1
|
Dong G, Ma CC, Mao S, Naik SM, Brown KSM, McDonough GA, Kim J, Kirkham SL, Cherry JD, Uretsky M, Spurlock E, McKee AC, Huang AY, Miller MB, Lee EA, Walsh CA. Diverse somatic genomic alterations in single neurons in chronic traumatic encephalopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.03.641217. [PMID: 40093089 PMCID: PMC11908173 DOI: 10.1101/2025.03.03.641217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease that is linked to exposure to repetitive head impacts (RHI), yet little is known about its pathogenesis. Applying two single-cell whole-genome sequencing methods to hundreds of neurons from prefrontal cortex of 15 individuals with CTE, and 4 with RHI without CTE, revealed increased somatic single-nucleotide variants in CTE, resembling a pattern previously reported in Alzheimer's disease (AD). Furthermore, we discovered remarkably high burdens of somatic small insertions and deletions in a subset of CTE individuals, resembling a known pattern, ID4, also found in AD. Our results suggest that neurons in CTE experience stereotyped mutational processes shared with AD; the absence of similar changes in RHI neurons without CTE suggests that CTE involves mechanisms beyond RHI alone.
Collapse
Affiliation(s)
- Guanlan Dong
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
- Bioinformatics and Integrative Genomics Program, Harvard Medical School; Boston, MA, USA
| | - Chanthia C. Ma
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
- Harvard-MIT MD-PhD Program, Harvard Medical School; Boston, MA, USA
| | - Shulin Mao
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School; Boston, MA, USA
| | - Samuel M. Naik
- Division of Neuropathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, USA
| | - Katherine Sun-Mi Brown
- Division of Neuropathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, USA
| | - Gannon A. McDonough
- Division of Neuropathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, USA
| | - Junho Kim
- Department of Biological Sciences, Sungkyunkwan University; Suwon, South Korea
| | - Samantha L. Kirkham
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
| | - Jonathan D. Cherry
- Veterans Affairs (VA) Boston Healthcare System, US Department of Veteran Affairs; Boston, MA, USA
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University; Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Chobanian and Avedisian School of Medicine, Boston University; Boston, MA, USA
| | - Madeline Uretsky
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University; Boston, MA, USA
| | - Elizabeth Spurlock
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University; Boston, MA, USA
| | - Ann C. McKee
- Veterans Affairs (VA) Boston Healthcare System, US Department of Veteran Affairs; Boston, MA, USA
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University; Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Chobanian and Avedisian School of Medicine, Boston University; Boston, MA, USA
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University; Boston, MA, USA
| | - August Yue Huang
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - Michael B. Miller
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
- Division of Neuropathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, USA
- Howard Hughes Medical Institute; Boston, MA, USA
| |
Collapse
|
2
|
Osterman C, Hamlin D, Suter CM, Affleck AJ, Gloss BS, Turner CP, Faull RLM, Stein TD, McKee A, Buckland ME, Curtis MA, Murray HC. Perivascular glial reactivity is a feature of phosphorylated tau lesions in chronic traumatic encephalopathy. Acta Neuropathol 2025; 149:16. [PMID: 39921702 PMCID: PMC11807024 DOI: 10.1007/s00401-025-02854-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025]
Abstract
Chronic traumatic encephalopathy (CTE), a neurodegenerative disease associated with repetitive head injuries, is characterised by perivascular hyperphosphorylated tau (p-tau) accumulations within the depths of cortical sulci. Although the majority of CTE literature focuses on p-tau pathology, other pathological features such as glial reactivity, vascular damage, and axonal damage are relatively unexplored. In this study, we aimed to characterise these other pathological features, specifically in CTE p-tau lesion areas, to better understand the microenvironment surrounding the lesion. We utilised multiplex immunohistochemistry to investigate the distribution of 32 different markers of cytoarchitecture and pathology that are relevant to both traumatic brain injury and neurodegeneration. We qualitatively assessed the multiplex images and measured the percentage area of labelling for each marker in the lesion and non-lesion areas of CTE cases. We identified perivascular glial reactivity as a prominent feature of CTE p-tau lesions, largely driven by increases in astrocyte reactivity compared to non-lesion areas. Furthermore, we identified astrocytes labelled for both NAD(P)H quinone dehydrogenase 1 (NQO1) and L-ferritin, indicating that lesion-associated glial reactivity may be a compensatory response to iron-induced oxidative stress. Our findings demonstrate that perivascular inflammation is a consistent feature of the CTE pathognomonic lesion and may contribute to the pathogenesis of brain injury-related neurodegeneration.
