1
|
Moeckli B, Wassmer CH, El Hajji S, Kumar R, Rodrigues Ribeiro J, Tabrizian P, Feng H, Schnickel G, Kulkarni AV, Allaire M, Asthana S, Karvellas CJ, Meeberg G, Wei L, Chouik Y, Kumar P, Gartrell RD, Martinez M, Kang E, Sogbe M, Sangro B, Schwacha-Eipper B, Schmiderer A, Krendl FJ, Goossens N, Lacotte S, Compagnon P, Toso C. Determining safe washout period for immune checkpoint inhibitors prior to liver transplantation: An international retrospective cohort study. Hepatology 2025:01515467-990000000-01187. [PMID: 40042053 DOI: 10.1097/hep.0000000000001289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/28/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND AND AIMS Immune checkpoint inhibitors (ICIs) are increasingly used in patients with advanced HCC patients awaiting liver transplantation (LT). However, concerns about the risk of posttransplant rejection persist. APPROACH AND RESULTS We conducted an international retrospective cohort study including 119 HCC patients who received ICIs prior to LT. We analyzed the incidence of allograft rejection, graft loss, and posttransplant recurrence with a particular focus on the washout period between the last ICI dose and LT. In this study, 24 of the 119 (20.2%) patients experienced allograft rejection with a median time to rejection of 9 days (IQR 6-10) post-LT. A linear relationship was observed between shorter washout periods and higher rejection risk. Washout periods <30 days (OR: 21.3, 95% CI: 5.93-103, p< 0.001) and between 30 and 50 days (OR: 9.48, 95% CI 2.47-46.8, p =0.002) were significantly associated with higher rejection rates in the univariate analysis compared to the washout period above 50 days. Graft loss as a result of rejection occurred in 6 patients (25%) with rejection. No factors related to grafts were associated with rejection. A longer washout period was not associated with a lower recurrence-free survival posttransplantation at 36 months (71% vs. 67%, p =0.71). CONCLUSIONS Our findings suggest that a washout period longer than 50 days for ICIs before LT appears to be safe with respect to rejection risk. While these results may help guide clinical decision-making, future prospective studies are essential to establish definitive guidelines.
Collapse
Affiliation(s)
- Beat Moeckli
- Faculty of Medicine, Department of Surgery, University of Geneva, Switzerland
| | | | - Sofia El Hajji
- Faculty of Medicine, Department of Surgery, University of Geneva, Switzerland
| | - Rohan Kumar
- Faculty of Medicine, Department of Surgery, University of Geneva, Switzerland
| | | | - Parissa Tabrizian
- Recanati/Miller Institute, Mount Sinai Medical Center, New York, USA
| | - Hao Feng
- Department of Liver Surgery, Renji Hospital, Shanghai, China
| | - Gabriel Schnickel
- Division of Transplant and Hepatobiliary Surgery, Department of Surgery, University of California San Diego, San Diego, California, USA
| | | | - Manon Allaire
- AP-HP Sorbonne Université, Hôpital Universitaire Pitié-Salpêtrière, Service d'Hépato-gastroentérologie, Paris, France
| | - Sonal Asthana
- Department of Hepatobiliary Surgery and Transplantation, Aster Hospitals, Bangalore, India
| | - Constantine J Karvellas
- Faculty of Medicine and Dentistry, College of Health Sciences and School of Public Health, University of Alberta
| | - Glenda Meeberg
- Faculty of Medicine and Dentistry, College of Health Sciences and School of Public Health, University of Alberta
| | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Wuhan, China
| | - Yasmina Chouik
- Department of Hepatology, Croix-Rousse Hospital, Lyon, France
| | - Pramod Kumar
- Department of Hepatology, BGS Gleneagles Global Hospital, Bengaluru, India
| | - Robyn D Gartrell
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, USA
- Division of Pediatric Oncology, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, USA
| | - Mercedes Martinez
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, USA
| | - Elise Kang
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, USA
| | - Miguel Sogbe
- Hepatology Unit, Department of Internal Medicine, Clinica Universidad de Navarra and CIBEREHD, Pamplona, Spain
| | - Bruno Sangro
- Hepatology Unit, Department of Internal Medicine, Clinica Universidad de Navarra and CIBEREHD, Pamplona, Spain
| | | | - Andreas Schmiderer
