1
|
Barman D, Chandra Pan S. Organocatalytic Asymmetric [4 + 4] Annulation Reaction of Ynones with Unsaturated Pyrazolones: Synthesis of Eight-Membered Ether-Embedded 4,5-Fused Pyrazoles. Org Lett 2025. [PMID: 40392037 DOI: 10.1021/acs.orglett.5c01118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
An aminocatalytic asymmetric (4 + 4) annulation of ynones and unsaturated pyrazolones is reported. This study is the first to describe an enantioselective synthesis of eight-membered ether-embedded 4,5-fused pyrazoles. The scope of the reaction is broad, and cyclic ether-containing 4,5-fused pyrazole products were isolated in moderate to good yields with good to high enantioselectivities.
Collapse
Affiliation(s)
- Dipankar Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Subhas Chandra Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| |
Collapse
|
2
|
Lin X, Long B, Lei H, Liu TX, Yuan Z. Environment of Solvent-Controlled Chemoselective Asymmetric Hydroperoxidation and Hydroxylation of 5-Pyrazolone Ketimines Catalyzed by Bifunctional Organocatalysts. ACS OMEGA 2025; 10:11225-11230. [PMID: 40160784 PMCID: PMC11947773 DOI: 10.1021/acsomega.4c10608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 04/02/2025]
Abstract
Chemoselectivity often garners significant attention in organic synthesis, serving as a primary strategy for producing a variety of functionalized products from the same substrate. The first environment of solvent-controlled chemoselective asymmetric hydroperoxidation and hydroxylation of 5-pyrazolone ketimines has been achieved, using an acid-base bifunctional chiral squaramide as the organocatalyst, affording a range of enantioenriched products of hydroperoxidation and hydroxylation with high stereoselectivities (up to 90% ee).
Collapse
Affiliation(s)
- Xiangfeng Lin
- College of
Materials Engineering, Fujian Agriculture
and Forestry University, Fuzhou 350108, China
| | - Bo Long
- College
of
Mechanical and Electrical Engineering, Fujian
Agriculture and Forestry University, Fuzhou 350108, China
| | - Hanhui Lei
- Department
of Mechanical and Construction Engineering, Northumbria University, Newcastle
upon Tyne NE1 8ST, United Kingdom
| | - Terence Xiaoteng Liu
- Department
of Mechanical and Construction Engineering, Northumbria University, Newcastle
upon Tyne NE1 8ST, United Kingdom
| | - Zhanhui Yuan
- College of
Materials Engineering, Fujian Agriculture
and Forestry University, Fuzhou 350108, China
| |
Collapse
|
3
|
Rehman MU, He F, Shu X, Guo J, Liu Z, Cao S, Long S. Antibacterial and antifungal pyrazoles based on different construction strategies. Eur J Med Chem 2025; 282:117081. [PMID: 39608204 DOI: 10.1016/j.ejmech.2024.117081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/05/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
The growing prevalence of microbial infections, and antimicrobial resistance (AMR) stemming from the overuse and misuse of antibiotics, call for novel therapeutic agents, particularly ones targeting resistant microbial strains. Scientists are striving to develop innovative agents to tackle the rising microbial infections and abate the risk of AMR. Pyrazole, a five-membered heterocyclic compound belonging to the azole family, is a versatile scaffold and serves as a core structure in many drugs with antimicrobial and other therapeutic effects. In this review, we have updated pyrazole-based antibacterial and antifungal agents mainly developed between 2016 and 2024, by combining with diverse pharmacophores such as coumarin, thiazole, oxadiazole, isoxazole, indole, etc. Meanwhile, the various strategies (molecular hybridization, bioisosterism, scaffold hopping, multicomponent reactions, and catalyst-free synthesis) for integrating different functional groups with the pyrazole ring are discussed. Additionally, structure-activity relationships of these pyrazole derivatives, i.e., how structural modifications impact their selectivity and therapeutic potential against bacterial and fungal strains, are highlighted. This review provides insights into designing next-generation antimicrobials to combat AMR, and offers valuable perspectives to the scientists working on heterocyclic compounds with diverse bioactivities.
Collapse
Affiliation(s)
- Muneeb Ur Rehman
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Fang He
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Xi Shu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ju Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ziwei Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Shuang Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China.
