1
|
Ray S, Gupta N, Singh MS. LiBr-Promoted Reaction of β-Ketodithioesters and Thioamides with Sulfoxonium Ylides to Synthesize Functionalized Thiophenes. Org Lett 2024; 26:9401-9406. [PMID: 39436378 DOI: 10.1021/acs.orglett.4c03680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
An operationally simple and highly efficient synthesis of functionalized thiophenes has been developed by LiBr promoted heteroannulation of β-ketodithioesters and thioamides with bench-stable sulfoxonium ylides in open air for the first time. This one-pot strategy involves formal Csp3-H bond insertion/intramolecular cyclization cascade, featuring readily accessible starting materials, TM and additive-free condition, broad substrate scope, high functional group compatibility, and scalability. Moreover, the carbonyl, thiomethyl, and amino groups in the resulting thiophene provide a good handle on downstream transformations.
Collapse
Affiliation(s)
- Subhasish Ray
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nimisha Gupta
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
2
|
Kumar M, Sharma AK, Ishu K, Singh KN. Sulfur-Mediated Decarboxylative Amidation of Cinnamic Acids via C═C Bond Cleavage. J Org Chem 2024; 89:9888-9895. [PMID: 38920263 DOI: 10.1021/acs.joc.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
A new strategy for the synthesis of amides has been developed using sulfur-mediated decarboxylative coupling of cinnamic acids with amines via oxidative cleavage of the C═C bond.
Collapse
Affiliation(s)
- Mahesh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anup Kumar Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Km Ishu
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Krishna Nand Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
3
|
Nguyen PD, Chau TK, Le MQ, Nguyen MT, Nguyen AT, Nguyen TT. Cobalt ferrite nanoparticles for annulation of C3-substituted nitroarenes and aryl isothiocyanates. Org Biomol Chem 2024; 22:5296-5300. [PMID: 38896038 DOI: 10.1039/d4ob00789a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The synthesis of medicinally relevant N-aryl-substituted 2-aminobenzothiazoles often uses 2-aminothiophenol derivatives, which are not commercially abundant, as starting materials. Herein, we report a method for the annulation of C3-substituted nitroarenes and aryl isothiocyanates towards the synthesis of 2-aminobenzothiazoles. Reactions proceeded in the presence of cobalt ferrite nanoparticles as a catalyst, DABCO as a base, and DMF as a promoter. The cobalt ferrite nanoparticles could be recovered after each run and reused up to 3 times while the product yield was not diminished. Our method appears to be the first example of the direct use of substituted nitroarenes for yielding 2-aminobenzothiazoles.
Collapse
Affiliation(s)
- Phong D Nguyen
- VNU-HCM Key Laboratory of Functional Organic Materials, 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam.
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Ho Chi Minh City, Vietnam
| | - Truong K Chau
- VNU-HCM Key Laboratory of Functional Organic Materials, 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam.
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Ho Chi Minh City, Vietnam
| | - Mai Q Le
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam
| | - Manh T Nguyen
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam
| | - Anh T Nguyen
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam
| | - Tung T Nguyen
- VNU-HCM Key Laboratory of Functional Organic Materials, 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam.
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam
| |
Collapse
|
4
|
Wang WK, Bao FY, Shang ZW, Zheng J, Zhao SY. Three-Component Assembly of Dihydropyrrolo[3,4- e][1,3]thiazines from Elemental Sulfur, Maleimides, and 1,3,5-Triazinanes. Org Lett 2024; 26:4297-4301. [PMID: 38739778 DOI: 10.1021/acs.orglett.4c01164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A three-component reaction for the synthesis of dihydropyrrolo[3,4-e][1,3]thiazines has been developed. Elemental sulfur, maleimides, and 1,3,5-triazinanes are assembled together through sulfuration/nucleophilic attack in N-methylpyrrolidin-2-one (NMP) under mild conditions. A small amount of NaHCO3 is important for the activation of the reaction. In this method, sulfur plays a dual role in thiazine ring formation, while triazinanes are utilized as three-atom synthons in the annulation reaction.