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix J Krendl
- Department of Visceral, Transplant and Thoracic Surgery, Center for Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Nicolas Goossens
- Faculty of Medicine, Department of Surgery, University of Geneva, Switzerland
| | - Stephanie Lacotte
- Faculty of Medicine, Department of Surgery, University of Geneva, Switzerland
| | - Philippe Compagnon
- Faculty of Medicine, Department of Surgery, University of Geneva, Switzerland
| | - Christian Toso
- Faculty of Medicine, Department of Surgery, University of Geneva, Switzerland
| |
Collapse
|
2
|
Duan J, Jiang R, Shen H, Xu X, Sun D. Analysis of nitrogen metabolism-related gene expression in hepatocellular carcinoma to establish relevant indicators for prediction of prognosis and guidance of immunotherapy. Comput Methods Biomech Biomed Engin 2024:1-17. [PMID: 39673385 DOI: 10.1080/10255842.2024.2438922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/14/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND The prognosis of cancers is strongly connected with nitrogen metabolism (NM), which plays a critical role in the microenvironment and growth of tumors. It is unsubstantiated, however, how important NM-related genes are for the prognosis of hepatocellular carcinoma (HCC). METHODS Using publicly available data, we examined potential mechanisms of NM-related genes in HCC, created a predictive model, and assessed immune infiltration and medication sensitivity. RESULTS A prognostic model, which included 12 NM genes (COLQ, GNE, ISCU, MSRA, SARS2, SPHK1, CBS, GOT2, CHST1, EXTL2, GCLM, YARS1), was constructed based on regression analysis. The robustness of the model was validated using multiple methods. The high-risk (HR) and low-risk (LR) groups had varying degrees of immune infiltration, according to an immunology-related study. Of these, B cells and Type_II_IFN_Response were greatly infiltrated in the LR group, whereas aCDs, Macrophages, and Treg were heavily infiltrated in the HR group (p < 0.05). Because of higher immunophenoscore, the low-risk group could benefit from immunotherapy more. Drug sensitivity predictions indicated that people with high CBS expression and low GOT2 and ISCU expression may benefit more from treatment with SCH-772984, Pimasertib, Cobimetinib (isomer1), TAK-733, LY-3214996, ARRY-162, Cladribine, Fludarabine, and Hydroxyurea. CONCLUSION This work created a 12-gene signature based on NM, preliminary investigated immune infiltration in two risk categories, and discovered some possible anti-tumor medications. To sum up, our study findings offer fresh perspectives on the roles played by NM-associated genes in HCC development, prognosis, immunological response, and medication screening.
Collapse
Affiliation(s)
- Jianwen Duan
- Department of Hepatobiliary Surgery, Quzhou Hospital Affiliated of Wenzhou Medical University (Quzhou People's Hospital), Quzhou, Zhejiang, China
| | - Renya Jiang
- Department of Hepatobiliary Surgery, Quzhou Hospital Affiliated of Wenzhou Medical University (Quzhou People's Hospital), Quzhou, Zhejiang, China
| | - Hongbo Shen
- Department of Hepatobiliary Surgery, Quzhou Hospital Affiliated of Wenzhou Medical University (Quzhou People's Hospital), Quzhou, Zhejiang, China
| | - Xiaofang Xu
- Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Da Sun
- Department of Hepatobiliary Surgery, Quzhou Hospital Affiliated of Wenzhou Medical University (Quzhou People's Hospital), Quzhou, Zhejiang, China
| |
Collapse
|
3
|
Yang M, Lin Z, Zhuang L, Pan L, Wang R, Chen H, Hu Z, Shen W, Zhuo J, Yang X, Li H, He C, Yang Z, Xie Q, Dong S, Chen J, Su R, Wei X, Yin J, Zheng S, Lu D, Xu X. An inflammatory liquid fingerprint predicting tumor recurrence after liver transplantation for hepatocellular carcinoma. MedComm (Beijing) 2024; 5:e678. [PMID: 39188937 PMCID: PMC11345533 DOI: 10.1002/mco2.678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024] Open
Abstract