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China.
| |
Collapse
|
4
|
Wang Y, Wang Y, Du X, Zheng K, Zhai S, Bai S, Fang L, Zhang T. Catalytic Enantioselective Propargylation of Pyrazolones by Amide-Based Phase-Transfer Catalysts. Org Lett 2024; 26:7318-7323. [PMID: 39185762 DOI: 10.1021/acs.orglett.4c02441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
In this paper, we developed a highly enantioselective alkylation of 4-substituted pyrazolones catalyzed by phase-transfer catalysis. Cheap halohydrocarbons were employed as electrophilic alkylationg agents, and propargyl, allyl, and benzyl products with all-carbon quaternary stereocenters were afforded with excellent enantioselectivities and good yields. We found that the unique structures of the catalyst (hydrogen bond donors of the C-9 hydroxyl group and amide group, the triphenyl at the NH-position) were important for good enantioselectivity. Furthermore, chiral propargyl products could be easily connected to azide molecules by click cycloaddition, which offers unique opportunities to obtain structurally diverse chiral pyrazolones.
Collapse
Affiliation(s)
- Yakun Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yingying Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xiaoyu Du
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Kaiting Zheng
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Shuman Zhai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Suping Bai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Lizhen Fang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Tao Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
5
|
Conboy A, Goodfellow AS, Kasten K, Dunne J, Cordes DB, Bühl M, Smith AD. De-epimerizing DyKAT of β-lactones generated by isothiourea-catalysed enantioselective [2 + 2] cycloaddition. Chem Sci 2024; 15:8896-8904. [PMID: 38873072 PMCID: PMC11168096 DOI: 10.1039/d4sc01410c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/17/2024] [Indexed: 06/15/2024] Open
Abstract
An enantioselective isothiourea-catalysed [2 + 2] cycloaddition of C(1)-ammonium enolates with pyrazol-4,5-diones is used to construct spirocyclic β-lactones in good yields, excellent enantioselectivity (99 : 1 er) but with modest diastereocontrol (typically 70 : 30 dr). Upon ring-opening with morpholine or alternative nucleophilic amines and alcohols β-hydroxyamide and β-hydroxyester products are generated with enhanced diastereocontrol (up to >95 : 5 dr). Control experiments show that stereoconvergence is observed in the ring-opening of diastereoisomeric β-lactones, leading to a single product (>95 : 5 dr, >99 : 1 er). Mechanistic studies and DFT analysis indicate a substrate controlled Dynamic Kinetic Asymmetric Transformation (DyKAT) involving epimerisation at C(3) of the β-lactone under the reaction conditions, coupled with a hydrogen bond-assisted nucleophilic addition to the Si-face of the β-lactone and stereodetermining ring-opening. The scope and limitations of a one-pot protocol consisting of isothiourea-catalysed enantio-determining [2 + 2] cycloaddition followed by diastereo-determining ring-opening are subsequently developed. Variation within the anhydride ammonium enolate precursor, as well as N(1) and C(3) within the pyrazol-4,5-dione scaffold is demonstrated, giving a range of functionalised β-hydroxyamides with high diastereo- and enantiocontrol (>20 examples, up to >95 : 5 dr and >99 : 1 er) via this DyKAT.
Collapse
Affiliation(s)
- Aífe Conboy
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Alister S Goodfellow
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Kevin Kasten
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Joanne Dunne
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Michael Bühl
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| |
Collapse
|
6
|
Gil-Ordóñez M, Maestro A, Andrés JM. Access to Spiropyrazolone-butenolides through NHC-Catalyzed [3 + 2]-Asymmetric Annulation of 3-Bromoenals and 1 H-Pyrazol-4,5-diones. J Org Chem 2023. [PMID: 37167601 DOI: 10.1021/acs.joc.3c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The stereoselective synthesis of spirocyclic pyrazolin-5-ones by N-heterocyclic carbene (NHC) organocatalysis has been less studied so far. For this reason and considering the interest of this class of compounds, here, we present the NHC-catalyzed [3 + 2]-asymmetric annulation of β-bromoenals and 1H-pyrazol-4,5-diones that achieves to produce chiral spiropyrazolone-butenolides. The synthesis is general for aryl and heteroaryl β-bromo-α,β-unsaturated aldehydes and 1,3-disubstituted pyrazolones. The spirobutenolides have been obtained in good yields (up to 88%) and enantioselectivities (up to 97:3 er). This constitutes the first described example using pyrazoldiones as the starting materials for this class of spiro compounds.
