1
|
Muendlein A, Leiherer A, Drexel H. Evaluation of circulating glypican 4 as a novel biomarker in disease - A comprehensive review. J Mol Med (Berl) 2025; 103:355-364. [PMID: 39961831 DOI: 10.1007/s00109-025-02520-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/18/2024] [Accepted: 01/18/2025] [Indexed: 04/17/2025]
Abstract
Glypican 4 (GPC4), a member of the cell surface heparan sulfate proteoglycan family, plays a crucial role in regulating various cell signaling and developmental processes. Its ability to be released from the cell surface into the bloodstream through shedding makes it a promising blood-based biomarker in health and disease. In this context, circulating GPC4 has been initially proposed as an insulin-sensitizing adipokine being linked with various conditions of insulin resistance. In addition, serum levels of GPC4 can indicate glycocalyx shedding and associated pathophysiological states, such as systemic inflammation. Particularly in a morbid and elderly population, increased GPC4 concentrations may reflect general organ dysfunction and an advanced state of multimorbidity, showing a strong association with the prognosis of severe conditions such as heart failure or advanced cancer. This comprehensive review is the first to summarize the existing scientific knowledge on the role of circulating GPC4 as a novel diagnostic and prognostic biomarker across different pathologic conditions. We also discuss in detail the putative underlying pathophysiological mechanisms behind these findings.
Collapse
Affiliation(s)
- A Muendlein
- Vorarlberg Institute for Vascular Investigation & Treatment, (VIVIT), Feldkirch, Austria.
| | - A Leiherer
- Vorarlberg Institute for Vascular Investigation & Treatment, (VIVIT), Feldkirch, Austria
- Medical Central Laboratories, Feldkirch, Austria
- Private University in the Principality of Liechtenstein (UFL), Triesen, Principality of Liechtenstein
| | - H Drexel
- Vorarlberg Institute for Vascular Investigation & Treatment, (VIVIT), Feldkirch, Austria
- Private University in the Principality of Liechtenstein (UFL), Triesen, Principality of Liechtenstein
- Academic Teaching Hospital Feldkirch, Feldkirch, Austria
- Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
2
|
Favaloro EJ. New STH 2023 Impact Factor, Most Highly Cited Papers, and Other Journal Metrics. Semin Thromb Hemost 2024; 50:1058-1066. [PMID: 39029517 DOI: 10.1055/s-0044-1788566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Affiliation(s)
- Emmanuel J Favaloro
- Department of Haematology, Centres for Thrombosis and Haemostasis, Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, Australia
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
3
|
Tatenhorst L, Maass F, Paul H, Dambeck V, Bähr M, Dono R, Lingor P. Glypican-4 serum levels are associated with cognitive dysfunction and vascular risk factors in Parkinson's disease. Sci Rep 2024; 14:5005. [PMID: 38424123 PMCID: PMC10904781 DOI: 10.1038/s41598-024-54800-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Glypicans are biomarkers for various pathologies, including cardiovascular disease, cancer and diabetes. Increasing evidence suggests that glypicans also play a role in the context of neurodegenerative disorders. Initially described as supporting functionality of synapses via glutamate receptors during CNS development, Glypican 4 (GPC-4) also plays a role in the context of dementia via tau hyperphosphorylation in Alzheimer's disease, which is also a co-pathology in Parkinson's disease dementia. However, clinical evidence of circulating GPC-4 in Parkinson's disease (PD) is missing so far. We therefore investigated GPC-4 in biofluids of PD patients. We analyzed GPC-4 levels in cerebrospinal fluid (CSF, n = 140), serum (n = 80), and tear fluid samples (n = 70) of PD patients and control subjects in a similar age range by ELISA (serum, CSF) and western blot (tear fluid). Expression of circulating GPC-4 was confirmed in all three biofluids, with highest levels in serum. Interestingly, GPC-4 levels were age-dependent, and multiple regression analysis revealed a significant association between GPC-4 serum levels and MoCA score, suggesting an involvement of GPC-4 in PD-associated cognitive decline. Furthermore, stratification of PD patients for vascular risk factors revealed a significant increase of GPC-4 serum levels in PD patients with vascular risk factors. Our results suggest GPC-4 as a clinical biomarker for vascular risk stratification in order to identify PD patients with increased risk of developing dementia.
Collapse
Affiliation(s)
- Lars Tatenhorst
- Department of Neurology, University Medical Center Göttingen, 37099, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Fabian Maass
- Department of Neurology, University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Hannah Paul
- Department of Neurology, University Medical Center Göttingen, 37099, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Vivian Dambeck
- Department of Neurology, University Medical Center Göttingen, 37099, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, 37099, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Rosanna Dono
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, NeuroMarseille, 13288, Marseille, France
| | - Paul Lingor
- Department of Neurology, University Medical Center Göttingen, 37099, Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37099, Göttingen, Germany.
- Clinical Department of Neurology, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, 81679, Munich, Germany.