Tumor recurrence is a life-threatening complication after liver transplantation (LT) for hepatocellular carcinoma (HCC). Precise recurrence risk stratification before transplantation is essential for the management of recipients. Here, we aimed to establish an inflammation-related prediction model for posttransplant HCC recurrence based on pretransplant peripheral cytokine profiling. Two hundred and ninety-three patients who underwent LT in two independent medical centers were enrolled, and their pretransplant plasma samples were sent for cytokine profiling. We identified four independent risk factors, including alpha-fetoprotein, systemic immune-inflammation index, interleukin 6, and osteocalcin in the training cohort (n = 190) by COX regression analysis. A prediction model named inflammatory fingerprint (IFP) was established based on the above factors. The IFP effectively predicted posttransplant recurrence (area under the receiver operating characteristic curve [AUROC]: 0.792, C-index: 0.736). The high IFP group recipients had significantly worse 3-year recurrence-free survival rates (37.9 vs. 86.9%, p < 0.001). Simultaneous T-cell profiling revealed that recipients with high IFP were characterized by impaired T cell function. The IFP also performed well in the validation cohort (n = 103, AUROC: 0.807, C-index: 0.681). In conclusion, the IFP efficiently predicted posttransplant HCC recurrence and helped to refine pretransplant risk stratification. Impaired T cell function might be the intrinsic mechanism for the high recurrence risk of recipients in the high IFP group.
Collapse
Affiliation(s)
- Modan Yang
- Department of Breast SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- NHC Key Laboratory of Combined Multi‐Organ TransplantationZhejiang UniversityHangzhouChina
| | - Zuyuan Lin
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceAffiliated Hangzhou First People's Hospital, School of Medicine, Westlake UniversityHangzhouChina
- Zhejiang University School of MedicineHangzhouChina
| | - Li Zhuang
- Department of Hepatobiliary and Pancreatic SurgeryShulan (Hangzhou) HospitalHangzhouChina
| | - Linhui Pan
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhouChina
| | - Rui Wang
- Zhejiang University School of MedicineHangzhouChina
| | - Hao Chen
- Zhejiang University School of MedicineHangzhouChina
| | - Zhihang Hu
- Zhejiang University School of MedicineHangzhouChina
| | - Wei Shen
- Zhejiang University School of MedicineHangzhouChina
| | - Jianyong Zhuo
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhouChina
| | - Xinyu Yang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceAffiliated Hangzhou First People's Hospital, School of Medicine, Westlake UniversityHangzhouChina
- Zhejiang University School of MedicineHangzhouChina
| | - Huigang Li
- Zhejiang University School of MedicineHangzhouChina
| | - Chiyu He
- Zhejiang University School of MedicineHangzhouChina
| | - Zhe Yang
- Department of Hepatobiliary and Pancreatic SurgeryShulan (Hangzhou) HospitalHangzhouChina
| | - Qinfen Xie
- Department of Hepatobiliary and Pancreatic SurgeryShulan (Hangzhou) HospitalHangzhouChina
| | - Siyi Dong
- National Center for Healthcare Quality Management in Liver TransplantHangzhouChina
| | - Junli Chen
- National Center for Healthcare Quality Management in Liver TransplantHangzhouChina
| | - Renyi Su
- Zhejiang University School of MedicineHangzhouChina
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceAffiliated Hangzhou First People's Hospital, School of Medicine, Westlake UniversityHangzhouChina
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhouChina
| | - Junjie Yin
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhouChina
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi‐Organ TransplantationZhejiang UniversityHangzhouChina
- Department of Hepatobiliary and Pancreatic SurgeryShulan (Hangzhou) HospitalHangzhouChina
- National Center for Healthcare Quality Management in Liver TransplantHangzhouChina
| | - Di Lu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital)School of Clinical MedicineHangzhou Medical CollegeHangzhouChina
| | - Xiao Xu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital)School of Clinical MedicineHangzhou Medical CollegeHangzhouChina
- Institute of Translational MedicineZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
4
|
Yang B, Huang G, Chen D, Wei L, Zhao Y, Chen G, Li J, Wang L, Xie B, Jiang W, Chen Z. A nomogram incorporating Psoas muscle index for predicting tumor recurrence after liver transplantation: A retrospective study in an Eastern Asian population. Heliyon 2024; 10:e34019. [PMID: 39262955 PMCID: PMC11388506 DOI: 10.1016/j.heliyon.2024.e34019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 09/13/2024] Open