Collapse
Affiliation(s)
- Marta Gil-Ordóñez
- GIR-SintACat-Instituto Universitario CINQUIMA y Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| | - Alicia Maestro
- GIR-SintACat-Instituto Universitario CINQUIMA y Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| | - José M Andrés
- GIR-SintACat-Instituto Universitario CINQUIMA y Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| |
Collapse
|
7
|
Gil-Ordóñez M, Martín L, Maestro A, Andrés JM. Organocatalytic asymmetric synthesis of oxazolidino spiropyrazolinones via N, O-acetalization/aza Michael addition domino reaction between N-Boc pyrazolinone ketimines and γ-hydroxyenones. Org Biomol Chem 2023; 21:2361-2369. [PMID: 36847380 DOI: 10.1039/d2ob02290g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
A squaramide-catalyzed asymmetric N,O-acetalization/aza Michael addition domino reaction between N-Boc ketimines derived from pyrazolin-5-ones and γ-hydroxyenones has been developed for the construction of pyrazolinone embedded spirooxazolidines. A hydroquinine derived bifunctional squaramide catalyst was found to be the most effective for this cascade spiroannulation. This new protocol allows the generation of two stereocenters and the desired products are obtained in good yields with moderate to good diastereoselectivities (up to 3.3 : 1 dr) and high enantioselectivities (up to >99% ee) from a range of substituted N-Boc pyrazolinone ketimines and γ-hydroxyenones. The developed protocol is amenable for a scale-up reaction.
Collapse
Affiliation(s)
- Marta Gil-Ordóñez
- GIR-SintACat-Instituto Universitario CINQUIMA y Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid, Spain.
| | - Laura Martín
- GIR-SintACat-Instituto Universitario CINQUIMA y Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid, Spain.
| | - Alicia Maestro
- GIR-SintACat-Instituto Universitario CINQUIMA y Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid, Spain.
| | - José M Andrés
- GIR-SintACat-Instituto Universitario CINQUIMA y Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid, Spain.
| |
Collapse
|
8
|
Warghude PK, Bhowmick A, Bhat RG. Direct Access to Spirooxindole Dihydropyrrole Fused Pyrazolones and Bis-Spiropyrazolone Derivatives. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Carceller-Ferrer L, González del Campo A, Vila C, Blay G, Muñoz MC, Pedro JR. Catalytic Diastereo- and Enantioselective Synthesis of Tertiary Trifluoromethyl Carbinols through a Vinylogous Aldol Reaction of Alkylidenepyrazolones with Trifluoromethyl Ketones. J Org Chem 2022; 87:4538-4549. [PMID: 35293756 PMCID: PMC8981347 DOI: 10.1021/acs.joc.1c02817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 11/29/2022]
Abstract
A diastereo- and enantioselective organocatalytic aldol reaction between alkylidenepyrazolones and trifluoromethyl ketones leading to chiral tertiary alcohols bearing a trifluoromethyl group is presented. The methodology is based on the use of a bifunctional organocatalyst in order to activate the γ-hydrogen atoms of the alkylidenepyrazolone nucleophile and the carbonyl group of the trifluoromethylarylketone providing highly functionalized trifluoromethyl alcohols with moderate yields, excellent diastereoselectivity, and moderate to good enantioselectivity. Experiments monitoring the conversion by 1H NMR and the enantiomeric excess by HPLC with the reaction time showed that full conversion of the starting materials is not achieved and that the enantiomeric excess decreases upon extended times, probably due to the reversibility of the reaction.
Collapse
Affiliation(s)
- Laura Carceller-Ferrer
- Departament
de Química Orgànica, Facultat
de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - Aleix González del Campo
- Departament
de Química Orgànica, Facultat
de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - Carlos Vila
- Departament
de Química Orgànica, Facultat
de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - Gonzalo Blay
- Departament
de Química Orgànica, Facultat
de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - M. Carmen Muñoz
- Departament
de Física Aplicada, Universitat Politècnica
de València, Camino de Vera s/n, 46022 València, Spain
| | - José R. Pedro
- Departament
de Química Orgànica, Facultat
de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| |
Collapse
|
10
|
Gil-Ordóñez M, Maestro A, Ortega P, Jambrina PG, Andrés JM. NHC-catalysed [3 + 2]-asymmetric annulation between pyrazolin-4,5-diones and enals: synthesis of novel spirocyclic pyrazolone γ-butyrolactones and computational study of mechanism and stereoselectivity. Org Chem Front 2022. [DOI: 10.1039/d1qo01462e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein we present the first asymmetric synthesis of spiropyrazolone γ-butyrolactones from 1H-pyrazol-4,5-diones and enals by an NHC-catalysed [3 + 2] annulation. DFT calculations carried out predict the experimental configuration of final adducts.