Collapse
Affiliation(s)
- Chelsie Osterman
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
| | - Danica Hamlin
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
| | - Catherine M Suter
- Department of Neuropathology, Royal Prince Alfred Hospital, 94 Mallet St, Camperdown, NSW, 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Andrew J Affleck
- Department of Neuropathology, Royal Prince Alfred Hospital, 94 Mallet St, Camperdown, NSW, 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Brian S Gloss
- Westmead Research Hub, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Clinton P Turner
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
- Department of Anatomical Pathology, Pathology and Laboratory Medicine, Auckland City Hospital, 2 Park Road, Grafton, 1023, Auckland, New Zealand
| | - Richard L M Faull
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
| | - Thor D Stein
- Department of Pathology and Laboratory Medicine, VA Boston Healthcare System, Boston, MA, USA
- Department of Pathology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Alzheimer's Disease and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Bedford Veterans Affairs Medical Center, Bedford, MA, USA
| | - Ann McKee
- Department of Pathology and Laboratory Medicine, VA Boston Healthcare System, Boston, MA, USA
- Department of Pathology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Alzheimer's Disease and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Bedford Veterans Affairs Medical Center, Bedford, MA, USA
| | - Michael E Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, 94 Mallet St, Camperdown, NSW, 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
| | - Helen C Murray
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand.
| |
Collapse
|
3
|
Singh S, Khan S, Shahid M, Sardar M, Hassan MI, Islam A. Targeting tau in Alzheimer's and beyond: Insights into pathology and therapeutic strategies. Ageing Res Rev 2025; 104:102639. [PMID: 39674375 DOI: 10.1016/j.arr.2024.102639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Tauopathies encompass a group of approximately 20 neurodegenerative diseases characterized by the accumulation of the microtubule-associated protein tau in brain neurons. The pathogenesis of intracellular neurofibrillary tangles, a hallmark of tauopathies, is initiated by hyperphosphorylated tau protein isoforms that cause neuronal death and lead to diseases like Alzheimer's, Parkinson's disease, frontotemporal dementia, and other complex neurodegenerative diseases. Current applications of tau biomarkers, including imaging, cerebrospinal fluid, and blood-based assays, assist in the evaluation and diagnosis of tauopathies. Emerging research is providing various potential strategies to prevent cellular toxicity caused by tau aggregation such as: 1) suppressing toxic tau aggregation, 2) preventing post-translational modifications of tau, 3) stabilizing microtubules and 4) designing tau-directed immunogens. This review aims to discuss the role of tau in tauopathies along with neuropathological features of the different tauopathies and the new developments in treating tau aggregation with the therapeutics for treating and possibly preventing tauopathies.
Collapse
Affiliation(s)
- Sunidhi Singh
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Sumaiya Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Meryam Sardar
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
4
|
Wallingford A, Junn C. Chronic Traumatic Encephalopathy. Phys Med Rehabil Clin N Am 2024; 35:607-618. [PMID: 38945654 DOI: 10.1016/j.pmr.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
This article focuses on neuropathologic diagnostic criteria for chronic traumatic encephalopathy (CTE) and consensus research diagnostic criteria for traumatic encephalopathy syndrome (TES). CTE as a tauopathy has a unique pattern for diagnosis and differs from other neurodegenerative diseases. We discuss the history, neuropathology, and mechanism of CTE as well as the preliminary reasearch diagnostic criteria for TES, which is the proposed clinical presentation of suspected CTE.
Collapse
Affiliation(s)
- Allison Wallingford
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA
| | - Cherry Junn
- Department of Rehabilitation Medicine, University of Washington, 325 Ninth Avenue Box 359740, Seattle, WA 98104, USA.
| |
Collapse
|
5
|
Lin CL, DeMessie B, Ye K, Hu S, Lipton ML. Neck strength alone does not mitigate adverse associations of soccer heading with cognitive performance in adult amateur players. PLoS One 2024; 19:e0302463. [PMID: 38753699 PMCID: PMC11098408 DOI: 10.1371/journal.pone.0302463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVES Soccer heading is adversely associated with neurocognitive performance, but whether greater neck strength or anthropometrics mitigates these outcomes is controversial. Here, we examine the effect of neck strength or anthropometrics on associations of soccer heading with neurocognitive outcomes in a large cohort of adult amateur players. METHODS 380 adult amateur league soccer players underwent standardized measurement of neck strength (forward flexion, extension, left lateral flexion, right lateral flexion) and head/neck anthropometric measures (head circumference, neck length, neck circumference and neck volume). Participants were assessed for heading (HeadCount) and cognitive performance (Cogstate) on up to 7 visits over a period of two years. Principal components analysis (PCA) was performed on 8 neck strength and anthropometric measures. We used generalized estimating equations to test the moderation effect of each of the three PCs on 8 previously identified adverse associations of 2-week and 12-month heading estimates with cognitive performance (psychomotor speed, immediate verbal recall, verbal episodic memory, attention, working memory) and of unintentional head impacts on moderate to severe central nervous system symptoms. RESULTS 3 principal components (PC's) account for 80% of the variance in the PCA. In men, PC1 represents head/neck anthropometric measures, PC2 represents neck strength measures, and PC3 represents the flexor/extensor (F/E) ratio. In women, PC1 represents neck strength, PC2 represents anthropometrics, and PC3 represents the F/E ratio. Of the 48 moderation effects tested, only one showed statistical significance after Bonferroni correction, which was not robust to extensive sensitivity analyses. CONCLUSION Neither neck strength nor anthropometrics mitigate adverse associations of soccer heading with cognitive performance in adult amateur players.