Abstract
Background and aims Tumor recurrence significantly affects the prognostic outcomes for liver cancer patients following liver transplantation. However, existing predictive models often neglect the inclusion of body composition indicators. Hence, this research aimed to investigate the significance of the psoas muscle index (PMI) in evaluating the post-transplant prognosis of liver cancer. Methods A retrospective analysis was conducted on liver cancer patients who underwent liver transplantation surgery. Imaging analysis was performed using CT data to calculate PMI based on the left and right psoas muscle areas. Subsequently, the patients were categorized into PMI-Low and PMI-High groups using the established cut-off values. Univariate and multivariate analyses were performed using Cox proportional hazards regression to assess the correlation between PMI and clinical outcomes, and a nomogram was constructed accordingly. Results Among the 225 patients included in the analysis, the PMI-High group exhibited significantly improved overall survival (P < 0.001) and disease-free survival (DFS, P < 0.001) rates compared to the PMI-Low group. PMI exhibited a positive correlation with body mass index (R = 0.25, P < 0.001), but no significant correlations were observed. In the multivariate analysis, PMI (HR = 4.596, P < 0.001), MELD score (HR = 1.591, P = 0.038), and Hangzhou criteria (HR = 2.557, P < 0.001) emerged as significant predictors of DFS. The constructed nomogram, incorporating these predictors, demonstrated outstanding predictive performance. Decision curve analysis revealed the superiority of the nomogram over conventional methods. Conclusions PMI serves as a valuable prognostic factor for tumor recurrence in liver cancer patients after liver transplantation. The established nomogram is pivotal in delivering personalized predictions of DFS.
Collapse
Affiliation(s)
- Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, 430030, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Guobin Huang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, 430030, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Dong Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, 430030, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, 430030, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, 430030, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Gen Chen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Junbo Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, 430030, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Lu Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, 430030, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Bowen Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, 430030, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Wei Jiang
- Department of Gastrointestinal Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, 430030, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, China
| |
Collapse
|
5
|
Pang L, Xu LB, Wu WR. Downstaging of Hepatocellular Carcinoma Before Liver Transplantation: Current Advances in Selection Criteria and Therapeutic Options. Transplant Proc 2024; 56:1396-1405. [PMID: 39089899 DOI: 10.1016/j.transproceed.2024.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/07/2024] [Indexed: 08/04/2024]
Abstract
Liver transplantation (LT) is an ideal therapeutic option for selected patients with hepatocellular carcinoma (HCC). The selection criteria of HCC for LT have evolved in recent decades. Downstaging therapy is a promising strategy for patients with tumor burden beyond transplant criteria to increase the chance of receiving LT and improve posttransplant survival. Downstaging therapy is also a selection tool that refines the conventional selection criteria based on tumor morphology. Recently, the success of systemic treatment, including immune checkpoint inhibitors, antiangiogenic tyrosine kinase inhibitors, and VEGF inhibitors, in advanced HCC has prompted the discussion regarding the role of systemic therapies for HCC downstaging before transplantation. In this review, we aimed to summarize the current advances in selection criteria and therapeutic options of downstaging therapy for HCC before LT.