Collapse
Affiliation(s)
- Wen-Kang Wang
- College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Fei-Yun Bao
- College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Zhi-Wei Shang
- College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Jian Zheng
- College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Sheng-Yin Zhao
- College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| |
Collapse
|
5
|
Ito K, Nakamura K, Yoshida K. Synthesis of [1]Benzothieno[3,2-b][1]benzothiophenes through Iodine-Mediated Sulfur Insertion Reaction. Chemistry 2024; 30:e202400220. [PMID: 38320966 DOI: 10.1002/chem.202400220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
[1]Benzothieno[3,2-b][1]benzothiophenes (BTBTs) are important molecules that have been extensively studied as high-performance organic field-effect transistors (OFETs). Therefore, it is important to develop a simple synthetic method for these molecules. In this paper, a synthetic method to obtain the BTBTs from 2-arylbenzo[b]thiophenes and elemental sulfur, in which two C-S bonds are formed at once, is described. In this method, molecular iodine plays a very important role as an additive. The role of iodine is discussed in the presumed reaction pathways.
Collapse
Affiliation(s)
- Kazuki Ito
- Department of Chemistry, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Kohei Nakamura
- Department of Chemistry, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Kazuhiro Yoshida
- Department of Chemistry, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| |
Collapse
|
6
|
Huynh TN, Ong KTN, Dinh PT, Nguyen AT, Nguyen TT. Elemental Sulfur Promoted Cyclization of Aryl Hydrazones and Aryl Isothiocyanates Yielding 2-Imino-1,3,4-thiadiazoles. J Org Chem 2024; 89:3202-3210. [PMID: 38329896 DOI: 10.1021/acs.joc.3c02675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
We report a method for using elemental sulfur to facilitate the cyclization of aryl hydrazones and aryl isothiocyanates, affording biorelated 2-imino-1,3,4-thiadiazoles. Reactions progressed in the presence of elemental sulfur, N-methylmorpholine base, and DMSO solvent, while were tolerant of a wide range of functionalities including halogen, nitro, cyano, methylsulfonyl, and heterocyclic groups. The method appears to offer a general pathway for using simple, cheap, and stable reagents to afford triaryl-substituted 2-imino-1,3,4-thiadiazoles under relatively mild conditions.
Collapse
Affiliation(s)
- Tan N Huynh
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 84, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 84, Vietnam
| | - Khanh T N Ong
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 84, Vietnam
- VNU-HCM Key Laboratory for Functional Organic Materials, Ho Chi Minh City 84, Vietnam
| | - Phuong T Dinh
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 84, Vietnam
- VNU-HCM Key Laboratory for Functional Organic Materials, Ho Chi Minh City 84, Vietnam
| | - Anh T Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 84, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 84, Vietnam
| | - Tung T Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 84, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 84, Vietnam
- VNU-HCM Key Laboratory for Functional Organic Materials, Ho Chi Minh City 84, Vietnam
| |
Collapse
|
7
|
Ito K, Sakai S, Yoshida K. Synthesis of [1]Benzothieno[2,3- b][1]benzothiophenes from 3-Arylbenzo[ b]thiophenes through Iodine-Mediated Sulfur Insertion Reaction. J Org Chem 2023; 88:14797-14802. [PMID: 37788823 DOI: 10.1021/acs.joc.3c01618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The reaction of 3-arylbenzo[b]thiophenes and elemental sulfur to obtain [1]benzothieno[2,3-b][1]benzothiophenes (BTBTs) is reported. The addition of molecular iodine is essential for the reaction. In previous reactions that used 1,1-diarylethylenes as the starting material, side products that were difficult to separate were generated. The present reaction does not produce such side products and is therefore advantageous for obtaining BTBTs in high yield and purity.
Collapse
|
8
|
Sharma S, Singh D, Kumar S, Vaishali, Jamra R, Banyal N, Deepika, Malakar CC, Singh V. An efficient metal-free and catalyst-free C-S/C-O bond-formation strategy: synthesis of pyrazole-conjugated thioamides and amides. Beilstein J Org Chem 2023; 19:231-244. [PMID: 36895429 PMCID: PMC9989676 DOI: 10.3762/bjoc.19.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
An operationally simple and metal-free approach is described for the synthesis of pyrazole-tethered thioamide and amide conjugates. The thioamides were generated by employing a three-component reaction of diverse pyrazole C-3/4/5 carbaldehydes, secondary amines, and elemental sulfur in a single synthetic operation. The advantages of this developed protocol refer to the broad substrate scope, metal-free and easy to perform reaction conditions. Moreover, the pyrazole C-3/5-linked amide conjugates were also synthesized via an oxidative amination of pyrazole carbaldehydes and 2-aminopyridines using hydrogen peroxide as an oxidant.
