon, Wisconsin 54971, United States
| | - Merranda L Schmid
- Chemistry Department, Ripon College, 300 West Seward Street, Ripon, Wisconsin 54971, United States
| | - Joseph D Scanlon
- Chemistry Department, Ripon College, 300 West Seward Street, Ripon, Wisconsin 54971, United States
| | - Patrick H Willoughby
- Chemistry Department, Ripon College, 300 West Seward Street, Ripon, Wisconsin 54971, United States
| |
Collapse
|
25
|
Guo L, Su M, Zhan H, Liu W, Wang S. Silver‐Catalyzed Direct Regioselective C3 Phosphonation of 4
H
‐pyrido[1,2‐
a
]pyrimidin‐4‐ones With
H
‐phosphites. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lina Guo
- School of Chemistry and Chemical Engineering Guangdong Pharmaceutical University 280 Waihuan East Road Guangzhou 510006 P. R. China
| | - Meiyun Su
- School of Chemistry and Chemical Engineering Guangdong Pharmaceutical University 280 Waihuan East Road Guangzhou 510006 P. R. China
| | - Haiying Zhan
- School of Chemistry and Chemical Engineering Guangdong Pharmaceutical University 280 Waihuan East Road Guangzhou 510006 P. R. China
- Guangdong Cosmetics Engineering & Technology Research Center 280 Waihuan East Road Guangzhou 510006 P. R. China
| | - Wenjie Liu
- School of Chemistry and Chemical Engineering Guangdong Pharmaceutical University 280 Waihuan East Road Guangzhou 510006 P. R. China
- Guangdong Cosmetics Engineering & Technology Research Center 280 Waihuan East Road Guangzhou 510006 P. R. China
| | - Shaohua Wang
- School of Chemistry and Chemical Engineering Guangdong Pharmaceutical University 280 Waihuan East Road Guangzhou 510006 P. R. China
- Guangdong Cosmetics Engineering & Technology Research Center 280 Waihuan East Road Guangzhou 510006 P. R. China
| |
Collapse
|