1
|
Thangsan P, Rukkijakan T, Thanaussavadate B, Yiamsawat K, Sirijaraensre J, Gable KP, Chuawong P. Quantitative analysis of steric effects on the regioselectivity of the Larock heteroannulation reaction. Org Biomol Chem 2023; 21:1501-1513. [PMID: 36688538 DOI: 10.1039/d2ob02089k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Alkylphenylacetylene derivatives were synthesized and used as reactants in the Larock heteroannulation reaction to investigate the steric influence on regioselectivity. Large alkyl groups preferentially yielded 2-alkyl-3-phenylindole products, while smaller alkyl groups provided 3-alkyl-2-phenylindole as major products. The logarithm of regioisomeric product ratios exhibited good correlations with various steric parameters. Notably, the Charton values provided the best correlation when excluding the cyclopropyl group. In addition, the Boltzmann-weighted Sterimol parameter (wSterimol) was utilized to generate a good predictive model, indicating the B1 wSterimol as the significant regiochemical determining parameter with no obvious deviation for the cyclopropyl group. Relative atomic distances within the DFT-optimized transition state structures revealed good correlations with the logarithm of regioisomeric ratios. Furthermore, the cyclopropyl adsorption complex indicated electronic contribution, explaining the peculiar behavior of this substituent in the experimental observation.
Collapse
Affiliation(s)
- Poomsith Thangsan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand.
| | - Thanya Rukkijakan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand.
| | - Bongkotrat Thanaussavadate
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand.
| | - Kanyapat Yiamsawat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand.
| | - Jakkapan Sirijaraensre
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Kevin P Gable
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA
| | - Pitak Chuawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
2
|
Yiamsawat K, Gable KP, Chuawong P. Dissecting the Electronic Contribution to the Regioselectivity of the Larock Heteroannulation Reaction in the Oxidative Addition and Carbopalladation Steps. J Org Chem 2022; 87:1218-1229. [PMID: 34989564 DOI: 10.1021/acs.joc.1c02560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Substituted 2-iodoaniline derivatives were prepared and utilized as reactants, along with asymmetric diarylacetylenes, to synthesize a series of 6-substituted-2,3-diarylindole derivatives via the Larock heteroannulation reaction. Electron-donating substituents on the 2-iodoaniline derivatives retarded the reaction, while electron-withdrawing substituents provided a complete conversion to the indole products. In addition, the electronic properties of the substituted 2-iodoaniline reactants displayed no influence toward regioselectivity. On the contrary, the electronic effect from unsymmetrical diarylacetylenes significantly influenced the regiochemical outcome of the reaction. Density functional theory calculations of the oxidative addition and carbopalladation steps revealed the electronic influences of the substituted 2-iodoaniline derivatives toward the overall rate of the reaction. In contrast, the electronic properties of the asymmetric diarylacetylene remained the critical product-determining factor of regioselectivity.
Collapse
Affiliation(s)
- Kanyapat Yiamsawat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand
| | - Kevin P Gable
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, United States
| | - Pitak Chuawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|