1
|
Chaudhuri S, Cho M, Stumpff JC, Bice PJ, İş Ö, Ertekin-Taner N, Saykin AJ, Nho K. Cell-specific transcriptional signatures of vascular cells in Alzheimer's disease: perspectives, pathways, and therapeutic directions. Mol Neurodegener 2025; 20:12. [PMID: 39876020 PMCID: PMC11776188 DOI: 10.1186/s13024-025-00798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disease that is marked by profound neurovascular dysfunction and significant cell-specific alterations in the brain vasculature. Recent advances in high throughput single-cell transcriptomics technology have enabled the study of the human brain vasculature at an unprecedented depth. Additionally, the understudied niche of cerebrovascular cells, such as endothelial and mural cells, and their subtypes have been scrutinized for understanding cellular and transcriptional heterogeneity in AD. Here, we provide an overview of rich transcriptional signatures derived from recent single-cell and single-nucleus transcriptomic studies of human brain vascular cells and their implications for targeted therapy for AD. We conducted an in-depth literature search using Medline and Covidence to identify pertinent AD studies that utilized single-cell technologies in human post-mortem brain tissue by focusing on understanding the transcriptional differences in cerebrovascular cell types and subtypes in AD and cognitively normal older adults. We also discuss impaired cellular crosstalk between vascular cells and neuroglial units, as well as astrocytes in AD. Additionally, we contextualize the findings from single-cell studies of distinct endothelial cells, smooth muscle cells, fibroblasts, and pericytes in the human AD brain and highlight pathways for potential therapeutic interventions as a concerted multi-omic effort with spatial transcriptomics technology, neuroimaging, and neuropathology. Overall, we provide a detailed account of the vascular cell-specific transcriptional signatures in AD and their crucial cellular crosstalk with the neuroglial unit.
Collapse
Affiliation(s)
- Soumilee Chaudhuri
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Medical Neuroscience Graduate Program, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Minyoung Cho
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Julia C Stumpff
- Ruth Lilly Medical Library, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paula J Bice
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Özkan İş
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
2
|
Yang C, Zhao E, Zhang H, Duan L, Han X, Ding H, Cheng Y, Wang D, Lei X, Diwu Y. Xixin Decoction's novel mechanism for alleviating Alzheimer's disease cognitive dysfunction by modulating amyloid-β transport across the blood-brain barrier to reduce neuroinflammation. Front Pharmacol 2025; 15:1508726. [PMID: 39834810 PMCID: PMC11743276 DOI: 10.3389/fphar.2024.1508726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Purpose Xixin Decoction (XXD) is a classical formula that has been used to effectively treat dementia for over 300 years. Modern clinical studies have demonstrated its significant therapeutic effects in treating Alzheimer's disease (AD) without notable adverse reactions. Nevertheless, the specific mechanisms underlying its efficacy remain to be elucidated. This investigation sought to elucidate XXD's impact on various aspects of AD pathology, including blood-brain barrier (BBB) impairment, neuroinflammatory processes, and amyloid-β (Aβ) deposition, as well as the molecular pathways involved in these effects. Methods In vitro experiments were conducted using hCMEC/D3 and HBVP cell coculture to establish an in vitro blood-brain barrier (BBB) model. BBB damage was induced in this model by 24-h exposure to 1 μg/mL lipopolysaccharide (LPS). After 24, 48, and 72 h of treatment with 10% XXD-medicated serum, the effects of XXD were assessed through Western blotting, RT-PCR, and immunofluorescence techniques. In vivo, SAMP8 mice were administered various doses of XXD via gavage for 8 weeks, including high-dose XXD group (H-XXD) at 5.07 g kg-1·d-1, medium-dose XXD group (M-XXD) at 2.535 g kg-1·d-1, and low-dose XXD group (L-XXD) at 1.2675 g kg-1·d-1. Cognitive function was subsequently evaluated using the Morris water maze test. BBB integrity was evaluated using Evans blue staining, and protein expression levels were analyzed via ELISA, Western blotting, and immunofluorescence. Results In vitro experiments revealed that XXD-containing serum, when cultured for 24, 48, and 72 h, could upregulate the expression of P-gp mRNA and protein, downregulate CB1 protein expression, and upregulate CB2 and Mfsd2a protein expression. In vivo studies demonstrated that XXD improved spatial learning and memory abilities in SAMP8 mice, reduced the amount of Evans blue extravasation in brain tissues, modulated the BBB-associated P-gp/ECS axis, RAGE/LRP1 receptor system, as well as MRP2 and Mfsd2a proteins, and decreased the accumulation of Aβ in the brains of SAMP8 mice. Additionally, XXD upregulated the expression of TREM2, downregulated IBA1, TLR1, TLR2, and CMPK2 expression, and reduced the levels of pro-inflammatory factors NLRP3, NF-κB p65, COX-2, TNF-α, and IL-1β in the hippocampal tissues. Conclusion XXD may exert its effects by regulating the P-gp/ECS axis, the RAGE/LRP1 receptor system, and the expression of MRP2 and Mfsd2a proteins, thereby modulating the transport function of the BBB to expedite the clearance of Aβ, reduce cerebral Aβ accumulation, and consequently inhibit the activation of microglia induced by Aβ aggregation. This process may suppress the activation of the CMPK2/NLRP3 and TLRs/NF-κB pathways, diminish the production of inflammatory cytokines and chemokines, alleviate neuroinflammation associated with microglia in the brain of AD, and ultimately improve AD pathology.