Collapse
Affiliation(s)
- Li Pang
- Liver Transplantation Center & Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lei-Bo Xu
- Liver Transplantation Center & Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wen-Rui Wu
- Liver Transplantation Center & Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
6
|
Gong L, Wang W, Yu F, Deng Z, Luo N, Zhang X, Chen J, Peng J. Caffeic acid phenethyl ester derivative exerts remarkable anti-hepatocellular carcinoma effect, non-inferior to sorafenib, in vivo analysis. Sci Rep 2024; 14:14546. [PMID: 38914695 PMCID: PMC11196574 DOI: 10.1038/s41598-024-65496-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024] Open
Abstract
Caffeic acid phenethyl ester (CAPE) and its derivatives exhibit considerable effects against hepatocellular carcinoma (HCC), with unquestioned safety. Here we investigated CAPE derivative 1' (CAPE 1') monotherapy to HCC, compared with sorafenib. HCC Bel-7402 cells were treated with CAPE 1', the IC50 was detected using CCK-8 analysis, and acute toxicity testing (5 g/kg) was performed to evaluate safety. In vivo, tumor growth after CAPE 1' treatment was evaluated using an subcutaneous tumor xenograft model. Five groups were examined, with group 1 given vehicle solution, groups 2, 3, and 4 given CAPE 1' (20, 50, and 100 mg/kg/day, respectively), and group 5 given sorafenib (30 mg/kg/day). Tumor volume growth and tumor volume-to-weight ratio were calculated and statistically analyzed. An estimated IC50 was 5.6 µM. Acute toxicity tests revealed no animal death or visible adverse effects with dosage up to 5 g/kg. Compared to negative controls, CAPE 1' treatment led to significantly slower increases of tumor volume and tumor volume-to-weight. CAPE 1' and sorafenib exerted similar inhibitory effects on HCC tumors. CAPE 1' was non-inferior to sorafenib for HCC treatment, both in vitro and in vivo. It has great potential as a promising drug for HCC, based on effectiveness and safety profile.
Collapse
Affiliation(s)
- Lei Gong
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Wenzhen Wang
- Department of Urology, Second Affiliated Hospital, Shandong University, Jinan, 250021, People's Republic of China
| | - Fei Yu
- Center of Hepatopancreatobiliary Diseases, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, People's Republic of China
| | - Zenghua Deng
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Nan Luo
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Xinjing Zhang
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Jianfen Chen
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Jirun Peng
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China.
| |
Collapse
|
7
|
Lin Z, Ji X, Tian N, Gan Y, Ke L. APOB is a potential prognostic biomarker in hepatocellular carcinoma. Discov Oncol 2024; 15:28. [PMID: 38310202 PMCID: PMC10838261 DOI: 10.1007/s12672-024-00877-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is significantly associated with adverse prognostic outcomes. The development and progression of different types of human tumors are significantly influenced by APOB. Nevertheless, the significance and pathomechanisms of APOB in HCC have not been conclusively determined. We assessed APOB expression levels in HCC using three publicly available databases of TIMER2.0, UALCAN and Human Protein Atlas. To identify the biological function of APOB, we conducted enrichment analysis via LinkedOmics. Moreover, UALCAN was employed to assess the relationship between APOB expression and clinicopathological features among HCC patients. Additionally, the Kaplan-Meier plotter was utilized to investigate the prognostic relevance of APOB in HCC. To explore potential regulatory ncRNAs that could bind to APOB, we utilized StarBase and GEPIA. Furthermore, the correlation between APOB expression and immune cell infiltration, as well as immune checkpoint genes, was investigated using Spearman's correlation analysis in TISIDB, GEPIA, and TIMER2.0. The findings of our investigation showed a notable decrease in the expression levels of APOB among individuals diagnosed with HCC. Moreover, a noteworthy correlation was observed between the expression of APOB and immune checkpoint genes, alongside the occurrence of immune cell infiltration. The levels of APOB expression in HCC tissues also showed correlations with various clinicopathological features. According to Cox regression analysis, decreased APOB expression emerged as a potential autonomous predictor for OS, RFS, DSS, and PFS among HCC patients. Furthermore, we identified six potential pathways associated with non-coding RNA (ncRNA) as the most promising pathway for APOB in HCC. Our results illuminate the possible involvement of APOB in HCC and offer understanding into its governing mechanisms and medical importance.