Collapse
Affiliation(s)
- Shubham Sharma
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India
| | - Dharmender Singh
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India.,Central Revenues Control Laboratory, New Delhi-110012, India
| | - Sunit Kumar
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India
| | - Vaishali
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India
| | - Rahul Jamra
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India.,Department of Chemistry, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Naveen Banyal
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India.,Department of Chemistry, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Deepika
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India
| | - Chandi C Malakar
- Department of Chemistry, National Institute of Technology (NIT) Manipur, Imphal, 795004, India
| | - Virender Singh
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India.,Department of Chemistry, Central University of Punjab, Bathinda, 151401, Punjab, India
| |
Collapse
|
9
|
Guo T, Bi L, Zhang M, Zhu CJ, Yuan LB, Zhao YH. Access to Sulfur-Containing Bisheterocycles through Base-Promoted Consecutive Tandem Cyclization/Sulfenylation with Elemental Sulfur. J Org Chem 2022; 87:16907-16912. [PMID: 36417664 DOI: 10.1021/acs.joc.2c02248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A convenient and efficient tandem cyclization/sulfenylation of o-alkynyl-phenols/-anilines/enaminones for the synthesis of diverse sulfur-containing bisheterocycles has been developed using stable, odorless, and easy-to-handle elemental S8 as a building block under green chemistry conditions. Notably, a one-step simple base-mediated organic transformation affords a benzofuran (indole or chromone) ring and two C-S bonds. Attractive features of this methodology include the absence of a metal catalyst, mild conditions, good functional group tolerance, and valuable product structures.
Collapse
Affiliation(s)
- Tao Guo
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Lei Bi
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Miao Zhang
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Cong-Jun Zhu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Li-Bo Yuan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Yun-Hui Zhao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| |
Collapse
|
10
|
Virumbrales C, El-Remaily MAEAAA, Suárez-Pantiga S, Fernández-Rodríguez MA, Rodríguez F, Sanz R. Gold(I) Catalysis Applied to the Stereoselective Synthesis of Indeno[2,1- b]thiochromene Derivatives and Seleno Analogues. Org Lett 2022; 24:8077-8082. [DOI: 10.1021/acs.orglett.2c03411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cintia Virumbrales
- Área de Química Orgánica, Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | | | - Samuel Suárez-Pantiga
- Área de Química Orgánica, Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Manuel A. Fernández-Rodríguez
- Facultad de Farmacia, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), Campus Científico-Tecnológico, Universidad de Alcalá (IRYCIS), Autovía A-II, Km 33.1, 28805 Alcalá de Henares, Spain
| | - Félix Rodríguez
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, C/Julián Clavería, 8, 33006 Oviedo, Spain
| | - Roberto Sanz
- Área de Química Orgánica, Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| |
Collapse
|
11
|
Beletskaya IP, Ananikov VP. Transition-Metal-Catalyzed C–S, C–Se, and C–Te Bond Formations via Cross-Coupling and Atom-Economic Addition Reactions. Achievements and Challenges. Chem Rev 2022; 122:16110-16293. [DOI: 10.1021/acs.chemrev.1c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Irina P. Beletskaya
- Chemistry Department, Lomonosov Moscow State University, Vorob’evy gory, Moscow 119899, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
12
|
Zheng L, Liu G, Zou X, Zhong Y, Deng L, Wu Y, Yang B, Wang Y, Guo W. DBU‐Promoted Three‐Component Cascade Annulations to Access Multiply Substituted 3‐Cyano‐thiophenes. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Gongping Liu
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Xiaoying Zou
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Yumei Zhong
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Lei Deng
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Yingying Wu
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Beining Yang
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Yihan Wang
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Wei Guo
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province 赣南师范大学黄金校区 341000 Ganzhou CHINA
| |
Collapse
|
13
|
Tan Y, Jiang W, Ni P, Fu Y, Ding Q. One‐Pot Synthesis of Quinazolines via Elemental Sulfur‐Mediated Oxidative Condensation of Nitriles and 2‐(Aminomethyl)anilines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuxing Tan
- Jiangxi Normal University Yaohu Campus CHINA
| | - Wujiu Jiang
- Jiangxi Normal University Yaohu Campus CHINA
| | | | - Yang Fu
- Jiangxi Normal University CHINA
| | | |
Collapse
|
14
|
Shi Y, Yu T, Chi L, Shen W, Xu J, Zhang M, You S, Deng C. Computational Chemistry-Assisted Highly Selective Radical Cascade Cyclization of 1,6-Enynes with Thiols: Access to Sulfur-Substituted 4-Enyl-2-Pyrrolidones. J Org Chem 2022; 87:9479-9487. [PMID: 35834799 DOI: 10.1021/acs.joc.2c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, an efficient method for the synthesis of sulfur-substituted 4-enyl-2-pyrrolidones was successfully developed through AIBN-promoted highly selective 5-exo-dig radical cascade cyclization of 1,6-enynes with sulfur sources with the aid of theoretical and computational chemistry. This protocol enables the first practical and green synthesis of an array of 4-enyl-2-pyrrolidones in moderate-to-good yields with broad substrate scopes and high regioselectivities (>20:1). Moreover, excellent stereoselectivities have also been achieved (up to >20:1, Z/E). Most interestingly, when the sulfur source is electron-rich thiophenol, reverse stereoselectivities were discovered. In addition, the control experiments indicate that the cascade cyclization is realized by radical reactions, and the detailed reaction mechanism and regioselectivities have also been explained by theoretical studies.
