1
|
Patel MA, Kapdi AR. Ubiquitous Role of Phosphine-Based Water-Soluble Ligand in Promoting Catalytic Reactions in Water. CHEM REC 2024; 24:e202400057. [PMID: 39162777 DOI: 10.1002/tcr.202400057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/26/2024] [Indexed: 08/21/2024]
Abstract
Catalysis has been at the forefront of the developments that has revolutionised synthesis and provided the impetus in the discovery of platform technologies for efficient C-C or C-X bond formation. Current environmental situation however, demands a change in strategy with catalysis being promoted more in solvents that are benign (Water) and for that the development of hydrophilic ligands (especially phosphines) is a necessity which could promote catalytic reactions in water, allow recyclability of the catalytic solutions and make it possible to isolate products using column-free techniques that involve lesser usage of hazardous organic solvents. In this review, we therefore critically analyse such catalytic processes providing examples that do follow the above-mentioned parameter.
Collapse
Affiliation(s)
- Manisha A Patel
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai, 400019, India
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai, 400019, India
| |
Collapse
|
2
|
Phulwale V, Shet H, Gunturu KC, Rout SR, Dandela R, Adhav S, Kapdi AR. Cu(II)/PTABS-Promoted, Chemoselective Amination of HaloPyrimidines. J Org Chem 2024; 89:9243-9254. [PMID: 38878304 DOI: 10.1021/acs.joc.4c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Chemoselective amination is a highly desired synthetic methodology, given its importance as a possible strategy to synthesize various drug molecules and agrochemicals. We, herein, disclose a highly chemoselective Cu(II)-PTABS-promoted amination of pyrimidine structural feature containing different halogen atoms.
Collapse
Affiliation(s)
- Vikram Phulwale
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
| | - Harshita Shet
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
| | | | - Smruti Rekha Rout
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus , Samantpuri, Bhubaneswar, Odisha 751013, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus , Samantpuri, Bhubaneswar, Odisha 751013, India
| | - Suyog Adhav
- BASF Chemicals India Pvt. Ltd., Plot No 12, Thane Belapur Road, Navi Mumbai 400705, India
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
| |
Collapse
|
3
|
Shet H, Gunturu KC, Gharpure SJ, Prasad Kommyreddy S, Gupta KS, Rout SR, Dandela R, Kapdi AR. Cu(II)/PTABS-Promoted, Regioselective S NAr Amination of Polychlorinated Pyrimidines with Mechanistic Understanding. J Org Chem 2023. [PMID: 37486860 DOI: 10.1021/acs.joc.3c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Regioselective amination of polyhalogenated heteroarenes (especially pyrimidines) has extensive synthetic and commercial relevance for drug synthesis applications but is plagued by the lack of effective synthetic strategies. Herein, we report the Cu(II)/PTABS-promoted highly regioselective nucleophilic aromatic substitution (SNAr) of polychlorinated pyrimidines assisted by DFT predictions of the bond dissociation energies of different C-Cl bonds. The unique reactivity of Cu(II)-PTABS has been attributed to the coordination/activation mechanism that has been known to operate in these reactions, but further insights into the catalytic species have also been provided.
Collapse
Affiliation(s)
- Harshita Shet
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
| | | | - Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | | - Krishna S Gupta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Smruti Rekha Rout
- Department of Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Bhubaneswar, Odisha 751013, India
| | - Rambabu Dandela
- Department of Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Bhubaneswar, Odisha 751013, India
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
| |
Collapse
|
4
|
Gaware S, Kori S, Serrano JL, Dandela R, Hilton S, Sanghvi YS, Kapdi AR. Rapid plugged flow synthesis of nucleoside analogues via Suzuki-Miyaura coupling and heck Alkenylation of 5-Iodo-2'-deoxyuridine (or cytidine). J Flow Chem 2023; 13:1-18. [PMID: 37359287 PMCID: PMC10019434 DOI: 10.1007/s41981-023-00265-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/09/2023] [Indexed: 03/17/2023]
Abstract
Nucleosides modification via conventional cross-coupling has been performed using different catalytic systems and found to take place via long reaction times. However, since the pandemic, nucleoside-based antivirals and vaccines have received widespread attention and the requirement for rapid modification and synthesis of these moieties has become a major objective for researchers. To address this challenge, we describe the development of a rapid flow-based cross-coupling synthesis protocol for a variety of C5-pyrimidine substituted nucleosides. The protocol allows for facile access to multiple nucleoside analogues in very good yields in a few minutes compared to conventional batch chemistry. To highlight the utility of our approach, the synthesis of an anti-HSV drug, BVDU was also achieved in an efficient manner using our new protocol. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s41981-023-00265-1.