Collapse
Affiliation(s)
- Chin Lun Lin
- Montefiore Medical Center, Bronx, New York, United States of America
| | - Bluyé DeMessie
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Kenny Ye
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Shanshan Hu
- The Epoch Times, New York, New York, United States of America
| | - Michael L. Lipton
- Department of Radiology, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
| |
Collapse
|
6
|
Barbas H, Garcia-Cabezas MA, John Y, Bautista J, McKee A, Zikopoulos B. Cortical circuit principles predict patterns of trauma induced tauopathy in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592271. [PMID: 38746103 PMCID: PMC11092596 DOI: 10.1101/2024.05.02.592271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Connections in the cortex of diverse mammalian species are predicted reliably by the Structural Model for direction of pathways and signal processing (reviewed in 1,2). The model is rooted in the universal principle of cortical systematic variation in laminar structure and has been supported widely for connection patterns in animals but has not yet been tested for humans. Here, in postmortem brains of individuals neuropathologically diagnosed with chronic traumatic encephalopathy (CTE) we studied whether the hyperphosphorylated tau (p-tau) pathology parallels connection sequence in time by circuit mechanisms. CTE is a progressive p-tau pathology that begins focally in perivascular sites in sulcal depths of the neocortex (stages I-II) and later involves the medial temporal lobe (MTL) in stages III-IV. We provide novel quantitative evidence that the p-tau pathology in MTL A28 and nearby sites in CTE stage III closely follows the graded laminar patterns seen in homologous cortico-cortical connections in non-human primates. The Structural Model successfully predicted the laminar distribution of the p-tau neurofibrillary tangles and neurites and their density, based on the relative laminar (dis)similarity between the cortical origin (seed) and each connection site. The findings were validated for generalizability by a computational progression model. By contrast, the early focal perivascular pathology in the sulcal depths followed local columnar connectivity rules. These findings support the general applicability of a theoretical model to unravel the direction and progression of p-tau pathology in human neurodegeneration via a cortico-cortical mechanism. Cortical pathways converging on medial MTL help explain the progressive spread of p-tau pathology from focal cortical sites in early CTE to widespread lateral MTL areas and beyond in later disease stages.
Collapse
Affiliation(s)
- Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA 022152
- Graduate Program in Neuroscience, Boston Univ. and School of Medicine
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA
- Center for Systems Neuroscience, Boston University, Boston, MA
| | - Miguel Angel Garcia-Cabezas
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Yohan John
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA 022152
| | - Julied Bautista
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA 022152
| | - Ann McKee
- Veterans Affairs (VA) Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Basilis Zikopoulos
- Graduate Program in Neuroscience, Boston Univ. and School of Medicine
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA
- Center for Systems Neuroscience, Boston University, Boston, MA
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University
| |
Collapse
|
7
|
Bryant BR, Esagoff AI, Young L, Kosyakova N, Bray MJC, Richey LN, Vohra V, Shan G, Schneider ALC, Peters ME, Bernick CB, Narapareddy BR. Association of Win-Loss Record With Neuropsychiatric Symptoms and Brain Health Among Professional Fighters. J Neuropsychiatry Clin Neurosci 2024; 36:118-124. [PMID: 38258377 DOI: 10.1176/appi.neuropsych.20230108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
OBJECTIVE Repetitive head impacts in professional fighting commonly lead to head injuries. Increased exposure to repetitive head trauma, measured by the number of professional fights and years of fighting, has been associated with slower processing speed and smaller brain volumes. The impact of win-loss outcomes has been investigated in other sports, with several studies suggesting that individuals on losing teams experience more head injuries. Here, the authors hypothesized that fighters with a worse fight record would exhibit poorer brain health outcomes. METHODS The Professional Fighters Brain Health Study examined changes in neuropsychiatric symptoms, regional brain volume, and cognition among professional boxers and mixed martial arts fighters. These data were used to evaluate the relationship between win-loss ratios and brain health outcomes among professional fighters (N=212) by using validated neuropsychiatric symptom and cognitive measures and MRI data. RESULTS Retired fighters with a better record demonstrated more impulsiveness (B=0.21, df=48) and slower processing speed (B=-0.42, df=31). More successful fighters did not perform better than fighters with worse records on any neuropsychiatric or cognitive test. Retired fighters with better fight records had smaller brain volumes in the subcortical gray matter, anterior corpus callosum, left and right hippocampi, left and right amygdala, and left thalamus. More successful active fighters had a smaller left amygdala volume. CONCLUSIONS These findings suggest that among retired fighters, a better fight record was associated with greater impulsiveness, slower processing speed, and smaller brain volume in certain regions. This study shows that even successful fighters experience adverse effects on brain health.