Collapse
Affiliation(s)
- Marta Gil-Ordóñez
- GIR-SintACat-Instituto Universitario CINQUIMA y Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| | - Alicia Maestro
- GIR-SintACat-Instituto Universitario CINQUIMA y Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| | - Pablo Ortega
- Departamento de Química Física, University of Salamanca, 37008, Salamanca, Spain
| | - Pablo G. Jambrina
- Departamento de Química Física, University of Salamanca, 37008, Salamanca, Spain
| | - José M. Andrés
- GIR-SintACat-Instituto Universitario CINQUIMA y Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| |
Collapse
|
11
|
Han Z, Jin J, Woldegiorgis AG, Lin X. Organocatalytic diastereo- and enantioselective conjugate addition of pyrazol-3-ones to 3-trifluoroethylidene oxindoles with a newly developed squaramide catalyst. RSC Adv 2022; 12:27012-27021. [PMID: 36320851 PMCID: PMC9490773 DOI: 10.1039/d2ra05088a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022] Open
Abstract
An efficient organocatalytic conjugated addition reaction of pyrazol-3-ones with 3-trifluoroethylidene oxindoles has been developed for the synthesis of enantioenriched triflouromethylated indolin-2-ones bearing adjacent tertiary chiral centers in good yields and good to excellent diastereo- and enantioselectivities. The use of a newly developed chiral spirobiindane-derived squaramide catalyst is essential in achieving high diastereo- and enantioselectivities. Organocatalytic diastereo- and enantioselective conjugate addition of pyrazol-3-ones to 3-trifluoroethylidene oxindoles with a newly developed squaramide catalyst has been developed.![]()
Collapse
Affiliation(s)
- Zhao Han
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jiaping Jin
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | | | - Xufeng Lin
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
12
|
Miao A, Zhou M, Chen J, Wang S, Hao W, Tu S, Jiang B. Pd‐Catalyzed Asymmetric Addition of Arylboronic Acids to Pyrazolinone Ketimines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- An‐Qi Miao
- School of Chemistry and Material Science Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials Jiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Meng Zhou
- School of Chemistry and Material Science Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials Jiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Jing‐Long Chen
- School of Chemistry and Material Science Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials Jiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Shi‐Chao Wang
- School of Chemistry and Material Science Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials Jiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Wen‐Juan Hao
- School of Chemistry and Material Science Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials Jiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Shu‐Jiang Tu
- School of Chemistry and Material Science Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials Jiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Bo Jiang
- School of Chemistry and Material Science Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials Jiangsu Normal University Xuzhou 211116 People's Republic of China
| |
Collapse
|
13
|
Nawaz S, Huang Y, Bao X, Wei S, Wei X, Qu J, Wang B. Construction of a spiro[pyrazolone-4,2'-pyridoindole] scaffold via a [3 + 3] cycloaddition of 2-indolylmethanol with a 4-aminopyrazolone-derived azomethine ylide. Org Biomol Chem 2021; 19:8530-8538. [PMID: 34546283 DOI: 10.1039/d1ob01631h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This work reports a facile [3 + 3] cycloaddition sequence of two important heterocyclic pharmacophores, pyrazolone and 2-indolylmethanol, integrated into a polycyclic hybrid scaffold. In this process, an in situ generated azomethine ylide obtained from 4-aminopyrazolone and benzaldehyde reacts with 2-indolylmethanols to offer spiro[pyrazolone-pyridoindole] scaffolds in high yields with excellent diastereoselectivities. Remarkably, the reaction is carried out at room temperature without any catalyst and base.
Collapse
Affiliation(s)
- Shah Nawaz
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China. .,Department of Chemistry, Karakoram International University, Gilgit-Baltistan, 15100, Pakistan
| | - Yue Huang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China.
| | - Xiaoze Bao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China.
| | - Shiqiang Wei
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China.
| | - Xingfu Wei
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China.
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China.
| |
Collapse
|
14
|
Carceller-Ferrer L, Vila C, Blay G, Muñoz MC, Pedro JR. Catalytic Diastereo- and Enantioselective Vinylogous Mannich Reaction of Alkylidenepyrazolones to Isatin-Derived Ketimines. Org Lett 2021; 23:7391-7395. [PMID: 34553948 PMCID: PMC8491163 DOI: 10.1021/acs.orglett.1c02571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
![]()
A valuable organocatalytic
vinylogous Mannich reaction between
alkylidenepyrazolones and isatin-derived ketimines has been successfully
established. Squaramide organocatalyst, prepared from quinine, catalyzed
the diastereo- and enantioselective vinylogous Mannich addition, affording
a range of aminooxindole-pyrazolone adducts (24 examples) with excellent
outcomes: up to 98% yield with complete diastereoselectivity and excellent
enantioselectivity (up to 99% ee). Additionally, different synthetic
transformations were performed with the chiral pyrazolone-oxindole
adducts.