Collapse
Affiliation(s)
- Yao Shi
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Tongyan Yu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Longxiao Chi
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Wei Shen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jiangyan Xu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Mingzhi Zhang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Siliang You
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Chao Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
15
|
Preparation of monolith-based adsorbent containing abundant functional groups for field entrapment of nitrogen and sulfur containing aromatic compounds in environmental aqueous samples with portable multichannel in-tip microextraction device. J Chromatogr A 2022; 1676:463260. [PMID: 35772365 DOI: 10.1016/j.chroma.2022.463260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/22/2022]
Abstract
Field sample preparation is important and interesting for analysis of nitrogen and sulfur containing aromatic compounds (N,S-CACs) in environmental aqueous samples. In this connection, a new functional groups-rich adsorbent based on porous monolith (ABM) was fabricated by in-situ copolymerization of allylaminocarbonylphenyl boronic acid/styrene and ethylene glycol dimethacrylate. The prepared ABM was employed as the extraction medium of homemade portable multichannel in-tip microextraction device (PMMD) for on-site entrapment of N,S-CACs in various waters. Because of the abundant functional groups, the obtained ABM/PMMD exhibited satisfactory capture capability towards studied N,S-CACs, and the enrichment factors varied from 454 to 491. Under the optimized fabrication conditions, adsorption and desorption parameters, the developed ABM/PMMD was used to field capture investigated N,S-CACs and followed by quantification with high performance liquid chromatography. The limits of detection were in the ranges of 0.00030-0.0016 µg/L. Recoveries with low, medium and high spiked contents located in the range of 82.1-118% with good repeatability (RSDs<9%). In addition, traditional laboratory sample pretreatment approach was employed to verify the reliability of the established method. Results well evidenced that the practicability of introduced ABM/PMMD in the field sample preparation of N,S-CACs in environmental waters.
Collapse
|
16
|
He R, Liu Y, Feng Y, Chen L, Huang Y, Xie F, Li Y. Access to Thienopyridine and Thienoquinoline Derivatives via Site-Selective C-H Bond Functionalization and Annulation. Org Lett 2022; 24:3167-3172. [PMID: 35467892 DOI: 10.1021/acs.orglett.2c00903] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To develop of an effective synthetic methodology for biologically relevant thienopyridines, a concise and efficient protocol is described for the synthesis of a series of substituted thienopyridine and thienoquinoline derivatives with high selectivity using EtOCS2K as the sulfur source. The reaction proceeds via metal-free, site-selective C-H bond thiolation and cyclization of the alkynylpyridine and alkynylquinoline substrates.