Collapse
Affiliation(s)
- Barry R Bryant
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (Bryant, Esagoff, Young, Bray, Richey, Vohra, Peters); Department of Psychiatry, University of Connecticut School of Medicine, Farmington (Kosyakova); Department of Biostatistics, University of Florida, Gainesville (Shan); Department of Neurology and Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia (Schneider); Lou Ruvo Center for Brain Health, Cleveland Clinic, Las Vegas (Bernick); Institute of Living, Hartford Hospital, Hartford, Conn. (Narapareddy)
| | - Aaron I Esagoff
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (Bryant, Esagoff, Young, Bray, Richey, Vohra, Peters); Department of Psychiatry, University of Connecticut School of Medicine, Farmington (Kosyakova); Department of Biostatistics, University of Florida, Gainesville (Shan); Department of Neurology and Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia (Schneider); Lou Ruvo Center for Brain Health, Cleveland Clinic, Las Vegas (Bernick); Institute of Living, Hartford Hospital, Hartford, Conn. (Narapareddy)
| | - Lisa Young
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (Bryant, Esagoff, Young, Bray, Richey, Vohra, Peters); Department of Psychiatry, University of Connecticut School of Medicine, Farmington (Kosyakova); Department of Biostatistics, University of Florida, Gainesville (Shan); Department of Neurology and Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia (Schneider); Lou Ruvo Center for Brain Health, Cleveland Clinic, Las Vegas (Bernick); Institute of Living, Hartford Hospital, Hartford, Conn. (Narapareddy)
| | - Natalia Kosyakova
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (Bryant, Esagoff, Young, Bray, Richey, Vohra, Peters); Department of Psychiatry, University of Connecticut School of Medicine, Farmington (Kosyakova); Department of Biostatistics, University of Florida, Gainesville (Shan); Department of Neurology and Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia (Schneider); Lou Ruvo Center for Brain Health, Cleveland Clinic, Las Vegas (Bernick); Institute of Living, Hartford Hospital, Hartford, Conn. (Narapareddy)
| | - Michael J C Bray
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (Bryant, Esagoff, Young, Bray, Richey, Vohra, Peters); Department of Psychiatry, University of Connecticut School of Medicine, Farmington (Kosyakova); Department of Biostatistics, University of Florida, Gainesville (Shan); Department of Neurology and Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia (Schneider); Lou Ruvo Center for Brain Health, Cleveland Clinic, Las Vegas (Bernick); Institute of Living, Hartford Hospital, Hartford, Conn. (Narapareddy)
| | - Lisa N Richey
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (Bryant, Esagoff, Young, Bray, Richey, Vohra, Peters); Department of Psychiatry, University of Connecticut School of Medicine, Farmington (Kosyakova); Department of Biostatistics, University of Florida, Gainesville (Shan); Department of Neurology and Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia (Schneider); Lou Ruvo Center for Brain Health, Cleveland Clinic, Las Vegas (Bernick); Institute of Living, Hartford Hospital, Hartford, Conn. (Narapareddy)
| | - Varun Vohra
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (Bryant, Esagoff, Young, Bray, Richey, Vohra, Peters); Department of Psychiatry, University of Connecticut School of Medicine, Farmington (Kosyakova); Department of Biostatistics, University of Florida, Gainesville (Shan); Department of Neurology and Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia (Schneider); Lou Ruvo Center for Brain Health, Cleveland Clinic, Las Vegas (Bernick); Institute of Living, Hartford Hospital, Hartford, Conn. (Narapareddy)
| | - Guogen Shan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (Bryant, Esagoff, Young, Bray, Richey, Vohra, Peters); Department of Psychiatry, University of Connecticut School of Medicine, Farmington (Kosyakova); Department of Biostatistics, University of Florida, Gainesville (Shan); Department of Neurology and Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia (Schneider); Lou Ruvo Center for Brain Health, Cleveland Clinic, Las Vegas (Bernick); Institute of Living, Hartford Hospital, Hartford, Conn. (Narapareddy)
| | - Andrea L C Schneider
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (Bryant, Esagoff, Young, Bray, Richey, Vohra, Peters); Department of Psychiatry, University of Connecticut School of Medicine, Farmington (Kosyakova); Department of Biostatistics, University of Florida, Gainesville (Shan); Department of Neurology and Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia (Schneider); Lou Ruvo Center for Brain Health, Cleveland Clinic, Las Vegas (Bernick); Institute of Living, Hartford Hospital, Hartford, Conn. (Narapareddy)
| | - Matthew E Peters
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (Bryant, Esagoff, Young, Bray, Richey, Vohra, Peters); Department of Psychiatry, University of Connecticut School of Medicine, Farmington (Kosyakova); Department of Biostatistics, University of Florida, Gainesville (Shan); Department of Neurology and Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia (Schneider); Lou Ruvo Center for Brain Health, Cleveland Clinic, Las Vegas (Bernick); Institute of Living, Hartford Hospital, Hartford, Conn. (Narapareddy)
| | - Charles B Bernick
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (Bryant, Esagoff, Young, Bray, Richey, Vohra, Peters); Department of Psychiatry, University of Connecticut School of Medicine, Farmington (Kosyakova); Department of Biostatistics, University of Florida, Gainesville (Shan); Department of Neurology and Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia (Schneider); Lou Ruvo Center for Brain Health, Cleveland Clinic, Las Vegas (Bernick); Institute of Living, Hartford Hospital, Hartford, Conn. (Narapareddy)
| | - Bharat R Narapareddy
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (Bryant, Esagoff, Young, Bray, Richey, Vohra, Peters); Department of Psychiatry, University of Connecticut School of Medicine, Farmington (Kosyakova); Department of Biostatistics, University of Florida, Gainesville (Shan); Department of Neurology and Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia (Schneider); Lou Ruvo Center for Brain Health, Cleveland Clinic, Las Vegas (Bernick); Institute of Living, Hartford Hospital, Hartford, Conn. (Narapareddy)