Collapse
Affiliation(s)
- Zhifeng Lin
- Department of Medical Record; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Xiaohui Ji
- Department of Obstetrics and Gynaecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Nana Tian
- Department of Medical Record, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Gan
- Department of Medical Record, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Ke
- Department of Medical Record; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Sha M, Chen C, Shen C, Jeong S, Sun HY, Xu N, Hang HL, Cao J, Tong Y. Clinical analysis of deceased donor liver transplantation in the treatment of hepatocellular carcinoma with segmental portal vein tumor thrombus: A long-term real-world study. Front Oncol 2022; 12:971532. [PMID: 36203429 PMCID: PMC9530398 DOI: 10.3389/fonc.2022.971532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) patients with portal vein tumor thrombus (PVTT) have conventionally been regarded as a contraindication for liver transplantation (LT). However, the outcomes of deceased donor liver transplantation (DDLT) in patients with segmental PVTT remain unknown. The aim of this study is to evaluate the feasibility and effectiveness of DDLT in the treatment of HCC with segmental PVTT. Methods We retrospectively analyzed 254 patients who underwent DDLT for HCC in our institution from January 2015 to November 2019. To assess the risks of PVTT, various clinicopathological variables were evaluated. Overall (OS) and recurrence-free survival (RFS) analyses based on different PVTT types were performed in HCC patients. Results Of the 254 patients, a total of 46 patients had PVTT, of whom 35 had lobar PVTT and 11 had segmental PVTT in second-order branches or below. Alpha-fetoprotein (AFP) level, tumor maximal diameter, histological grade, micro-vascular invasion (MVI), RFS, and OS were significantly different between the control and PVTT groups. Lobar PVTT was associated with unfavorable 5-year RFS and OS compared with MVI group (28.6% and 17.1%, respectively). Instead, no significant difference was observed between the segmental PVTT and MVI group in terms of 5-year RFS and OS (RFS: 36.4% vs. 40.4%, p=0.667; OS: 54.5% vs. 45.1%, p=0.395). Further subgroup analysis showed segmental PVTT with AFP levels ≤100 ng/ml presented significantly favorable RFS and OS rates than those with AFP level >100 ng/ml (p=0.050 and 0.035, respectively). Conclusions In summary, lobar PVTT remains a contraindication to DDLT. HCC patients with segmental PVTT and AFP level ≤100 ng/ml may be acceptable candidates for DDLT.
Collapse
Affiliation(s)
- Meng Sha
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Chen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chuan Shen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Seogsong Jeong
- Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, South Korea
- Institute of Basic Medical Sciences, School of Medicine, CHA University, Seongnam, South Korea
- Institute for Biomedical Informatics, School of Medicine, CHA University, Seongnam, South Korea
| | - Han-yong Sun
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ning Xu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hua-lian Hang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Cao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Tong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Ying Tong,
| |
Collapse
|
9
|
Lin Z, Huang X, Ji X, Tian N, Gan Y, Ke L. Analysis of multiple databases identifies crucial genes correlated with prognosis of hepatocellular carcinoma. Sci Rep 2022; 12:9002. [PMID: 35637248 PMCID: PMC9151754 DOI: 10.1038/s41598-022-13159-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/20/2022] [Indexed: 11/27/2022] Open
Abstract
Despite advancements made in the therapeutic strategies on hepatocellular carcinoma (HCC), the survival rate of HCC patient is not satisfactory enough. Therefore, there is an urgent need for the valuable prognostic biomarkers in HCC therapy. In this study, we aimed to screen hub genes correlated with prognosis of HCC via multiple databases. 117 HCC-related genes were obtained from the intersection of the four databases. We subsequently identify 10 hub genes (JUN, IL10, CD34, MTOR, PTGS2, PTPRC, SELE, CSF1, APOB, MUC1) from PPI network by Cytoscape software analysis. Significant differential expression of hub genes between HCC tissues and adjacent tissues were observed in UALCAN, HCCDB and HPA databases. These hub genes were significantly associated with immune cell infiltrations and immune checkpoints. The hub genes were correlated with clinical parameters and survival probability of HCC patients. 147 potential targeted therapeutic drugs for HCC were identified through the DGIdb database. These hub genes could be used as novel prognostic biomarkers for HCC therapy.
Collapse
Affiliation(s)
- Zhifeng Lin
- Guangdong Province Key Laboratory of Major Obstetric Diseases, Department of Medical Record, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Xuqiong Huang
- Medical Administration Division, Affiliated Huadu Hospital, Southern Medical University (People's Hospiatl of Huadu District), Guangzhou, 510800, China
| | - Xiaohui Ji
- Department of Obstetrics and Gynaecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Nana Tian
- Department of Medical Record, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yu Gan
- Department of Medical Record, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Li Ke
- Guangdong Province Key Laboratory of Major Obstetric Diseases, Department of Medical Record, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|