| |
Collapse
|
4
|
Wang C, Han Y, Li X. Glypican-1 may be a plasma biomarker for predicting the rupture of small intracranial aneurysms. J Proteomics 2024; 293:105060. [PMID: 38154549 DOI: 10.1016/j.jprot.2023.105060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/30/2023]
Abstract
Currently, there are no effective methods for predicting the rupture of asymptomatic small intracranial aneurysms (IA) (<7 mm). In this study the aim was to identify early warning biomarkers in peripheral plasma for predicting IA rupture. Four experimental groups were included: ruptured intracranial aneurysm (RIA), unruptured intracranial aneurysm (UIA), traumatic subarachnoid hemorrhage control (tSAHC), and healthy control (HC) groups. Plasma proteomics of these four groups were detected using iTRAQ combined LC-MS/MS. Differentially expressed proteins (DEPs) were identified in RIA, UIA, tSAHC compared with HC. Target proteins associated with aneurysm rupture were obtained by comparing the DEPs of the RIA and UIA groups after filtering out the DEPs of the tSAHC group. The plasma concentrations of target proteins were validated using enzyme-linked immunosorbent assay (ELISA). The iTRAQ analysis showed a significant increase in plasma GPC1 concentration in the RIA group compared to the UIA group, which was further validated among the IA patients. Logistic regression analysis identified GPC1 as an independent risk factor for predicting aneurysm rupture. The ROC curve indicated that the GPC1 plasma cut-off value for predicting aneurysms rupture was 4.99 ng/ml. GPC1 may be an early warning biomarker for predicting the rupture of small intracranial aneurysms. SIGNIFICANCE: The current management approach for asymptomatic small intracranial aneurysms (<7 mm) is limited to conservative observation and surgical intervention. However, the decision-making process regarding these options poses a dilemma due to weighing their respective advantages and disadvantages. Currently, there is a lack of effective diagnostic methods to predict the rupture of small aneurysms. Therefore, our aim is to identify early warning biomarkers in peripheral plasma that can serve as quantitative detection markers for predicting intracranial aneurysm rupture. In this study, four experimental populations were established: small ruptured intracranial aneurysm (sRIA) group, small unruptured intracranial aneurysm (sUIA) group, traumatic subarachnoid hemorrhage control (tSAHC) group, and healthy control (HC) group. The tSAH group was the control group of spontaneous subarachnoid hemorrhage caused by ruptured aneurysm. Compared with patients with UIA, aneurysm tissue and plasma GPC1 in patients with RIA is significantly higher, and GPC1 may be an early warning biomarker for predicting the rupture of intracranial small aneurysms.
Collapse
Affiliation(s)
- Chenchen Wang
- Institute of Neurology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Yuwei Han
- Institute of Neurology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Xiaoming Li
- Institute of Neurology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China.
| |
Collapse
|
5
|
Miguez PA, Bash E, Musskopf ML, Tuin SA, Rivera-Concepcion A, Chapple ILC, Liu J. Control of tissue homeostasis by the extracellular matrix: Synthetic heparan sulfate as a promising therapeutic for periodontal health and bone regeneration. Periodontol 2000 2024; 94:510-531. [PMID: 37614159 PMCID: PMC10891305 DOI: 10.1111/prd.12515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/25/2023]
Abstract
Proteoglycans are core proteins associated with carbohydrate/sugar moieties that are highly variable in disaccharide composition, which dictates their function. These carbohydrates are named glycosaminoglycans, and they can be attached to proteoglycans or found free in tissues or on cell surfaces. Glycosaminoglycans such as hyaluronan, chondroitin sulfate, dermatan sulfate, keratan sulfate, and heparin/heparan sulfate have multiple functions including involvement in inflammation, immunity and connective tissue structure, and integrity. Heparan sulfate is a highly sulfated polysaccharide that is abundant in the periodontium including alveolar bone. Recent evidence supports the contention that heparan sulfate is an important player in modulating interactions between damage associated molecular patterns and inflammatory receptors expressed by various cell types. The structure of heparan sulfate is reported to dictate its function, thus, the utilization of a homogenous and structurally defined heparan sulfate polysaccharide for modulation of cell function offers therapeutic potential. Recently, a chemoenzymatic approach was developed to allow production of many structurally defined heparan sulfate carbohydrates. These oligosaccharides have been studied in various pathological inflammatory conditions to better understand their function and their potential application in promoting tissue homeostasis. We have observed that specific size and sulfation patterns can modulate inflammation and promote tissue maintenance including an anabolic effect in alveolar bone. Thus, new evidence provides a strong impetus to explore heparan sulfate as a potential novel therapeutic agent to treat periodontitis, support alveolar bone maintenance, and promote bone formation.
Collapse
Affiliation(s)
- PA Miguez
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - E Bash
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - ML Musskopf
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - SA Tuin
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - A Rivera-Concepcion
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - ILC Chapple
- Periodontal Research Group, School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, Birmingham’s NIHR BRC in Inflammation Research, University of Birmingham and Birmingham Community Health Foundation Trust, Birmingham UK Iain Chapple
| | - J Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Muendlein A, Heinzle C, Leiherer A, Brandtner EM, Geiger K, Gaenger S, Fraunberger P, Mader A, Saely CH, Drexel H. Circulating glypican-4 is a new predictor of all-cause mortality in patients with heart failure. Clin Biochem 2023; 121-122:110675. [PMID: 37844682 DOI: 10.1016/j.clinbiochem.2023.110675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Heart failure confers a high burden of morbidity and mortality. However, risk prediction in heart failure patients still is limited. Blood-based biomarkers hold promise to improve clinical risk assessment. Recently we have identified circulating glypican-4 (GPC4) as a significant predictor of mortality in coronary angiography patients and patients with peripheral artery disease. The impact of serum GPC4 on mortality in patients with heart failure is unknown and is addressed in this prospective cohort study. METHODS We prospectively recorded all-cause mortality in 288 patients with heart failure. GPC4 levels were measured using an enzyme-linked immunosorbent assay at baseline. RESULTS During the 24-month follow-up period, 28.1% (n = 81) of the patients died. Serum GPC4 significantly predicted all-cause mortality (hazard ratio (HR) per doublingof GPC4 = 3.57 [2.31-5.53]; P < 0.001). Subgroup analysis showed that GPC4 was significantly associated with all-cause mortality in patients with reduced ejection fraction (HR per doubling = 3.25 [1.75-6.04]; P < 0.001) as well as in those with preserved ejection fraction (HR per doubling = 3.07 [1.22-7.70]; P = 0.017). The association between serum GPC4 and all-cause mortality remained significant in multivariable Cox regression analysis correcting for traditional risk factors (P = 0.035). Results from C-statistics indicated an additional prognostic value of GPC4 relative to NT-proBNP for the prediction of two-year all-cause mortality (P = 0.030). CONCLUSION Circulating GPC4 independently predicts all-cause mortality in patients with heart failure.