Collapse
Affiliation(s)
- Runfa He
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529090, China
| | - Yang Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529090, China
| | - Yingqi Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529090, China
| | - Lu Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529090, China
| | - Yubing Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529090, China
| | - Feng Xie
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529090, China
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529090, China
| |
Collapse
|
17
|
Le HX, Nguyen TT. Recent Examples in the Synthesis and Functionalization of C−H Bonds in Pyrrolo/Indolo [1,2‐
a
]Quinoxalines. ChemistrySelect 2022. [DOI: 10.1002/slct.202200166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Huy X. Le
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Tung T. Nguyen
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| |
Collapse
|
18
|
Ly D, Nguyen TT, Tran CTH, Nguyen VPT, Nguyen KX, Pham PH, Le NTH, Nguyen TT, Phan NTS. Metal-Free Annulation of 2-Nitrobenzyl Alcohols and Tetrahydroisoquinolines toward the Divergent Synthesis of Quinazolinones and Quinazolinethiones. J Org Chem 2021; 87:103-113. [PMID: 34918926 DOI: 10.1021/acs.joc.1c02017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A simple metal-free method for the synthesis of quinazolinones from commercially available 2-nitrobenzyl alcohols and tetrahydroisoquinolines is developed. The reaction conditions were tolerant of an array of functionalities such as halogen, tertiary amine, protected alcohol, and ester groups. Under nearly identical conditions, quinazolinethiones were obtained in the presence of elemental sulfur and suitable mediators.
Collapse
Affiliation(s)
- Duc Ly
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Thao T Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Cam T H Tran
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Vy P T Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Khang X Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Phuc H Pham
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Nhan T H Le
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Tung T Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Nam T S Phan
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
19
|
Guo W, Mei W, Liu G, Deng L, Zou X, Zhong Y, Zhuo X, Fan X, Zheng L. Base‐Promoted Three‐Component Cyclization and Coupling Strategy for the Synthesis of Substituted 3‐Aryl‐5‐thio‐1,3,4‐thiadiazole‐2‐thiones. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Guo
- Gannan Normal University Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province Economic & Technological Development Zone 341000 Ganzhou CHINA
| | - Weijie Mei
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Gongping Liu
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Ling Deng
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Xiaoying Zou
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Yumei Zhong
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Xiaoya Zhuo
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Xiaolin Fan
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Lvyin Zheng
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| |
Collapse
|
20
|
Xiao F, Tang M, Huang H, Deng GJ. Site-Selective Synthesis of Aryl Sulfides via Oxidative Aromatization of Cyclohexanones with Thiophenols. J Org Chem 2021; 87:512-523. [PMID: 34894678 DOI: 10.1021/acs.joc.1c02530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have introduced a metal-free facile access for the thiolation/aromatization of cyclohexanones with thiophenols to the corresponding aryl sulfides. The dehydroaromatic reaction of non-aromatic cyclohexanones proceeded smoothly using oxygen as a green oxidant.
Collapse
Affiliation(s)
- Fuhong Xiao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Minli Tang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
21
|
Zhang ZZ, Sun CL, Zhang XH, Zhang XG. Base-promoted thioannulation of o-alkynyl oxime ethers with sodium sulfide for the general synthesis of isothiocoumarins. Org Biomol Chem 2021; 19:10174-10180. [PMID: 34787150 DOI: 10.1039/d1ob02012a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general and efficient strategy for the one-pot synthesis of isothiocoumarin-1-ones has been developed via the base-promoted 6-endo-dig thioannulation of o-alkynyl oxime ethers using the cheap and readily available Na2S as the sulfur source. Mechanistic studies disclosed that the reaction proceeded through two C-S bond formations, N-O bond cleavage and the final hydrolysis of imines.
Collapse
Affiliation(s)
- Zhu-Zhu Zhang
- College of chemical and materials engineering, Wenzhou University, Wenzhou 325035, China.
| | - Cai-Ling Sun
- College of chemical and materials engineering, Wenzhou University, Wenzhou 325035, China.
| | - Xiao-Hong Zhang
- College of chemical and materials engineering, Wenzhou University, Wenzhou 325035, China.
| | - Xing-Guo Zhang
- College of chemical and materials engineering, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
22
|
Murakami S, Nanjo T, Takemoto Y. Photocatalytic Activation of Elemental Sulfur Enables a Chemoselective Three-Component Thioesterification. Org Lett 2021; 23:7650-7655. [PMID: 34528809 DOI: 10.1021/acs.orglett.1c02904] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A mild and chemoselective three-component thioesterification using olefins, α-ketoacids, and elemental sulfur has been developed. The photocatalytic activation of elemental sulfur, a cheap and abundant sulfur source, enables the rapid installation of a sulfur atom into molecules, reactions that ordinarily would require the use of reactive and malodorous sulfur-containing compounds such as thiols and thioacids. This novel reaction is characterized by high yields and a broad substrate scope, which enables the introduction of thioester moieties into complex molecules including a steroid, a peptide, and a nonprotected glycoside. Mechanistic studies indicated that the success of this transformation depends on the multiple roles played by the elemental sulfur, including those of a sulfurizing agent, a terminal oxidant, and a HAT mediator.