| |
Collapse
|
8
|
Hageman G, Hageman I, Nihom J. Chronic Traumatic Encephalopathy in Soccer Players: Review of 14 Cases. Clin J Sport Med 2024; 34:69-80. [PMID: 37403989 DOI: 10.1097/jsm.0000000000001174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/22/2023] [Indexed: 07/06/2023]
Abstract
OBJECTIVE Exposure to repetitive sports-related concussions or (sub)concussive head trauma may lead to chronic traumatic encephalopathy (CTE). Which impact (heading or concussion) poses the greatest risk of CTE development in soccer players? DESIGN Narrative review. SETTING Teaching hospital and University of Applied sciences. PATIENTS A literature search (PubMed) was conducted for neuropathologic studies in the period 2005-December 2022, investigating soccer players with dementia and a CTE diagnosis, limited to English language publications. 210 papers were selected for final inclusion, of which 7 papers described 14 soccer players. ASSESSMENT Magnetic resonance imaging studies in soccer players show that lifetime estimates of heading numbers are inversely correlated with cortical thickness, grey matter volume, and density of the anterior temporal cortex. Using diffusion tensor imaging-magnetic resonance imaging, higher frequency of headings-particularly with rotational accelerations-are associated with impaired white matter integrity. Serum neurofilament light protein is elevated after heading. MAIN OUTCOME MEASURES Chronic traumatic encephalopathy pathology, history of concussion, heading frequency. RESULTS In 10 of 14 soccer players, CTE was the primary diagnosis. In 4 cases, other dementia types formed the primary diagnosis and CTE pathology was a concomitant finding. Remarkably, 6 of the 14 cases had no history of concussion, suggesting that frequent heading may be a risk for CTE in patients without symptomatic concussion. Rule changes in heading duels, management of concussion during the game, and limiting the number of high force headers during training are discussed. CONCLUSIONS Data suggest that heading frequency and concussions are associated with higher risk of developing CTE in (retired) soccer players. However based on this review of only 14 players, questions persist as to whether or not heading is a risk factor for CTE or long-term cognitive decline.
Collapse
Affiliation(s)
- Gerard Hageman
- Department of Neurology, Medisch Spectrum Twente, Hospital Enschede, Enschede, the Netherlands; and
| | - Ivar Hageman
- Saxion University of Applied Sciences, Enschede, the Netherlands
| | - Jik Nihom
- Department of Neurology, Medisch Spectrum Twente, Hospital Enschede, Enschede, the Netherlands; and
| |
Collapse
|
9
|
Lystad RP, McMaugh A, Herkes G, Browne G, Badgery-Parker T, Cameron CM, Mitchell RJ. Risk of impaired school performance in children hospitalized with concussion: a population-based matched cohort study. Concussion 2023; 8:CNC105. [PMID: 37691853 PMCID: PMC10488614 DOI: 10.2217/cnc-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/21/2023] [Indexed: 09/12/2023] Open
Abstract
Aim To examine the impact of concussion on objective measures of school performance. Materials & methods Population-based matched cohort study using linked health and education records of young people aged ≤18 years hospitalized with concussion in New South Wales, Australia, during 2005-2018, and matched comparisons not hospitalized with any injury. Results Young people with concussion had higher risk of not achieving the national minimum standards for literacy and numeracy assessments, ranging from 30% for numeracy to 43% for spelling, and not completing high school, ranging from 29% for year 10 to 77% for year 12, compared with matched peers. Conclusion Young people hospitalized with concussion have impaired school performance compared with uninjured matched peers.
Collapse
Affiliation(s)
- Reidar P Lystad
- Australian Institute of Health Innovation, Macquarie University, Macquarie Park NSW, 2109, Australia
| | - Anne McMaugh
- The Macquarie School of Education, Macquarie University, Macquarie Park NSW, 2109, Australia
| | - Geoffrey Herkes
- Sydney Medical School, University of Sydney, Camperdown NSW, 2006, Australia
- Royal North Shore Hospital, St Leonards NSW, 2065, Australia
| | - Gary Browne
- Sydney Medical School, University of Sydney, Camperdown NSW, 2006, Australia
- The Children's Hospital at Westmead, Westmead NSW, 2145, Australia
| | - Tim Badgery-Parker
- Australian Institute of Health Innovation, Macquarie University, Macquarie Park NSW, 2109, Australia
| | - Cate M Cameron
- Jamieson Trauma Institute, Royal Brisbane & Women's Hospital, Metro North Health, Herston QLD, 4029, Australia
- Centre for Healthcare Transformation, Australian Centre for Health Services Innovation, Queensland University of Technology, Brisbane QLD, 4000, Australia
| | - Rebecca J Mitchell
- Australian Institute of Health Innovation, Macquarie University, Macquarie Park NSW, 2109, Australia
| |
Collapse
|
10
|
Grigg-Damberger MM. Sleep/Wake Disorders After Sports Concussion: Risks, Revelations, and Interventions. J Clin Neurophysiol 2023; 40:417-425. [PMID: 36930200 DOI: 10.1097/wnp.0000000000000931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
SUMMARY Sleep-wake disturbances (SWDs) are among the most prevalent, persistent, and often disregarded sequelae of traumatic brain injury. Identification and treatment of SWDs in patients with traumatic brain injury is important and can complement other efforts to promote maximum functional recovery. SWDs can accentuate other consequences of traumatic brain injury, negatively affect mood, exacerbate pain, heighten irritability, and diminish cognitive abilities and the potential for recovery. The risk for sports injuries increases when athletes are sleep deprived. Sleep deprivation increases risk-taking behaviors, predisposing to injuries. SWDs are an independent risk factor for prolonged recovery after sports-related concussion. SWDs following sports-related concussion have been shown to impede recovery, rehabilitation, and return to preinjury activities.