Collapse
Affiliation(s)
- Axel Muendlein
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria.
| | - Christine Heinzle
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria; Medical Central Laboratories, Feldkirch, Austria
| | - Andreas Leiherer
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria; Medical Central Laboratories, Feldkirch, Austria; Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Eva Maria Brandtner
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
| | - Kathrin Geiger
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria; Medical Central Laboratories, Feldkirch, Austria
| | - Stella Gaenger
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
| | | | - Arthur Mader
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria; Department of Internal Medicine I, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Christoph H Saely
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria; Private University in the Principality of Liechtenstein, Triesen, Liechtenstein; Department of Internal Medicine I, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria; Private University in the Principality of Liechtenstein, Triesen, Liechtenstein; Vorarlberger Landeskrankenhausbetriebsgesellschaft, Feldkirch, Austria; Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
7
|
Nieddu G, Formato M, Lepedda AJ. Searching for Atherosclerosis Biomarkers by Proteomics: A Focus on Lesion Pathogenesis and Vulnerability. Int J Mol Sci 2023; 24:15175. [PMID: 37894856 PMCID: PMC10607641 DOI: 10.3390/ijms242015175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Plaque rupture and thrombosis are the most important clinical complications in the pathogenesis of stroke, coronary arteries, and peripheral vascular diseases. The identification of early biomarkers of plaque presence and susceptibility to ulceration could be of primary importance in preventing such life-threatening events. With the improvement of proteomic tools, large-scale technologies have been proven valuable in attempting to unravel pathways of atherosclerotic degeneration and identifying new circulating markers to be utilized either as early diagnostic traits or as targets for new drug therapies. To address these issues, different matrices of human origin, such as vascular cells, arterial tissues, plasma, and urine, have been investigated. Besides, proteomics was also applied to experimental atherosclerosis in order to unveil significant insights into the mechanisms influencing atherogenesis. This narrative review provides an overview of the last twenty years of omics applications to the study of atherogenesis and lesion vulnerability, with particular emphasis on lipoproteomics and vascular tissue proteomics. Major issues of tissue analyses, such as plaque complexity, sampling, availability, choice of proper controls, and lipoproteins purification, will be raised, and future directions will be addressed.
Collapse
Affiliation(s)
| | | | - Antonio Junior Lepedda
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (G.N.); (M.F.); Antonio Junior Lepedda (A.J.L.)
| |
Collapse
|
8
|
Favaloro EJ. New Seminars in Thrombosis and Hemostasis 2022 Impact Factor, Most Highly Cited Papers, and Other Journal Metrics. Semin Thromb Hemost 2023; 49:661-669. [PMID: 37611621 DOI: 10.1055/s-0043-1772572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Emmanuel J Favaloro
- Department of Haematology, Centres for Thrombosis and Haemostasis, Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, NSW, Australia
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
9
|
Sembajwe LF, Ssekandi AM, Namaganda A, Muwonge H, Kasolo JN, Kalyesubula R, Nakimuli A, Naome M, Patel KP, Masenga SK, Kirabo A. Glycocalyx-Sodium Interaction in Vascular Endothelium. Nutrients 2023; 15:2873. [PMID: 37447199 PMCID: PMC10343370 DOI: 10.3390/nu15132873] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
The glycocalyx generally covers almost all cellular surfaces, where it participates in mediating cell-surface interactions with the extracellular matrix as well as with intracellular signaling molecules. The endothelial glycocalyx that covers the luminal surface mediates the interactions of endothelial cells with materials flowing in the circulating blood, including blood cells. Cardiovascular diseases (CVD) remain a major cause of morbidity and mortality around the world. The cardiovascular risk factors start by causing endothelial cell dysfunction associated with destruction or irregular maintenance of the glycocalyx, which may culminate into a full-blown cardiovascular disease. The endothelial glycocalyx plays a crucial role in shielding the cell from excessive exposure and absorption of excessive salt, which can potentially cause damage to the endothelial cells and underlying tissues of the blood vessels. So, in this mini review/commentary, we delineate and provide a concise summary of the various components of the glycocalyx, their interaction with salt, and subsequent involvement in the cardiovascular disease process. We also highlight the major components of the glycocalyx that could be used as disease biomarkers or as drug targets in the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Lawrence Fred Sembajwe
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Abdul M. Ssekandi
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Agnes Namaganda
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Haruna Muwonge
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Josephine N. Kasolo
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Robert Kalyesubula
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Annettee Nakimuli
- Department of Obstetrics and Gynecology, School of Medicine, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda;
| | - Mwesigwa Naome
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Sepiso K. Masenga
- Department of Physiological Sciences, School of Medicine and Health Sciences, Mulungushi University, Kabwe P.O. Box 80415, Zambia;
| | - Annet Kirabo
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| |
Collapse
|
10
|
Ricard-Blum S. Building, Visualizing, and Analyzing Glycosaminoglycan-Protein Interaction Networks. Methods Mol Biol 2023; 2619:211-224. [PMID: 36662472 DOI: 10.1007/978-1-0716-2946-8_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This chapter describes how to generate, visualize, and analyze interaction networks of glycosaminoglycans (GAGs), which are linear polyanionic polysaccharides mostly located at the cell surface and in the extracellular matrix. The protocol is divided into three major steps: (1) the collection of GAG-mediated interaction data, (2) the visualization of GAG interaction networks, and (3) the computational enrichment analyses of these networks to identify their overrepresented features (e.g., protein domains, location, molecular functions, and biological pathways) compared to a reference proteome. These analyses are critical to interpret GAG interactomic datasets, decipher their specificities and functions, and ultimately identify GAG-protein interactions to target for therapeutic purpose.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- ICBMS, UMR 5246 University Lyon 1, CNRS, Institute of Molecular and Supramolecular Chemistry and Biochemistry, Villeurbanne Cedex, France.