Collapse
Affiliation(s)
- Sujeet Gaware
- Department of Chemistry, Institute of Chemical Technology, Indian Oil Odisha, Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Odisha-751013, Bhubaneswar, India
| | - Santosh Kori
- Department of Chemistry, Institute of Chemical Technology, Indian Oil Odisha, Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Odisha-751013, Bhubaneswar, India
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Mumbai, Matunga 400019 India
| | - Jose Luis Serrano
- Departamento de Ingeniería Química y Ambiental. Área de Química Inorgánica, Universidad Politécnica de Cartagena member of European University of Technology, 30203 Cartagena, Spain
| | - Rambabu Dandela
- Department of Chemistry, Institute of Chemical Technology, Indian Oil Odisha, Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Odisha-751013, Bhubaneswar, India
| | - Stephen Hilton
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX UK
| | - Yogesh S. Sanghvi
- Rasayan Inc., 2802, Crystal Ridge, California, Encinitas CA92024-6615 USA
| | - Anant R. Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Mumbai, Matunga 400019 India
| |
Collapse
|
5
|
Shet H, Patel M, Waikar JM, More PM, Sanghvi YS, Kapdi AR. Room-Temperature Dialkylamination of Chloroheteroarenes Using a Cu(II)/PTABS Catalytic System. Chem Asian J 2023; 18:e202201006. [PMID: 36355632 DOI: 10.1002/asia.202201006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/21/2022] [Indexed: 11/12/2022]
Abstract
The dimethylamino functionality has significant importance in industrially relevant molecules and methodologies to install these efficiently are highly desirable. We report herein a highly efficient, room-temperature dimethylamination of chloroheteroarenes performed via the in-situ generation of dimethylamine using N,N-dimethylformamide (DMF) as precursor wiith a large substrate scope that includes various heteroarenes, purines as well as commercially relevant drugs such as altretamine, ampyzine and puromycin precursor.
Collapse
Affiliation(s)
- Harshita Shet
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai, 400019, India.,Department of Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Bhubaneswar, 751013, Odisha, India
| | - Manisha Patel
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai, 400019, India
| | - Jyoti M Waikar
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai, 400019, India
| | - Pavan M More
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai, 400019, India
| | - Yogesh S Sanghvi
- Rasayan Inc., 2802 Crystal Ridge road, Encinitas, CA 92024-6615, U.S.A
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai, 400019, India
| |
Collapse
|
6
|
Shaughnessy KH. Covalent Modification of Nucleobases using Water-Soluble Palladium Catalysts. CHEM REC 2022; 22:e202200190. [PMID: 36074958 DOI: 10.1002/tcr.202200190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Indexed: 12/15/2022]
Abstract
Nucleosides represent one of the key building blocks of biochemistry. There is significant interest in the synthesis of nucleoside-derived materials for applications as probes, biochemical models, and pharmaceuticals. Palladium-catalyzed cross-coupling reactions are effective methods for making covalent modification of carbon and nitrogen sites on nucleobases under mild conditions. Water-soluble catalysts derived from palladium and hydrophilic ligands, such as tris(3-sulfonatophenyl)phosphine trisodium (TPPTS), are efficient catalysts for a range of coupling reactions of unprotected halonucleosides. Over the past two decades, these methods have been extended to direct functionalization of halonucleotides, as well as RNA and DNA oligonucleotides (ONs) containing halogenated bases. These methods can be run under biocompatible conditions, including examples of Suzuki coupling of modified DNA in whole cells and tissue samples. In this account, development of this methodology by our group and others is highlighted along with the extension of these catalyst systems to modification of nucleotides and ONs.
