1
|
Riley C, Cho HH, Brannan AC, Le Phuoc N, Linnolahti M, Greenham NC, Romanov AS. High triplet energy host material with a 1,3,5-oxadiazine core from a one-step interrupted Fischer indolization. Commun Chem 2024; 7:298. [PMID: 39702375 DOI: 10.1038/s42004-024-01377-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Energy-efficient and deep-blue organic light-emitting diode (OLED) with long operating stability remains a key challenge to enable a disruptive change in OLED display and lighting technology. Part of the challenge is associated with a very narrow choice of the robust host materials having over 3 eV triplet energy level to facilitate efficient deep-blue emission and deliver excellent performance in the OLED device. Here we show the molecular design of new 1,3,5-oxadiazines (NON)-host materials with high triplet energy over 3.2 eV, enabling deep-blue OLED devices with a peak external quantum efficiency of 21%. A series of NON-host materials are prepared by the condensation of substituted arylhydrazines and cyclohexylcarbaldehyde in a 2:3 ratio. This straightforward "one-pot" procedure enables the formation of indoline-containing derivatives with three fused heterocyclic rings and two stereogenic centres. All materials emit UV-fluorescence in the range of 315-338 nm while possessing highly desirable characteristics for application in deep-blue OLED devices: good thermal stability, a wide energy gap (3.9 eV), a high triplet energy level of (3.3 eV), and excellent volatility during sublimation.
Collapse
Affiliation(s)
- Charlotte Riley
- Department of Chemistry, The University of Manchester, Manchester, UK
| | - Hwan-Hee Cho
- Department of Physics, Cavendish Laboratory, Cambridge University, Cambridge, UK
| | | | - Nguyen Le Phuoc
- Department of Chemistry, University of Eastern Finland, Joensuu, Finland
| | - Mikko Linnolahti
- Department of Chemistry, University of Eastern Finland, Joensuu, Finland.
| | - Neil C Greenham
- Department of Physics, Cavendish Laboratory, Cambridge University, Cambridge, UK.
| | | |
Collapse
|
2
|
Pan S, Wu P, Bampi D, Ward JS, Rissanen K, Bolm C. Mechanochemical Conditions for Intramolecular N-O Couplings via Rhodium Nitrenoids Generated from N-Acyl Sulfonimidamides. Angew Chem Int Ed Engl 2024:e202413181. [PMID: 39381922 DOI: 10.1002/anie.202413181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Starting from N-acyl sulfonimidamides, mechanochemically generated rhodium nitrenoids undergo intramolecular N-O couplings to provide unprecedented 1,3,2,4-oxathiadiazole 3-oxides in good to excellent yields. The cyclization proceeds efficiently with a catalyst loading of only 0.5 mol % in the presence of phenyliodine(III) diacetate (PIDA) as oxidant. Neither an inert atmosphere nor additional heating is required in this solvent-free procedure. Under heat or blue light, the newly formed five-membered heterocycles function as nitrene precursors reacting with sulfoxides as exemplified by the imidation of dimethyl sulfoxide.
Collapse
Affiliation(s)
- Shulei Pan
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Peng Wu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Dimitra Bampi
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Jas S Ward
- University of Jyvaskyla, Department of Chemistry, P.O. Box. 35, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, P.O. Box. 35, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
3
|