| |
Collapse
|
11
|
Muendlein A, Severgnini L, Decker T, Heinzle C, Leiherer A, Geiger K, Drexel H, Winder T, Reimann P, Mayer F, Nonnenbroich C, Dechow T. Circulating syndecan-1 and glypican-4 predict 12-month survival in metastatic colorectal cancer patients. Front Oncol 2022; 12:1045995. [PMID: 36353562 PMCID: PMC9638102 DOI: 10.3389/fonc.2022.1045995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
Cell surface syndecans and glypicans play important roles in the development and prognosis of colorectal cancer (CRC). Their soluble forms from proteoglycan shedding can be detected in blood and have been proposed as new prognostic biomarkers in several cancer entities. However, studies on circulating syndecan-1 (SDC1) and glypican-4 (GPC4) in CRC are limited. We, therefore, evaluated the impact of plasma SDC1 and GPC4 on the prognosis of metastatic (m)CRC patients. The present study included 93 patients with mCRC. The endpoints were progression-free survival (PFS) and overall survival (OS) at 12 months. SDC1 and GPC4 levels were measured in plasma using enzyme-linked immunosorbent assays. Plasma levels of SDC1 and GPC4 were significantly correlated. Significant correlations of these two markers were also found with carcinoembryonic antigen (CEA). Kaplan-Meier curve analyses indicated that PFS and OS probabilities significantly decreased with increasing levels of SDC1 and GPC4, respectively. Multivariable Cox regression analyses showed that both markers were significantly associated with PFS and OS independently from clinicopathological characteristics including CEA. Respective adjusted hazard ratios (HR) together with corresponding 95% confidence intervals for one standard deviation change of SDC1 were 1.32 [1.02-1.84] for PFS and 1.48 [1.01-2.15] for OS. Adjusted HRs [95% confidence intervals] of GPC4 were 1.42 [1.07-1.89] for PFS and 2.40 [1.51-3.81] for OS. Results from area under the receiver operating characteristic curve analyses suggest that GPC4 and SDC1 add additional prognostic values to CEA for OS. In conclusion, we showed significant associations of circulating SDC1 and GPC4 with poor survival of mCRC patients.
Collapse
Affiliation(s)
- Axel Muendlein
- Vorarlberg Institute for Vascular Investigation and Treatment, Molecular Biology Laboratory, Dornbirn, Austria
- *Correspondence: Axel Muendlein,
| | - Luciano Severgnini
- Department of Haematology and Oncology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | | | - Christine Heinzle
- Vorarlberg Institute for Vascular Investigation and Treatment, Molecular Biology Laboratory, Dornbirn, Austria
- Medical Central Laboratories, Feldkirch, Austria
| | - Andreas Leiherer
- Vorarlberg Institute for Vascular Investigation and Treatment, Molecular Biology Laboratory, Dornbirn, Austria
- Medical Central Laboratories, Feldkirch, Austria
| | - Kathrin Geiger
- Vorarlberg Institute for Vascular Investigation and Treatment, Molecular Biology Laboratory, Dornbirn, Austria
- Medical Central Laboratories, Feldkirch, Austria
| | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment, Molecular Biology Laboratory, Dornbirn, Austria
- Department of Internal Medicine, Academic Teaching Hospital Bregenz, Bregenz, Austria
| | - Thomas Winder
- Department of Haematology and Oncology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Patrick Reimann
- Department of Haematology and Oncology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Frank Mayer
- Praxis und Tagesklinik Prof. Dr. Oettle Helmut Prof. Mayer Frank, Friedrichshafen, Germany
| | | | | |
Collapse
|
12
|
Jiang D, Zhang Y, Wang Y, Xu F, Liang J, Wang W. Diagnostic accuracy and prognostic significance of Glypican-3 in hepatocellular carcinoma: A systematic review and meta-analysis. Front Oncol 2022; 12:1012418. [PMID: 36212469 PMCID: PMC9539414 DOI: 10.3389/fonc.2022.1012418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeGlypican-3 (GPC-3) expression is abnormal in the occurrence and development of hepatocellular carcinoma (HCC). To explore whether GPC-3 has diagnostic accuracy and prognostic significance of HCC, we did a systematic review and meta-analysis.MethodPubMed, Embase, Cochrane Library, and China National Knowledge Infrastructure were searched with keywords “GPC-3” and “HCC” and their MeSH terms from inception to July 2022. We applied the hierarchical summary receiver operating characteristic model and evaluated the diagnostic value of GPC-3 alone and combination, and the correlation between high and low GPC-3 expression on clinicopathological features and survival data in prognosis.ResultsForty-one original publications with 6,305 participants were included, with 25 of them providing data for diagnostic value and 18 records were eligible for providing prognostic value of GPC-3. GPC-3 alone got good diagnostic value in patients with HCC when compared with healthy control and moderate diagnostic value when compared with patients with cirrhosis. In addition, combination of GPC-3 + AFP and GPC-3 + GP73 got great diagnostic value in HCC versus cirrhosis groups; the combination of GPC-3 can also improve the diagnostic accuracy of biomarkers. Moreover, we discovered that overexpression of GPC-3 was more likely found in HBV infection, late tumor stage, and microvascular invasion groups and causes shorter overall survival and disease free survival, which means poor prognosis.ConclusionGCP-3 could be used as a biomarker in HCC diagnosis and prognosis, especially in evaluated diagnostic value in combination with AFP or GP73, and in forecasting worse survival data of overexpression GPC-3Systematic Review Registrationhttps://www.crd.york.ac.uk/PROSPERO/, identifier [CRD42022351566].