Collapse
Affiliation(s)
- Kevin H Shaughnessy
- Department of Chemistry & Biochemistry, The University of Alabama, Box 870336, Tuscaloosa, AL 35487-0336, USA
| |
Collapse
|
7
|
Affiliation(s)
| | - Brian R. James
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Serrano JL, Gaware S, Pérez JA, Pérez J, Lozano P, Kori S, Dandela R, Sanghvi YS, Kapdi AR. Quadrol-Pd(II) complexes: phosphine-free precatalysts for the room-temperature Suzuki-Miyaura synthesis of nucleoside analogues in aqueous media. Dalton Trans 2022; 51:2370-2384. [PMID: 35043803 DOI: 10.1039/d1dt03778a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Commercially available Quadrol, N,N,N',N'-tetrakis(2-hydroxypropyl)ethylenediamine (THPEN), has been used for the first time as a N^N-donor neutral hydrophilic ligand in the synthesis and characterization of new water soluble palladium(II) complexes containing chloride, phthalimidate or saccharinate as co-ligands. [PdCl2(THPEN)] (1) [Pd(phthal)2(THPEN)] (2), [Pd(sacc)2(THPEN)] (3) and the analogous complex with the closely related N,N,N',N'-tetrakis(2-hydroxyethyl)ethylenediamine (THEEN) [Pd(sacc)2(THEEN)] (4) were efficiently prepared in a one-pot reaction from [PdCl2(CH3CN)2] or Pd(OAc)2. Structural characterization of 1 and 3 by single crystal X-ray diffraction produced the first structures reported to date of palladium complexes with Quadrol. The resultant palladium complexes are highly soluble in water and were found to be effective as phosphine-free catalysts for the synthesis of functionalized nucleoside analogues under room-temperature Suzuki-Miyaura cross-coupling conditions between 5-iodo-2'-deoxyuridine (& 5-iodo-2'-deoxycytidine) with different aryl boronic acids in neat water. This is the first report of the coupling process performed on nucleosides in water at room temperature.
Collapse
Affiliation(s)
- José Luis Serrano
- Departamento de Ingeniería Química y Ambiental. Área de Química Inorgánica, Universidad Politécnica de Cartagena member of European University of Technology, 30203 Cartagena, Spain.
| | - Sujeet Gaware
- Department of Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Bhubaneswar 751013, Odisha, India
| | - Jose Antonio Pérez
- Departamento de Ingeniería Química y Ambiental. Área de Química Inorgánica, Universidad Politécnica de Cartagena member of European University of Technology, 30203 Cartagena, Spain.
| | - José Pérez
- Departamento de Ingeniería Química y Ambiental. Área de Química Inorgánica, Universidad Politécnica de Cartagena member of European University of Technology, 30203 Cartagena, Spain.
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30071 Murcia, Spain
| | - Santosh Kori
- Department of Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Bhubaneswar 751013, Odisha, India
- Department of Chemistry, Institute of Chemical Technology, Mumbai, Nathalal Road, Matunga, Mumbai-400019, India.
| | - Rambabu Dandela
- Department of Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Bhubaneswar 751013, Odisha, India
| | - Yogesh S Sanghvi
- Rasayan Inc. 2802, Crystal Ridge Road, Encinitas, California, 92024-6615, USA
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Mumbai, Nathalal Road, Matunga, Mumbai-400019, India.