Collapse
Affiliation(s)
- Laura Carceller-Ferrer
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - Carlos Vila
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - Gonzalo Blay
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - M Carmen Muñoz
- Departament de Física Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
| | - José R Pedro
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| |
Collapse
|
15
|
Recent Advances in Selected Asymmetric Reactions Promoted by Chiral Catalysts: Cyclopropanations, Friedel–Crafts, Mannich, Michael and Other Zinc-Mediated Processes—An Update. Symmetry (Basel) 2021. [DOI: 10.3390/sym13101762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The main purpose of this review article is to present selected asymmetric synthesis reactions in which chemical and stereochemical outcomes are dependent on the use of an appropriate chiral catalyst. Optically pure or enantiomerically enriched products of such transformations may find further applications in various fields. Among an extremely wide variety of asymmetric reactions catalyzed by chiral systems, we are interested in: asymmetric cyclopropanation, Friedel–Crafts reaction, Mannich and Michael reaction, and other stereoselective processes conducted in the presence of zinc ions. This paper describes the achievements of the above-mentioned asymmetric transformations in the last three years. The choice of reactions is related to the research that has been carried out in our laboratory for many years.
Collapse
|
16
|
Nawaz S, Wei S, Huang Y, Wang W, Qu J, Wang B. Diastereoselective synthesis of indolenine-based spiro[pyrazolone-4,2'-pyrrolidine] scaffolds via 1,3-dipolar cycloaddition of 4-aminopyrazolones, aldehydes, and indolenines. Org Biomol Chem 2021; 19:6964-6968. [PMID: 34333584 DOI: 10.1039/d1ob01135a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we report a one-pot [3 + 2] cycloaddition of 4-aminopyrazolones, indolenines, and aldehydes. The reaction utilized in situ generated azomethine ylides as 1,3-dipoles and 2-alkenylindolenines as dipolarophiles affording indolenine-derived spiro[pyrazolone-4,2'-pyrrolidine] scaffolds with four contiguous stereocenters with excellent yields (up to 95%) and diastereoselectivities (up to >20 : 1 dr) under simple conditions. The in situ generation of azomethine ylides and dipolarophiles in one pot is a unique feature of this process.
Collapse
Affiliation(s)
- Shah Nawaz
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | | | | | | | | | | |
Collapse
|
17
|
Krasowska D, Karpowicz R, Drabowicz J. Chiral Polythiophenes: Part I: Syntheses of Monomeric Precursors. Molecules 2021; 26:4205. [PMID: 34299480 PMCID: PMC8306549 DOI: 10.3390/molecules26144205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/26/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
The purpose of this mini-review is to comprehensively present the synthetic approaches used for the preparation of non-racemic mono- and multi-substituted thiophenes, which, in turn, can be applied as precursors for the synthesis of chiral polythiophenes isolated as a single chemical entity or having supramolecular thin-layer architectures.
Collapse
Affiliation(s)
- Dorota Krasowska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Rafał Karpowicz
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland
| | - Józef Drabowicz
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
- Institute of Chemistry, Jan Dlugosz University in Czestochowa, Armii Krajowej Ave. 13/15, 42-200 Czestochowa, Poland
| |
Collapse
|
18
|
Kumar K, Singh B, Hore S, Singh RP. Catalytic enantioselective synthesis of chiral 4-hydroxy 4′-substituted pyrazolones by the vinylogous aldol reaction of pyrazole-4,5-diones with 3-alkylidene-2-oxindoles. NEW J CHEM 2021. [DOI: 10.1039/d0nj05886f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Here, a bifunctional quinine-derived benzamide catalyzed direct enantioselective vinylogous aldol reaction between 3-alkylidene-2-oxindoles and pyrazole-4,5-diones has been developed.
Collapse
Affiliation(s)
- Krishna Kumar
- Department of Chemistry
- Indian Institute of Technology
- Delhi, Hauz Khas
- New Delhi-110016
- India
| | - Bhuvnesh Singh
- Department of Chemistry
- Indian Institute of Technology
- Delhi, Hauz Khas
- New Delhi-110016
- India
| | - Soumyadip Hore
- Department of Chemistry
- Indian Institute of Technology
- Delhi, Hauz Khas
- New Delhi-110016
- India
| | - Ravi P Singh
- Department of Chemistry
- Indian Institute of Technology
- Delhi, Hauz Khas
- New Delhi-110016
- India
| |
Collapse
|