Collapse
Affiliation(s)
- Donglei Jiang
- Department of General Surgery, Grand Hospital of Shuozhou, Shuozhou, China
| | - Yingshi Zhang
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yinuo Wang
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Fu Xu
- Department of General Surgery, Grand Hospital of Shuozhou, Shuozhou, China
| | - Jun Liang
- Department of General Surgery, Grand Hospital of Shuozhou, Shuozhou, China
| | - Weining Wang
- Department of General Surgery, Grand Hospital of Shuozhou, Shuozhou, China
- *Correspondence: Weining Wang,
| |
Collapse
|
13
|
Heimerl M, Gausepohl T, Mueller JH, Ricke-Hoch M. Neuraminidases-Key Players in the Inflammatory Response after Pathophysiological Cardiac Stress and Potential New Therapeutic Targets in Cardiac Disease. BIOLOGY 2022; 11:biology11081229. [PMID: 36009856 PMCID: PMC9405403 DOI: 10.3390/biology11081229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 05/24/2023]
Abstract
Glycoproteins and glycolipids on the cell surfaces of vertebrates and higher invertebrates contain α-keto acid sugars called sialic acids, terminally attached to their glycan structures. The actual level of sialylation, regulated through enzymatic removal of the latter ones by NEU enzymes, highly affects protein-protein, cell-matrix and cell-cell interactions. Thus, their regulatory features affect a large number of different cell types, including those of the immune system. Research regarding NEUs within heart and vessels provides new insights of their involvement in the development of cardiovascular pathologies and identifies mechanisms on how inhibiting NEU enzymes can have a beneficial effect on cardiac remodelling and on a number of different cardiac diseases including CMs and atherosclerosis. In this regard, a multitude of clinical studies demonstrated the potential of N-acetylneuraminic acid (Neu5Ac) to serve as a biomarker following cardiac diseases. Anti-influenza drugs i.e., zanamivir and oseltamivir are viral NEU inhibitors, thus, they block the enzymatic activity of NEUs. When considering the improvement in cardiac function in several different cardiac disease animal models, which results from NEU reduction, the inhibition of NEU enzymes provides a new potential therapeutic treatment strategy to treat cardiac inflammatory pathologies, and thus, administrate cardioprotection.
Collapse
|
14
|
Hoffmann M, Snyder NL, Hartmann L. Glycosaminoglycan Mimetic Precision Glycomacromolecules with Sequence-Defined Sulfation and Rigidity Patterns. Biomacromolecules 2022; 23:4004-4014. [PMID: 35959886 DOI: 10.1021/acs.biomac.2c00829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sulfated glycosaminoglycans (sGAGs) such as heparan sulfate (HS) are structurally diverse linear polysaccharides that are involved in many biological processes and have gained interest as antiviral compounds. Their recognition is driven by a complex orchestra of structural parameters that are still under intense investigation. One distinct characteristic is the incorporation of sulfation patterns including highly sulfated and non-sulfated sequences that provide variations in flexibility and conformation, which in turn impact the biological function of sGAGs. However, these distinct features have not yet been fully realized in the synthetic preparation of sGAG mimetics. Here, we present the synthesis of three groups of sulfated glycomacromolecules as sGAG mimetics: (i) globally sulfated glycooligomers, (ii) glycooligomers with sequence-defined sulfation patterns, and (iii) a globally sulfated glycooligomer-oligo-L-proline hybrid structure. The complete synthesis, including chemical sulfation, was conducted on solid support, enabled by the introduction of a commercially available photocleavable linker allowing for the preservation of sensitive sulfates during cleavage of the products. Structures were obtained in good purity and with high degrees of sulfation demonstrating the wide applicability of this methodology to prepare tailor-made sulfated glycomacromolecules and similar sGAG mimetics. Structures were tested for their anticoagulant properties showing activity similar to their natural HS counterpart and significantly lower than HP.
Collapse
Affiliation(s)
- Miriam Hoffmann
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nicole L Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Laura Hartmann
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
15
|
Muendlein A, Heinzle C, Leiherer A, Geiger K, Brandtner EM, Gaenger S, Fraunberger P, Saely CH, Drexel H. Serum glypican-4 is associated with the 10-year clinical outcome of patients with peripheral artery disease. Int J Cardiol 2022; 369:54-59. [DOI: 10.1016/j.ijcard.2022.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 12/30/2022]
|
16
|
Szeremeta A, Jura-Półtorak A, Zoń-Giebel A, Olczyk K, Komosińska-Vassev K. TNF-α Inhibitors in Combination with MTX Reduce Circulating Levels of Heparan Sulfate/Heparin and Endothelial Dysfunction Biomarkers (sVCAM-1, MCP-1, MMP-9 and ADMA) in Women with Rheumatoid Arthritis. J Clin Med 2022; 11:jcm11144213. [PMID: 35887981 PMCID: PMC9320287 DOI: 10.3390/jcm11144213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Sulfated glycosaminoglycans (sGAGs) are likely to play an important role in the development and progression of rheumatoid arthritis (RA)-associated atherosclerosis. The present study investigated the effect of anti-tumor necrosis factor-α (anti-TNF-α) therapy in combination with methotrexate on plasma sGAG levels and serum markers of endothelial dysfunction. Among sGAG types, plasma chondroitin/dermatan sulfate (CS/DS) and heparan sulfate/heparin (HS/H) were characterized using electrophoretic fractionation. Serum levels of soluble vascular cell adhesion molecule-1 (sVCAM-1), monocyte chemoattractant protein-1 (MCP-1), matrix metalloproteinase-9 (MMP-9) and asymmetric dimethylarginine (ADMA) were measured by immunoassays. The measurements were carried out four times: at baseline and after 3, 9 and 15 months of anti-TNF-α therapy. All analyzed parameters, excluding ADMA, were significantly elevated in patients with RA before the implementation of biological therapy compared to healthy subjects. Performed anti-TNF-α treatment led to a successive decrease in HS/H levels toward normal values, without any effect on CS/DS levels in female RA patients. The treatment was also effective at lowering the serum levels of sVCAM-1, MCP-1, MMP-9 and ADMA. Moreover, a significant positive correlation was found between the circulating HS/H and the 28 joint disease activity score based on the erythrocyte sedimentation rate (DAS28-ESR, r = 0.408; p <0.05), MCP-1 (r = 0.398; p <0.05) and ADMA (r = 0.396; p <0.05) in patients before the first dose of TNF-α inhibitor. In conclusion, a beneficial effect of anti-TNF-α therapy on cell-surface heparan sulfate proteoglycans (HSPGs)/HS turnover and endothelial dysfunction was observed in this study. This was manifested by a decrease in blood HS/H levels and markers of endothelial activation, respectively. Moreover, the decrease in the concentration of HS/H in the blood of patients during treatment, progressing with the decline in disease activity, indicates that the plasma HS/H profile may be useful for monitoring the efficacy of anti-TNF-α treatment in patients with RA.