Stoikov II, Antipin IS, Burilov VA, Kurbangalieva AR, Rostovskii NV, Pankova AS, Balova IA, Remizov YO, Pevzner LM, Petrov ML, Vasilyev AV, Averin AD, Beletskaya IP, Nenajdenko VG, Beloglazkina EK, Gromov SP, Karlov SS, Magdesieva TV, Prishchenko AA, Popkov SV, Terent’ev AO, Tsaplin GV, Kustova TP, Kochetova LB, Magdalinova NA, Krasnokutskaya EA, Nyuchev AV, Kuznetsova YL, Fedorov AY, Egorova AY, Grinev VS, Sorokin VV, Ovchinnikov KL, Kofanov ER, Kolobov AV, Rusinov VL, Zyryanov GV, Nosov EV, Bakulev VA, Belskaya NP, Berezkina TV, Obydennov DL, Sosnovskikh VY, Bakhtin SG, Baranova OV, Doroshkevich VS, Raskildina GZ, Sultanova RM, Zlotskii SS, Dyachenko VD, Dyachenko IV, Fisyuk AS, Konshin VV, Dotsenko VV, Ivleva EA, Reznikov AN, Klimochkin YN, Aksenov DA, Aksenov NA, Aksenov AV, Burmistrov VV, Butov GM, Novakov IA, Shikhaliev KS, Stolpovskaya NV, Medvedev SM, Kandalintseva NV, Prosenko OI, Menshchikova EB, Golovanov AA, Khashirova SY. Organic Chemistry in Russian Universities. Achievements of Recent Years. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2024; 60:1361-1584. [DOI: 10.1134/s1070428024080013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 01/06/2025]
|
4
|
Chen CM, Yang YN, Kong YZ, Zhu BH, Qian PC, Zhou B, Ye LW. Copper-catalyzed intermolecular formal (5 + 1) annulation of 1,5-diynes with 1,2,5-oxadiazoles. Commun Chem 2023; 6:194. [PMID: 37700020 PMCID: PMC10497616 DOI: 10.1038/s42004-023-00999-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
One-carbon homologation reactions based on one-carbon insertion into the N-O bond of heterocycles have received tremendous interest over the past decades. However, these protocols have to rely on the use of hazardous and not easily accessible diazo compounds as precursors, and examples of the relevant asymmetric catalysis have not been reported. Here we show that a copper-catalyzed intermolecular formal (5 + 1) annulation of 1,5-diynes with 1,2,5-oxadiazoles involving one-carbon insertion into the heterocyclic N-O bond via non-diazo approach. This method enables practical and atom-economic synthesis of valuable pyrrole-substituted oxadiazines in generally moderate to good yields under mild reaction conditions. In addition, the possibility of such an asymmetric formal (5 + 1) annulation also emerges.
Collapse
Affiliation(s)
- Can-Ming Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Ye-Nan Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Yin-Zhu Kong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Bo-Han Zhu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, China
| | - Peng-Cheng Qian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, China.
- Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, China.
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
5
|
Presnukhina SI, Tarasenko MV, Geyl KK, Baykova SO, Baykov SV, Shetnev AA, Boyarskiy VP. Unusual Formation of 1,2,4-Oxadiazine Core in Reaction of Amidoximes with Maleic or Fumaric Esters. Molecules 2022; 27:molecules27217508. [PMID: 36364335 PMCID: PMC9655267 DOI: 10.3390/molecules27217508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
We have developed a simple and convenient method for the synthesis of 3-aryl- and 3-hetaryl-1,2,4-oxadiazin-5-ones bearing an easily functionalizable (methoxycarbonyl)methyl group at position 6 via the reaction of aryl or hetaryl amidoximes with maleates or fumarates. The conditions for this reaction were optimized. Different products can be synthesized selectively in good yields depending on the base used and the ratio of reactants: substituted (1,2,4-oxadiazin-6-yl)acetic acids, corresponding methyl esters, or hybrid 3-(aryl)-6-((3-(aryl)-1,2,4-oxadiazol-5-yl)methyl)-4H-1,2,4-oxadiazin-5(6H)-ones. The reaction is tolerant to substituents’ electronic and steric effects in amidoximes. As a result, a series of 2-(5-oxo-3-(p-tolyl)-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetic acids, their methyl esters, and 1,2,4-oxadiazoles based on them were prepared and characterized by HRMS, 1H, and 13C NMR spectroscopy. The structures of three of them were elucidated with X-ray diffraction.