| |
Collapse
|
9
|
Parmar U, Somvanshi D, Kori S, Desai AA, Dandela R, Maity DK, Kapdi AR. Room-Temperature Amination of Chloroheteroarenes in Water by a Recyclable Copper(II)-Phosphaadamantanium Sulfonate System. J Org Chem 2021; 86:8900-8925. [PMID: 34156851 DOI: 10.1021/acs.joc.1c00845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Buchwald-Hartwig amination of chloroheteroarenes has been a challenging synthetic process, with very few protocols promoting this important transformation at ambient temperature. The current report discusses about an efficient copper-based catalytic system (Cu/PTABS) for the amination of chloroheteroarenes at ambient temperature in water as the sole reaction solvent, a combination that is first to be reported. A wide variety of chloroheteroarenes could be coupled efficiently with primary and secondary amines as well as selected amino acid esters under mild reaction conditions. Catalytic efficiency of the developed protocol also promotes late-stage functionalization of active pharmaceutical ingredients (APIs) such as antibiotics (floxacins) and anticancer drugs. The catalytic system also performs efficiently at a very low concentration of 0.0001 mol % (TON = 980,000) and can be recycled 12 times without any appreciable loss in activity. Theoretical calculations reveal that the π-acceptor ability of the ligand PTABS is the main reason for the appreciably high reactivity of the catalytic system. Preliminary characterization of the catalytic species in the reaction was carried out using UV-VIS and ESR spectroscopy, providing evidence for the Cu(II) oxidation state.
Collapse
Affiliation(s)
- Udaysinh Parmar
- Aether Industries Limited, B-21/7, Hojiwala Industrial Estate, Sachin, Surat 394230, Gujarat, India
| | - Dipesh Somvanshi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai 400019, India
| | - Santosh Kori
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai 400019, India
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus, IIT Khragpur extension Centre, Mouza Samantpuri, Bhubaneswar 751013, Odisha, India
| | - Aman A Desai
- Aether Industries Limited, B-21/7, Hojiwala Industrial Estate, Sachin, Surat 394230, Gujarat, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus, IIT Khragpur extension Centre, Mouza Samantpuri, Bhubaneswar 751013, Odisha, India
| | - Dilip K Maity
- Chemical Sciences, Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Chemical Sciences, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai 400019, India
| |
Collapse
|
10
|
Shet H, Parmar U, Bhilare S, Kapdi AR. A comprehensive review of caged phosphines: synthesis, catalytic applications, and future perspectives. Org Chem Front 2021. [DOI: 10.1039/d0qo01194k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Caged phosphines are versatile ligands due to their rigid backbones, exhibiting a range of catalytic activities, as depicted through the given pictorial representation.
Collapse
Affiliation(s)
- Harshita Shet
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai 400019
- India
- Institute of Chemical Technology-Indian Oil Odisha Campus
| | | | - Shatrughn Bhilare
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai 400019
- India
| | - Anant R. Kapdi
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai 400019
- India
| |
Collapse
|
11
|
Murthy Bandaru SS, Bhilare S, Schulzke C, Kapdi AR. 1,3,5-Triaza-7-phosphaadamantane (PTA) Derived Caged Phosphines for Palladium-Catalyzed Selective Functionalization of Nucleosides and Heteroarenes. CHEM REC 2020; 21:188-203. [PMID: 33231365 DOI: 10.1002/tcr.202000109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/29/2022]
Abstract
Phosphines have, in combination with transition metals, played a pivotal role in the rapid development of efficient catalytic processes. Caged phosphines constitute a class of three-dimensional scaffolds providing unique control over steric and electronic properties. The versatility of the caged phosphine ligands has been demonstrated elegantly by the groups of Verkade, Gonzalvi as well as Stradiotto. Our research group has also been working extensively for the past several years in the development of 1,3,5-triaza-7-phosphaadamantane-based caged ligands and in this personal note we have summarized these applications pertaining to the modification of biologically useful nucleosides and heteroarenes.
Collapse
Affiliation(s)
- Siva Sankar Murthy Bandaru
- Institute fur Biochemie, University of Greifswald, Felix-Hausdorff-Strasse 4, D-17487, Greifswald, Germany
| | - Shatrughn Bhilare
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai, 400019, India
| | - Carola Schulzke
- Institute fur Biochemie, University of Greifswald, Felix-Hausdorff-Strasse 4, D-17487, Greifswald, Germany
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai, 400019, India
| |
Collapse
|