Collapse
|
11
|
Iverson GL, Castellani RJ, Cassidy JD, Schneider GM, Schneider KJ, Echemendia RJ, Bailes JE, Hayden KA, Koerte IK, Manley GT, McNamee M, Patricios JS, Tator CH, Cantu RC, Dvorak J. Examining later-in-life health risks associated with sport-related concussion and repetitive head impacts: a systematic review of case-control and cohort studies. Br J Sports Med 2023; 57:810-821. [PMID: 37316187 DOI: 10.1136/bjsports-2023-106890] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Concern exists about possible problems with later-in-life brain health, such as cognitive impairment, mental health problems and neurological diseases, in former athletes. We examined the future risk for adverse health effects associated with sport-related concussion, or exposure to repetitive head impacts, in former athletes. DESIGN Systematic review. DATA SOURCES Search of MEDLINE, Embase, Cochrane, CINAHL Plus and SPORTDiscus in October 2019 and updated in March 2022. ELIGIBILITY CRITERIA Studies measuring future risk (cohort studies) or approximating that risk (case-control studies). RESULTS Ten studies of former amateur athletes and 18 studies of former professional athletes were included. No postmortem neuropathology studies or neuroimaging studies met criteria for inclusion. Depression was examined in five studies in former amateur athletes, none identifying an increased risk. Nine studies examined suicidality or suicide as a manner of death, and none found an association with increased risk. Some studies comparing professional athletes with the general population reported associations between sports participation and dementia or amyotrophic lateral sclerosis (ALS) as a cause of death. Most did not control for potential confounding factors (eg, genetic, demographic, health-related or environmental), were ecological in design and had high risk of bias. CONCLUSION Evidence does not support an increased risk of mental health or neurological diseases in former amateur athletes with exposure to repetitive head impacts. Some studies in former professional athletes suggest an increased risk of neurological disorders such as ALS and dementia; these findings need to be confirmed in higher quality studies with better control of confounding factors. PROSPERO REGISTRATION NUMBER CRD42022159486.
Collapse
Affiliation(s)
- Grant L Iverson
- Sports Concussion Program, MassGeneral Hospital for Children, Boston, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Schoen Adams Research Institute at Spaulding Rehabilitation, Charlestown, Massachusetts, USA
- Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Rudolph J Castellani
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - J David Cassidy
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Geoff M Schneider
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kathryn J Schneider
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Ruben J Echemendia
- Department of Psychology, University of Missouri-Kansas City, Kansas City, Missouri, USA
- University Orthopedic Centre, Concussion Care Clinic, State College, Pennsylvania, USA
| | - Julian E Bailes
- Department of Neurosurgery, NorthShore University HealthSystem, Evanston, Illinois, USA
- Department of Neurosurgery, University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | - K Alix Hayden
- Libraries and Cultural Resources, University of Calgary, Calgary, Alberta, Canada
| | - Inga K Koerte
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Mass General Brigham, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Geoffrey T Manley
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
| | - Michael McNamee
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
- School of Sport and Exercise Sciences, Swansea University, Swansea, UK
| | - Jon S Patricios
- Wits Sport and Health (WiSH), School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Charles H Tator
- Department of Surgery and Division of Neurosurgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Canadian Concussion Centre, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Robert C Cantu
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
- Robert C. Cantu Concussion Center, Emerson Hospital, Concord, Massachusetts, USA
| | - Jiri Dvorak
- Schulthess Clinic Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Zhuang X, Bennett L, Nandy R, Cordes D, Bernick C, Ritter A. Longitudinal Changes in Cognitive Functioning and Brain Structure in Professional Boxers and Mixed Martial Artists After They Stop Fighting. Neurology 2022; 99:e2275-e2284. [PMID: 36104283 PMCID: PMC9694836 DOI: 10.1212/wnl.0000000000201158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND AND OBJECTIVES This study compares longitudinal changes in cognitive functioning and brain structures in male fighters who transitioned to an inactive fighting status without any further exposure to repetitive head impacts (RHIs) and fighters remaining active with continual exposure to RHIs. METHODS Participants were recruited from the Professional Fighters Brain Health Study. At time point (TP)1, all fighters were active, with continual exposure to RHIs. At TP2, fighters were considered "transitioned" if they had no sanctioned professional fights and had not been sparring for the past 2 years. Fighters were considered "active" if they continued to train and compete. All fighters underwent cognitive testing and 3T MRI at both TPs. A subset of our fighters (50%) underwent blood sampling for the characterization of neurofilament light (NfL) levels at both TPs. Linear mixed-effect models were applied to investigate the potentially different longitudinal trajectories (interaction effect between group and time) of cognitive function measures, NfL levels, and regional thickness measures (derived from structural MRI) between transitioned and active fighters. RESULTS Forty-five male transitioned fighters (aged 31.69 ± 6.27 years [TP1]; 22 boxers, 22 mixed martial artists, and 1 martial artist) and 45 demographically matched male active fighters (aged 30.24 ± 5.44 years [TP1]; 17 boxers, 27 mixed martial artists, and 1 martial artist) were included in the analyses. Significantly different longitudinal trajectories between transitioned and active fighters were observed in verbal memory (p FDR = 4.73E-04), psychomotor speed (p FDR = 4.73E-04), processing speed (p FDR = 3.90E-02), and NfL levels (p = 0.02). Transitioned fighters demonstrated longitudinally improved cognitive functioning and decreased NfL levels, and active fighters demonstrated declines in cognitive performance and stable NfL levels. Of 68 cortical regions inspected, 54 regions demonstrated a consistently changing trajectory, with thickness measures stabilizing on a group level for transitioned fighters and subtly declining over time for active fighters. DISCUSSION After fighters' cessation of RHI exposure, cognitive function and brain thickness measures may stabilize and blood NfL levels may decline. This study could be a starting point to identify potential predictors of individuals who are at a higher risk of RHI-related long-term neurologic conditions.