Collapse
Affiliation(s)
- Anna Szeremeta
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland; (A.J.-P.); (K.O.); (K.K.-V.)
- Correspondence: ; Tel.: +48-32-364-11-50
| | - Agnieszka Jura-Półtorak
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland; (A.J.-P.); (K.O.); (K.K.-V.)
| | - Aleksandra Zoń-Giebel
- Department of Rheumatology and Rehabilitation, Specialty Hospital No. 1, Żeromskiego 7, 41-902 Bytom, Poland;
| | - Krystyna Olczyk
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland; (A.J.-P.); (K.O.); (K.K.-V.)
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland; (A.J.-P.); (K.O.); (K.K.-V.)
| |
Collapse
|
17
|
Muendlein A, Brandtner EM, Leiherer A, Geiger K, Heinzle C, Gaenger S, Fraunberger P, Haider D, Saely CH, Drexel H. Evaluation of the association of serum glypican-4 with prevalent and future kidney function. Sci Rep 2022; 12:10168. [PMID: 35715556 PMCID: PMC9206029 DOI: 10.1038/s41598-022-14306-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Serum glypican-4 (GPC4) has been identified as an insulin-sensitizing adipokine serving as a marker for body mass index and insulin resistance in humans. The association of circulating GPC4 with kidney function is to date largely unexplored. Therefore, we aimed to evaluate the association between serum GPC4 and prevalent as well future kidney function in a prospective cohort study. The study included 456 Caucasian coronary angiography patients. After a median follow up period of 3.4 years, data on kidney function was reassessed in all patients. Chronic kidney disease (CKD) was defined by decreased estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2 or albuminuria. At baseline, serum GPC4 was significantly associated with decreased eGFR (adjusted odds ratio (OR) per standard deviation = 4.75 [2.66-8.48]; P < 0.001), albuminuria (OR = 1.49 [1.15-1.92]; P = 0.002), and, accordingly, with CKD (OR = 1.75 [1.35-2.26]; P < 0.001). GPC4 levels also significantly and independently predicted the incidence of newly diagnosed decreased eGFR (OR = 2.74 [1.82-4.14]; P < 0.001, albuminuria (OR = 1.58 [1.01-2.46]; P = 0.043, and CKD (OR = 2.16 [1.45-3.23]; P < 0.001). ROC analysis indicated an additional predictive value of GPC4 to a basic prediction model for newly diagnosed CKD and eGFR < 60 mL/min/1.73 m2. Our study, therefore, indicates that high serum GPC4 is associated with decreased prevalent and future kidney function.
Collapse
Affiliation(s)
- Axel Muendlein
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Carinagasse 47, 6800, Feldkirch, Austria.
| | - Eva Maria Brandtner
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Carinagasse 47, 6800, Feldkirch, Austria
| | - Andreas Leiherer
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Carinagasse 47, 6800, Feldkirch, Austria
- Medical Central Laboratories, Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Kathrin Geiger
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Carinagasse 47, 6800, Feldkirch, Austria
- Medical Central Laboratories, Feldkirch, Austria
| | - Christine Heinzle
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Carinagasse 47, 6800, Feldkirch, Austria
- Medical Central Laboratories, Feldkirch, Austria
| | - Stella Gaenger
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Carinagasse 47, 6800, Feldkirch, Austria
| | | | - Dominik Haider
- Department of Medicine, Academic Teaching Hospital Bregenz, Bregenz, Austria
| | - Christoph H Saely
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Carinagasse 47, 6800, Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Carinagasse 47, 6800, Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
- Department of Medicine, Academic Teaching Hospital Bregenz, Bregenz, Austria
- Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
18
|
Muendlein A, Brandtner EM, Leiherer A, Geiger K, Heinzle C, Gaenger S, Fraunberger P, Mader A, Saely CH, Drexel H. Serum glypican-4 is a marker of future vascular risk and mortality in coronary angiography patients. Atherosclerosis 2022; 345:33-38. [DOI: 10.1016/j.atherosclerosis.2022.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 12/17/2022]
|
19
|
Masola V, Greco N, Gambaro G, Franchi M, Onisto M. Heparanase as active player in endothelial glycocalyx remodeling. Matrix Biol Plus 2022; 13:100097. [PMID: 35036899 PMCID: PMC8749438 DOI: 10.1016/j.mbplus.2021.100097] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
The surface of all animal cells is coated with a layer of carbohydrates linked in various ways to the outer side of the plasma membrane. These carbohydrates are mainly bound to proteins in the form of glycoproteins and proteoglycans and together with the glycolipids constitute the so-called glycocalyx. In particular, the endothelial glycocalyx that covers the luminal layer of the endothelium is composed of glycosaminoglycans (heparan sulphate -HS and hyaluronic acid -HA), proteoglycans (syndecans and glypicans) and adsorbed plasma proteins. Thanks to its ability to absorb water, this structure contributes to making the surface of the vessels slippery but at the same time acts by modulating the mechano-transduction of the vessels, the vascular permeability and the adhesion of leukocytes in thus regulating several physiological and pathological events. Among the various enzymes involved in the degradation of the glycocalyx, heparanase (HPSE) has been shown to be particularly involved. This enzyme is responsible for the cutting of heparan sulfate (HS) chains at the level of the proteoglycans of the endothelial glycocalyx whose dysfunction appears to have a role in organ fibrosis, sepsis and viral infection. In this mini-review, we describe the mechanisms by which HPSE contributes to glycocalyx remodeling and then examine the role of glycocalyx degradation in the development of pathological conditions and pharmacological strategies to preserve glycocalyx during disease pathogenesis.