Collapse
Affiliation(s)
- Sho Murakami
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takeshi Nanjo
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
23
|
Abstract
Isothiocyanates (ITCs) are biologically active molecules found in several natural products and pharmaceutical ingredients. Moreover, due to their high and versatile reactivity, they are widely used as intermediates in organic synthesis. This review considers the best practices for the synthesis of ITCs using elemental sulfur, highlighting recent developments. First, we summarize the in situ generation of thiocarbonyl surrogates followed by their transformation in the presence of primary amines leading to ITCs. Second, carbenes and amines afford isocyanides, and the further reaction of this species with sulfur readily generates ITCs under thermal, catalytic or basic conditions. Additionally, we also reveal that in the catalyst-free reaction of isocyanides and sulfur, two—until this time overlooked and not investigated—different mechanistic pathways exist.
Collapse
|
24
|
Németh AG, Marlok B, Domján A, Gao Q, Han X, Keserű GM, Ábrányi‐Balogh P. Convenient Multicomponent One‐Pot Synthesis of 2‐Iminothiazolines and 2‐Aminothiazoles Using Elemental Sulfur Under Aqueous Conditions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- András Gy. Németh
- Medicinal Chemistry Research Group Research Centre for Natural Sciences Magyar tudósok krt. 2 1117 Budapest Hungary
| | - Bence Marlok
- Medicinal Chemistry Research Group Research Centre for Natural Sciences Magyar tudósok krt. 2 1117 Budapest Hungary
| | - Attila Domján
- NMR Research Laboratory Research Centre for Natural Sciences Magyar tudósok krt. 2 1117 Budapest Hungary
| | - Qinghe Gao
- School of Pharmacy Xinxiang Medical University Xinxiang Henan 453003 P. R. China
| | - Xinya Han
- School of Chemistry and Chemical Engineering Anhui University of Technology Maanshan Anhui 243002 P. R. China
| | - György M. Keserű
- Medicinal Chemistry Research Group Research Centre for Natural Sciences Magyar tudósok krt. 2 1117 Budapest Hungary
| | - Péter Ábrányi‐Balogh
- Medicinal Chemistry Research Group Research Centre for Natural Sciences Magyar tudósok krt. 2 1117 Budapest Hungary
| |
Collapse
|
25
|
Xiao W, Wang X, Liu R, Wu J. Quinuclidine and its derivatives as hydrogen-atom-transfer catalysts in photoinduced reactions. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Campeau LC, Rovis T. Preface: Modern Heterocycle Synthesis and Functionalization. Synlett 2021. [DOI: 10.1055/s-0040-1706679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
obtained his PhD degree in 2008 with the late Professor Keith Fagnou at the University of Ottawa in Canada as an NSERC Doctoral Fellow. He then joined Merck Research Laboratories at Merck-Frosst in Montreal in 2007, making key contributions to the discovery of Doravirine (MK-1439) for which he received a Merck Special Achievement Award. In 2010, he moved from Quebec to New Jersey, where he has served in roles of increasing responsibility with Merck ever since. L.-C. is currently Executive Director and the Head of Process Chemistry and Discovery Process Chemistry organizations, leading a team of smart creative scientists developing innovative chemistry solutions in support of all discovery, pre-clinical and clinical active pharmaceutical ingredient deliveries for the entire Merck portfolio for small-molecule therapeutics. Over his tenure at Merck, L.-C. and his team have made important contributions to >40 clinical candidates and 4 commercial products to date.
Tom Rovis was born in Zagreb in former Yugoslavia but was largely raised in southern Ontario, Canada. He earned his PhD degree at the University of Toronto (Canada) in 1998 under the direction of Professor Mark Lautens. From 1998–2000, he was an NSERC Postdoctoral Fellow at Harvard University (USA) with Professor David A. Evans. In 2000, he began his independent career at Colorado State University and was promoted in 2005 to Associate Professor and in 2008 to Professor. His group’s accomplishments have been recognized by a number of awards including an Arthur C. Cope Scholar, an NSF CAREER Award, a Fellow of the American Association for the Advancement of Science and a Katritzky Young Investigator in Heterocyclic Chemistry. In 2016, he moved to Columbia University where he is currently the Samuel Latham Mitchill Professor of Chemistry.