Collapse
Affiliation(s)
- Xiaowei Zhuang
- From the Lou Ruvo Center for Brain Health (X.Z., D.C., C.B., A.R.), Cleveland Clinic, Las Vegas; Interdisciplinary Neuroscience PhD Program (X.Z.), University of Nevada, Las Vegas; Pickup Family Neurosciences Institute (L.B.), Hoag Memorial Hospital Presbyterian, Newport Beach, CA; Department of Biostatistics & Epidemiology (R.N.), School of Public Health, University of North Texas Health Science Center, Fort Worth; University of Colorado Boulder (D.C.); and UW Medicine (C.B.), Seattle
| | - Lauren Bennett
- From the Lou Ruvo Center for Brain Health (X.Z., D.C., C.B., A.R.), Cleveland Clinic, Las Vegas; Interdisciplinary Neuroscience PhD Program (X.Z.), University of Nevada, Las Vegas; Pickup Family Neurosciences Institute (L.B.), Hoag Memorial Hospital Presbyterian, Newport Beach, CA; Department of Biostatistics & Epidemiology (R.N.), School of Public Health, University of North Texas Health Science Center, Fort Worth; University of Colorado Boulder (D.C.); and UW Medicine (C.B.), Seattle
| | - Rajesh Nandy
- From the Lou Ruvo Center for Brain Health (X.Z., D.C., C.B., A.R.), Cleveland Clinic, Las Vegas; Interdisciplinary Neuroscience PhD Program (X.Z.), University of Nevada, Las Vegas; Pickup Family Neurosciences Institute (L.B.), Hoag Memorial Hospital Presbyterian, Newport Beach, CA; Department of Biostatistics & Epidemiology (R.N.), School of Public Health, University of North Texas Health Science Center, Fort Worth; University of Colorado Boulder (D.C.); and UW Medicine (C.B.), Seattle
| | - Dietmar Cordes
- From the Lou Ruvo Center for Brain Health (X.Z., D.C., C.B., A.R.), Cleveland Clinic, Las Vegas; Interdisciplinary Neuroscience PhD Program (X.Z.), University of Nevada, Las Vegas; Pickup Family Neurosciences Institute (L.B.), Hoag Memorial Hospital Presbyterian, Newport Beach, CA; Department of Biostatistics & Epidemiology (R.N.), School of Public Health, University of North Texas Health Science Center, Fort Worth; University of Colorado Boulder (D.C.); and UW Medicine (C.B.), Seattle
| | - Charles Bernick
- From the Lou Ruvo Center for Brain Health (X.Z., D.C., C.B., A.R.), Cleveland Clinic, Las Vegas; Interdisciplinary Neuroscience PhD Program (X.Z.), University of Nevada, Las Vegas; Pickup Family Neurosciences Institute (L.B.), Hoag Memorial Hospital Presbyterian, Newport Beach, CA; Department of Biostatistics & Epidemiology (R.N.), School of Public Health, University of North Texas Health Science Center, Fort Worth; University of Colorado Boulder (D.C.); and UW Medicine (C.B.), Seattle
| | - Aaron Ritter
- From the Lou Ruvo Center for Brain Health (X.Z., D.C., C.B., A.R.), Cleveland Clinic, Las Vegas; Interdisciplinary Neuroscience PhD Program (X.Z.), University of Nevada, Las Vegas; Pickup Family Neurosciences Institute (L.B.), Hoag Memorial Hospital Presbyterian, Newport Beach, CA; Department of Biostatistics & Epidemiology (R.N.), School of Public Health, University of North Texas Health Science Center, Fort Worth; University of Colorado Boulder (D.C.); and UW Medicine (C.B.), Seattle.