Collapse
Affiliation(s)
- Sofia I. Presnukhina
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia
| | - Marina V. Tarasenko
- Pharmaceutical Technology Transfer Centre, Yaroslavl State Pedagogical University Named after K.D. Ushinsky, 108 Respublikanskaya St., 150000 Yaroslavl, Russia
| | - Kirill K. Geyl
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia
| | - Svetlana O. Baykova
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia
| | - Sergey V. Baykov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia
| | - Anton A. Shetnev
- Pharmaceutical Technology Transfer Centre, Yaroslavl State Pedagogical University Named after K.D. Ushinsky, 108 Respublikanskaya St., 150000 Yaroslavl, Russia
| | - Vadim P. Boyarskiy
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia
- Correspondence:
| |
Collapse
|
6
|
Efremova MM, Rostovskii NV. The VIth International Symposium “The Chemistry of Diazo Compounds and Related Systems” (DIAZO 2021). RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022030113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Sakharov P, Novikov MS, Nguyen TK, Kinzhalov MA, Khlebnikov AF, Rostovskii NV. Blue Light-Promoted Cross-Coupling of α-Diazo Esters with Isocyanides: Synthesis of Ester-Functionalized Ketenimines. ACS OMEGA 2022; 7:9071-9079. [PMID: 35309460 PMCID: PMC8928522 DOI: 10.1021/acsomega.2c00367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/23/2022] [Indexed: 05/09/2023]
Abstract
A metal-free scalable synthesis of functionalized ketenimines from alkyl α-(aryl/heteroaryl)-α-diazoacetates and alkyl isocyanides induced by blue light irradiation has been developed. The reaction proceeds at room temperature without any photocatalyst and provides ketenimines in moderate to good yields. Density functional theory (DFT) calculations and the experimental study showed that aryl(alkoxycarbonyl)carbenes in both singlet and triplet states can react with isocyanides but only the reaction of the former leads to the smooth formation of ketenimines. The obtained ketenimines were used for the synthesis of functionalized amidines under mild metal-free conditions.
Collapse
Affiliation(s)
- Pavel
A. Sakharov
- St. Petersburg State University,
Institute of Chemistry, 7/9 Universitetskaya nab, St. Petersburg 199034, Russia
| | - Mikhail S. Novikov
- St. Petersburg State University,
Institute of Chemistry, 7/9 Universitetskaya nab, St. Petersburg 199034, Russia
| | - Tuan K. Nguyen
- St. Petersburg State University,
Institute of Chemistry, 7/9 Universitetskaya nab, St. Petersburg 199034, Russia
| | - Mikhail A. Kinzhalov
- St. Petersburg State University,
Institute of Chemistry, 7/9 Universitetskaya nab, St. Petersburg 199034, Russia
| | - Alexander F. Khlebnikov
- St. Petersburg State University,
Institute of Chemistry, 7/9 Universitetskaya nab, St. Petersburg 199034, Russia
| | - Nikolai V. Rostovskii
- St. Petersburg State University,
Institute of Chemistry, 7/9 Universitetskaya nab, St. Petersburg 199034, Russia
| |
Collapse
|
8
|
Electrocyclizations of Conjugated Azapolyenes Produced in Reactions of Azaheterocycles with Metal Carbenes. ORGANICS 2021. [DOI: 10.3390/org2030017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Conjugated azapolyenes (azabuta-1,3-dienes, aza-/diaza-/oxaza-/oxadiazahexa-1,3,5-trienes) are highly reactive in electrocyclization reactions, which makes them convenient precursors for the synthesis of a wide range of four-, five-, and six-membered nitrogen heterocycles that are of relevance for medicinal chemistry. Ring opening reactions of 2H-azirines and azoles containing an N–N or N–O bond, initiated by a transition metal carbene, have become increasingly important in recent years, since they easily allow the generation of azapolyenes with different numbers of double bonds and heteroatoms in various positions. This review summarizes the literature, published mainly in the last decade, on the synthetic and mechanistic aspects of electrocyclizations of azapolyenes generated by the carbene method.
Collapse
|
9
|
Zhang Y, Kuang J, Xiao X, Wang L, Ma Y. DMSO as a Dual Carbon Synthon and Water as Oxygen Donor for the Construction of 1,3,5-Oxadiazines from Amidines. Org Lett 2021; 23:3960-3964. [PMID: 33938756 DOI: 10.1021/acs.orglett.1c01116] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A selective and efficient synthesis of diaryl 1,3,5-oxadiazines was established for the first time from simple and readily available amidines in wet DMSO. DMSO was employed as a dual carbon synthon and water offered the oxygen atom to construct the oxadiazine ring. The reaction involved two new C-N and two new C-O bond formations.
Collapse
Affiliation(s)
- Yi Zhang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P.R. China.,College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, P.R. China
| | - Jinqiang Kuang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P.R. China
| | - Xuqiong Xiao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, no. 2318 Yuhangtang Road, Hangzhou311121, P.R. China
| | - Lei Wang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P.R. China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P.R. China.,College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, P.R. China
| |
Collapse
|
10
|
Tarasenko MV, Kotlyarova VD, Baykov SV, Shetnev AA. 2-(1,2,4-Oxadiazol-5-yl)anilines Based on Amidoximes and Isatoic Anhydrides: Synthesis and Structure Features. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221050030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|