Collapse
Affiliation(s)
- Valentina Masola
- Renal Unit, Dept. of Medicine, University Hospital of Verona, Verona, Italy.,Dept. of Biomedical Sciences, University of Padova, Padua, Italy
| | - Nicola Greco
- Dept. of Biomedical Sciences, University of Padova, Padua, Italy
| | - Giovanni Gambaro
- Renal Unit, Dept. of Medicine, University Hospital of Verona, Verona, Italy
| | - Marco Franchi
- Dept. of Life Quality Sciences, University of Bologna, Rimini, Italy
| | - Maurizio Onisto
- Dept. of Biomedical Sciences, University of Padova, Padua, Italy
| |
Collapse
|
20
|
In-Depth Molecular Dynamics Study of All Possible Chondroitin Sulfate Disaccharides Reveals Key Insight into Structural Heterogeneity and Dynamism. Biomolecules 2022; 12:biom12010077. [PMID: 35053225 PMCID: PMC8773825 DOI: 10.3390/biom12010077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022] Open
Abstract
GAGs exhibit a high level of conformational and configurational diversity, which remains untapped in terms of the recognition and modulation of proteins. Although GAGs are suggested to bind to more than 800 biologically important proteins, very few therapeutics have been designed or discovered so far. A key challenge is the inability to identify, understand and predict distinct topologies accessed by GAGs, which may help design novel protein-binding GAG sequences. Recent studies on chondroitin sulfate (CS), a key member of the GAG family, pinpointing its role in multiple biological functions led us to study the conformational dynamism of CS building blocks using molecular dynamics (MD). In the present study, we used the all-atom GLYCAM06 force field for the first time to explore the conformational space of all possible CS building blocks. Each of the 16 disaccharides was solvated in a TIP3P water box with an appropriate number of counter ions followed by equilibration and a production run. We analyzed the MD trajectories for torsional space, inter- and intra-molecular H-bonding, bridging water, conformational spread and energy landscapes. An in-house phi and psi probability density analysis showed that 1→3-linked sequences were more flexible than 1→4-linked sequences. More specifically, phi and psi regions for 1→4-linked sequences were held within a narrower range because of intra-molecular H-bonding between the GalNAc O5 atom and GlcA O3 atom, irrespective of sulfation pattern. In contrast, no such intra-molecular interaction arose for 1→3-linked sequences. Further, the stability of 1→4-linked sequences also arose from inter-molecular interactions involving bridged water molecules. The energy landscape for both classes of CS disaccharides demonstrated increased ruggedness as the level of sulfation increased. The results show that CS building blocks present distinct conformational dynamism that offers the high possibility of unique electrostatic surfaces for protein recognition. The fundamental results presented here will support the development of algorithms that help to design longer CS chains for protein recognition.
Collapse
|
21
|
Ballermann BJ, Nyström J, Haraldsson B. The Glomerular Endothelium Restricts Albumin Filtration. Front Med (Lausanne) 2021; 8:766689. [PMID: 34912827 PMCID: PMC8667033 DOI: 10.3389/fmed.2021.766689] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022] Open
Abstract
Inflammatory activation and/or dysfunction of the glomerular endothelium triggers proteinuria in many systemic and localized vascular disorders. Among them are the thrombotic microangiopathies, many forms of glomerulonephritis, and acute inflammatory episodes like sepsis and COVID-19 illness. Another example is the chronic endothelial dysfunction that develops in cardiovascular disease and in metabolic disorders like diabetes. While the glomerular endothelium is a porous sieve that filters prodigious amounts of water and small solutes, it also bars the bulk of albumin and large plasma proteins from passing into the glomerular filtrate. This endothelial barrier function is ascribed predominantly to the endothelial glycocalyx with its endothelial surface layer, that together form a relatively thick, mucinous coat composed of glycosaminoglycans, proteoglycans, glycolipids, sialomucins and other glycoproteins, as well as secreted and circulating proteins. The glycocalyx/endothelial surface layer not only covers the glomerular endothelium; it extends into the endothelial fenestrae. Some glycocalyx components span or are attached to the apical endothelial cell plasma membrane and form the formal glycocalyx. Other components, including small proteoglycans and circulating proteins like albumin and orosomucoid, form the endothelial surface layer and are bound to the glycocalyx due to weak intermolecular interactions. Indeed, bound plasma albumin is a major constituent of the endothelial surface layer and contributes to its barrier function. A role for glomerular endothelial cells in the barrier of the glomerular capillary wall to protein filtration has been demonstrated by many elegant studies. However, it can only be fully understood in the context of other components, including the glomerular basement membrane, the podocytes and reabsorption of proteins by tubule epithelial cells. Discovery of the precise mechanisms that lead to glycocalyx/endothelial surface layer disruption within glomerular capillaries will hopefully lead to pharmacological interventions that specifically target this important structure.