| |
Collapse
|
13
|
Murray HC, Osterman C, Bell P, Vinnell L, Curtis MA. Neuropathology in chronic traumatic encephalopathy: a systematic review of comparative post-mortem histology literature. Acta Neuropathol Commun 2022; 10:108. [PMID: 35933388 PMCID: PMC9356428 DOI: 10.1186/s40478-022-01413-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/23/2022] [Indexed: 11/10/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with repetitive head trauma and is characterised by the perivascular accumulation of hyperphosphorylated tau (p-tau) in the depths of cortical sulci. CTE can only be diagnosed postmortem and the cellular mechanisms of disease causation remain to be elucidated. Understanding the full scope of the pathological changes currently identified in CTE is necessary to identify areas requiring further research. This systematic review summarises the current literature on CTE pathology from postmortem human tissue histology studies published until 31 December 2021. Publications were included if they quantitively or qualitatively compared postmortem human tissue pathology in CTE to neuropathologically normal cases or other neurodegenerative diseases such as Alzheimer's disease (AD). Pathological entities investigated included p-tau, beta-amyloid, TDP-43, Lewy bodies, astrogliosis, microgliosis, axonopathy, vascular dysfunction, and cell stress. Of these pathologies, p-tau was the most frequently investigated, with limited reports on other pathological features such as vascular dysfunction, astrogliosis, and microgliosis. Consistent increases in p-tau, TDP-43, microgliosis, axonopathy, and cell stress were reported in CTE cases compared to neuropathologically normal cases. However, there was no clear consensus on how these pathologies compared to AD. The CTE cases used for these studies were predominantly from the VA-BU-CLF brain bank, with American football and boxing as the most frequent sources of repetitive head injury exposure. Overall, this systematic review highlights gaps in the literature and proposes three priorities for future research including: 1. The need for studies of CTE cases with more diverse head injury exposure profiles to understand the consistency of pathology changes between different populations. 2. The need for more studies that compare CTE with normal ageing and AD to further clarify the pathological signature of CTE for diagnostic purposes and to understand the disease process. 3. Further research on non-aggregate pathologies in CTE, such as vascular dysfunction and neuroinflammation. These are some of the least investigated features of CTE pathology despite being implicated in the acute phase response following traumatic head injury.
Collapse
Affiliation(s)
- Helen C. Murray
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023 New Zealand
| | - Chelsie Osterman
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023 New Zealand
| | - Paige Bell
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023 New Zealand
| | - Luca Vinnell
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023 New Zealand
| | - Maurice A. Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023 New Zealand
| |
Collapse
|
14
|
Cherry JD, Meng G, Daley S, Xia W, Svirsky S, Alvarez VE, Nicks R, Pothast M, Kelley H, Huber B, Tripodis Y, Alosco ML, Mez J, McKee AC, Stein TD. CCL2 is associated with microglia and macrophage recruitment in chronic traumatic encephalopathy. J Neuroinflammation 2020; 17:370. [PMID: 33278887 PMCID: PMC7718711 DOI: 10.1186/s12974-020-02036-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Neuroinflammation has been implicated in the pathogenesis of chronic traumatic encephalopathy (CTE), a progressive neurodegenerative disease association with exposure to repetitive head impacts (RHI) received though playing contact sports such as American football. Past work has implicated early and sustained activation of microglia as a potential driver of tau pathology within the frontal cortex in CTE. However, the RHI induced signals required to recruit microglia to areas of damage and pathology are unknown. METHODS Postmortem brain tissue was obtained from 261 individuals across multiple brain banks. Comparisons were made using cases with CTE, cases with Alzheimer's disease (AD), and cases with no neurodegenerative disease and lacked exposure to RHI (controls). Recruitment of Iba1+ cells around the CTE perivascular lesion was compared to non-lesion vessels. TMEM119 staining was used to characterize microglia or macrophage involvement. The potent chemoattractant CCL2 was analyzed using frozen tissue from the dorsolateral frontal cortex (DLFC) and the calcarine cortex. Finally, the amounts of hyperphosphorylated tau (pTau) and Aβ42 were compared to CCL2 levels to examine possible mechanistic pathways. RESULTS An increase in Iba1+ cells was found around blood vessels with perivascular tau pathology compared to non-affected vessels in individuals with RHI. TMEM119 staining revealed the majority of the Iba1+ cells were microglia. CCL2 protein levels in the DLFC were found to correlate with greater years of playing American football, the density of Iba1+ cells, the density of CD68+ cells, and increased CTE severity. When comparing across multiple brain regions, CCL2 increases were more pronounced in the DLFC than the calcarine cortex in cases with RHI but not in AD. When examining the individual contribution of pathogenic proteins to CCL2 changes, pTau correlated with CCL2, independent of age at death and Aβ42 in AD and CTE. Although levels of Aβ42 were not correlated with CCL2 in cases with CTE, in males in the AD group, Aβ42 trended toward an inverse relationship with CCL2 suggesting possible gender associations. CONCLUSION Overall, CCL2 is implicated in the pathways recruiting microglia and the development of pTau pathology after exposure to RHI, and may represent a future therapeutic target in CTE.
Collapse
Affiliation(s)
- Jonathan D Cherry
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA.
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA.
- VA Boston Healthcare System, Jamaica Plain, 150 S Huntington Ave, Boston, MA, 02130, USA.
| | - Gaoyuan Meng
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Sarah Daley
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Weiming Xia
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Sarah Svirsky
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Jamaica Plain, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Victor E Alvarez
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Jamaica Plain, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Raymond Nicks
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Jamaica Plain, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Morgan Pothast
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Jamaica Plain, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Hunter Kelley
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Jamaica Plain, 150 S Huntington Ave, Boston, MA, 02130, USA
| | - Bertrand Huber
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Jamaica Plain, 150 S Huntington Ave, Boston, MA, 02130, USA
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Medicine, Boston, MA, USA
| | - Michael L Alosco
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
| | - Jesse Mez
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
| | - Ann C McKee
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Jamaica Plain, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Thor D Stein
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA.
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA.
- VA Boston Healthcare System, Jamaica Plain, 150 S Huntington Ave, Boston, MA, 02130, USA.
- Department of Veterans Affairs Medical Center, Bedford, MA, USA.
| |
Collapse
|