Collapse
|
27
|
Tran KM, Nguyen NHK, Bui TT, To TA, Phan NTS, Le HV, Nguyen TT. Synthesis of primary N-arylthioglyoxamides from anilines, elemental sulfur and primary C-H bonds in acetophenones. RSC Adv 2020; 10:44743-44746. [PMID: 35516277 PMCID: PMC9058611 DOI: 10.1039/d0ra08740h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022] Open
Abstract
A simple method for coupling of anilines, acetophenones, and elemental sulfur to afford N-arylthioglyoxamides has been developed. Reactions proceeded in the presence of Na2SO3 and DMSO, thus eliminating the need for transition metals and external oxidants. Functionalities such as halogen, ester, methylthio, and heterocycle groups were compatible with the conditions. Electron-poor acetophenones sometimes gave isosteric glyoxamides. Sulfurative coupling of acetophenones and aniline in the presence of Na2SO3 and DMSO solvent to afford N-arylthioglyoxamides was developed.![]()
Collapse
Affiliation(s)
- Khoa M Tran
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam .,Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Nguyen H K Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam .,Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Thuy T Bui
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam .,Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Tuong A To
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam .,Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Nam T S Phan
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam .,Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Ha V Le
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam .,Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Tung T Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam .,Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| |
Collapse
|
28
|
Teramoto M, Imoto M, Takeda M, Mizuno T, Nomoto A, Ogawa A. Transition-Metal-Free Synthesis of 2-Substituted Benzothiazoles from Nitrobenzenes, Methylheteroaryl Compounds, and Elemental Sulfur, Based on Nitro-Methyl Redox-Neutral Cyclization. J Org Chem 2020; 85:15213-15220. [PMID: 33147021 DOI: 10.1021/acs.joc.0c02072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Greener and more sustainable chemical processes are required to address increasing environmental pollution and depletion of natural resources. This paper aims to develop greener and more sustainable modern synthetic chemical processes using redox-neutral cyclization. Redox-neutral cyclization has been shown to promote the efficient synthesis of 2-substituted benzothiazoles from easily available nitrobenzenes, methyl-heteroaryl compounds, and elemental sulfur in the absence of transition-metal catalysts. The 2-substituted benzothiazoles were obtained in reasonable yields through the sulfuration of electron-deficient C-H bonds with elemental sulfur. This synthetic methodology also affords a high atom economy without the use of any external oxidizing and/or reducing reagents.
Collapse
Affiliation(s)
- Masahiro Teramoto
- Seika Corporation, 1660-627, Nishihama, Wakayama 641-0036, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Mitsutaka Imoto
- Seika Corporation, 1660-627, Nishihama, Wakayama 641-0036, Japan
| | - Motonori Takeda
- Seika Corporation, 1660-627, Nishihama, Wakayama 641-0036, Japan
| | - Takumi Mizuno
- Seika Corporation, 1660-627, Nishihama, Wakayama 641-0036, Japan
| | - Akihiro Nomoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Akiya Ogawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
29
|
Recent Advances in the Synthesis of Sulfides, Sulfoxides and Sulfones via C-S Bond Construction from Non-Halide Substrates. Catalysts 2020. [DOI: 10.3390/catal10111339] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The construction of a C-S bond is a powerful strategy for the synthesis of sulfur containing compounds including sulfides, sulfoxides, and sulfones. Recent methodological developments have revealed lots of novel protocols for C-S bond formation, providing easy access to sulfur containing compounds. Unlike traditional Ullmann typed C-S coupling reaction, the recently developed reactions frequently use non-halide compounds, such as diazo compounds and simple arenes/alkanes instead of aryl halides as substrates. On the other hand, novel C-S coupling reaction pathways involving thiyl radicals have emerged as an important strategy to construct C-S bonds. In this review, we focus on the recent advances on the synthesis of sulfides, sulfoxides, and sulfones from non-halide substrates involving C-S bond construction.
Collapse
|
30
|
Bondock S, Albarqi T, Abboud M. Advances in the synthesis and chemical transformations of 5-acetyl-1,3,4-thiadiazolines. J Sulphur Chem 2020. [DOI: 10.1080/17415993.2020.1843170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Samir Bondock
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Tallah Albarqi
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Abboud
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|