Collapse
Affiliation(s)
| | - Jenny Nyström
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Börje Haraldsson
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
22
|
Kyriakopoulou K, Kefali E, Piperigkou Z, Riethmüller C, Greve B, Franchi M, Götte M, Karamanos NK. EGFR is a pivotal player of the E2/ERβ - mediated functional properties, aggressiveness, and stemness in triple-negative breast cancer cells. FEBS J 2021; 289:1552-1574. [PMID: 34665934 DOI: 10.1111/febs.16240] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 12/31/2022]
Abstract
Triple-negative breast cancer (TNBC) is defined by aggressive behavior, limited response to chemotherapy and lower overall survival rates. The increased metastatic potential of TNBC is a combined result of extensive extracellular matrix (ECM) remodeling that leads to cytoskeleton rearrangement and activation of epithelial-to-mesenchymal transition (EMT). The overexpression of epidermal growth factor receptor (EGFR) in TNBC tumors has been linked to induced expression of EMT-related molecules. EMT activation has often been associated with increased metastasis and stemness. Recently, we described the crucial role of EGFR/estrogen receptor beta (ERβ) interplay in the regulation of invasion and cell-matrix interactions. In this study, we report on the EGFR-ERβ functional relationship in connection to the aggressiveness and cancer stem cell (CSC)-like characteristics of TNBC cells. ERβ-suppressed and MDA-MB-231 cells were subjected to downstream EGFR inhibition and/or estradiol stimulation to assess alterations in functional parameters as well as in morphological characteristics, studied by scanning electron, atomic force, and immunofluorescence microscopies. Moreover, the expression and localization of key EMT and CSC-related markers were also evaluated by real-time qPCR, immunofluorescence microscopy, and flow cytometry. EGFR inhibition resulted in an overall suppression of aggressive functional characteristics, which occurred in an ERβ-mediated manner. These changes could be attributed to a reduction, at the molecular level, of EMT and stemness-linked markers, most notably reduced expression of Notch signaling constituents and the cell surface proteoglycan, syndecan-1. Collectively, our study highlights the importance of EGFR signaling as a key effector of aggressiveness, EMT, and stemness in an ERβ-dependent way in TNBC.
Collapse
Affiliation(s)
- Konstantina Kyriakopoulou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Elena Kefali
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | | | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, University Hospital Münster, Germany
| | - Marco Franchi
- Department for Life Quality Study, University of Bologna, Rimini, Italy
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital Münster, Germany
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| |
Collapse
|
23
|
Lepedda AJ, Nieddu G, Formato M, Baker MB, Fernández-Pérez J, Moroni L. Glycosaminoglycans: From Vascular Physiology to Tissue Engineering Applications. Front Chem 2021; 9:680836. [PMID: 34084767 PMCID: PMC8167061 DOI: 10.3389/fchem.2021.680836] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022] Open
Abstract
Cardiovascular diseases represent the number one cause of death globally, with atherosclerosis a major contributor. Despite the clinical need for functional arterial substitutes, success has been limited to arterial replacements of large-caliber vessels (diameter > 6 mm), leaving the bulk of demand unmet. In this respect, one of the most challenging goals in tissue engineering is to design a "bioactive" resorbable scaffold, analogous to the natural extracellular matrix (ECM), able to guide the process of vascular tissue regeneration. Besides adequate mechanical properties to sustain the hemodynamic flow forces, scaffold's properties should include biocompatibility, controlled biodegradability with non-toxic products, low inflammatory/thrombotic potential, porosity, and a specific combination of molecular signals allowing vascular cells to attach, proliferate and synthesize their own ECM. Different fabrication methods, such as phase separation, self-assembly and electrospinning are currently used to obtain nanofibrous scaffolds with a well-organized architecture and mechanical properties suitable for vascular tissue regeneration. However, several studies have shown that naked scaffolds, although fabricated with biocompatible polymers, represent a poor substrate to be populated by vascular cells. In this respect, surface functionalization with bioactive natural molecules, such as collagen, elastin, fibrinogen, silk fibroin, alginate, chitosan, dextran, glycosaminoglycans (GAGs), and growth factors has proven to be effective. GAGs are complex anionic unbranched heteropolysaccharides that represent major structural and functional ECM components of connective tissues. GAGs are very heterogeneous in terms of type of repeating disaccharide unit, relative molecular mass, charge density, degree and pattern of sulfation, degree of epimerization and physicochemical properties. These molecules participate in a number of vascular events such as the regulation of vascular permeability, lipid metabolism, hemostasis, and thrombosis, but also interact with vascular cells, growth factors, and cytokines to modulate cell adhesion, migration, and proliferation. The primary goal of this review is to perform a critical analysis of the last twenty-years of literature in which GAGs have been used as molecular cues, able to guide the processes leading to correct endothelialization and neo-artery formation, as well as to provide readers with an overall picture of their potential as functional molecules for small-diameter vascular regeneration.
Collapse
Affiliation(s)
| | - Gabriele Nieddu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Marilena Formato
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Matthew Brandon Baker
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, Netherlands
| | - Julia Fernández-Pérez
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, Netherlands
| |
Collapse
|
24
|
What Are the Potential Roles of Nuclear Perlecan and Other Heparan Sulphate Proteoglycans in the Normal and Malignant Phenotype. Int J Mol Sci 2021; 22:ijms22094415. [PMID: 33922532 PMCID: PMC8122901 DOI: 10.3390/ijms22094415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/27/2022] Open
Abstract
The recent discovery of nuclear and perinuclear perlecan in annulus fibrosus and nucleus pulposus cells and its known matrix stabilizing properties in tissues introduces the possibility that perlecan may also have intracellular stabilizing or regulatory roles through interactions with nuclear envelope or cytoskeletal proteins or roles in nucleosomal-chromatin organization that may regulate transcriptional factors and modulate gene expression. The nucleus is a mechano-sensor organelle, and sophisticated dynamic mechanoresponsive cytoskeletal and nuclear envelope components support and protect the nucleus, allowing it to perceive and respond to mechano-stimulation. This review speculates on the potential roles of perlecan in the nucleus based on what is already known about nuclear heparan sulphate proteoglycans. Perlecan is frequently found in the nuclei of tumour cells; however, its specific role in these diseased tissues is largely unknown. The aim of this review is to highlight probable roles for this intriguing interactive regulatory proteoglycan in the nucleus of normal and malignant cell types.
Collapse
|
25
|
Nadir Y, Lisman T. Hemostatic and Nonhemostatic Effects of Heparan Sulfate Proteoglycans. Semin Thromb Hemost 2021; 47:238-239. [PMID: 33794548 DOI: 10.1055/s-0041-1724119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yona Nadir
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ton Lisman
- Department of Surgery, Surgical Research Laboratory, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|