Collapse
Affiliation(s)
- Chaokai Yang
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Enlong Zhao
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hu Zhang
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Liqi Duan
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xinyue Han
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hongli Ding
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yan Cheng
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Dengkun Wang
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
- Key Research Laboratory for Prevention and Treatment of Cerebrospinal diseases, Shaanxi Provincial Administration of Traditional Chinese Medicine, Xianyang, China
- Discipline Innovation Team for Neurodegenerative Diseases of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiaojing Lei
- Key Research Laboratory for Prevention and Treatment of Cerebrospinal diseases, Shaanxi Provincial Administration of Traditional Chinese Medicine, Xianyang, China
- Discipline Innovation Team for Neurodegenerative Diseases of Shaanxi University of Chinese Medicine, Xianyang, China
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yongchang Diwu
- Key Research Laboratory for Prevention and Treatment of Cerebrospinal diseases, Shaanxi Provincial Administration of Traditional Chinese Medicine, Xianyang, China
- Discipline Innovation Team for Neurodegenerative Diseases of Shaanxi University of Chinese Medicine, Xianyang, China
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
3
|
El-Ashmawy NE, Al-Ashmawy GM, Hamada OB, Khedr NF. The role of ABCG2 in health and disease: Linking cancer therapy resistance and other disorders. Life Sci 2025; 360:123245. [PMID: 39561874 DOI: 10.1016/j.lfs.2024.123245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/13/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
All biological systems have adenosine triphosphate (ATP) binding cassette (ABC) transporters, one of the significant protein superfamilies involved in transport across membranes. ABC transporters have been implicated in the etiology of diseases like metabolic disorders, cancer, and Alzheimer's disease. ATP-binding cassette superfamily G member 2 (ABCG2), one of the ABC transporters, is necessary for the ATP-dependent efflux of several endogenous and exogenous substances. Consequently, it maintained cellular homeostasis and shielded tissue from xenobiotic substances. ABCG2 was initially identified in an Adriamycin-selected breast cancer cell line (MCF-7/AdrVp) and was linked to the emergence of multidrug resistance (MDR) in cancerous cells. Under many pathophysiological conditions, including inflammation, disease pathology, tissue injury, infection, and in response to xenobiotics and endogenous substances, the expression of ABCG2 undergoes alterations that result in modifications in its function and activity. Genetic variants in the ABCG2 transporter can potentially impact its expression and function, contributing to the development of many disorders. This review aimed to illustrate the impact of ABCG2 expression and its variants on oral drug bioavailability, MDR in specific cancer cells, explore the relationship between ABCG2 expression and other disorders such as gout, Alzheimer's disease, epilepsy, and erythropoietic protoporphyria, and demonstrate the influence of various synthetic and natural compounds in regulating ABCG2 expression.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Tanta University, Faculty of Pharmacy, Department of Biochemistry, Tanta Postal Code: 31527, Egypt; The British University in Egypt, Faculty of Pharmacy, Department of Pharmacology & Biochemistry, El Sherouk City, Cairo Postal Code: 11837, Egypt.
| | - Ghada M Al-Ashmawy
- Tanta University, Faculty of Pharmacy, Department of Biochemistry, Tanta Postal Code: 31527, Egypt; Alsalam University in Egypt, Faculty of Pharmacy, Department of Biochemistry, Kafr El Zayat, Egypt.
| | - Omnia B Hamada
- Tanta University, Faculty of Pharmacy, Department of Biochemistry, Tanta Postal Code: 31527, Egypt.
| | - Naglaa F Khedr
- Tanta University, Faculty of Pharmacy, Department of Biochemistry, Tanta Postal Code: 31527, Egypt.
| |
Collapse
|
4
|
Koppula S, Wankhede NL, Sammeta SS, Shende PV, Pawar RS, Chimthanawala N, Umare MD, Taksande BG, Upaganlawar AB, Umekar MJ, Kopalli SR, Kale MB. Modulation of cholesterol metabolism with Phytoremedies in Alzheimer's disease: A comprehensive review. Ageing Res Rev 2024; 99:102389. [PMID: 38906182 DOI: 10.1016/j.arr.2024.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Alzheimer's disease (AD) is a complex neurological ailment that causes cognitive decline and memory loss. Cholesterol metabolism dysregulation has emerged as a crucial element in AD pathogenesis, contributing to the formation of amyloid-beta (Aβ) plaques and tau tangles, the disease's hallmark neuropathological characteristics. Thus, targeting cholesterol metabolism has gained attention as a potential therapeutic method for Alzheimer's disease. Phytoremedies, which are generated from plants and herbs, have shown promise as an attainable therapeutic option for Alzheimer's disease. These remedies contain bioactive compounds like phytochemicals, flavonoids, and polyphenols, which have demonstrated potential in modulating cholesterol metabolism and related pathways. This comprehensive review explores the modulation of cholesterol metabolism by phytoremedies in AD. It delves into the role of cholesterol in brain function, highlighting disruptions observed in AD. Additionally, it examines the underlying molecular mechanisms of cholesterol-related pathology in AD. The review emphasizes the significance of phytoremedies as a potential therapeutic intervention for AD. It discusses the drawbacks of current treatments and the need for alternative strategies addressing cholesterol dysregulation and its consequences. Through an in-depth analysis of specific phytoremedies, the review presents compelling evidence of their potential benefits. Molecular mechanisms underlying phytoremedy effects on cholesterol metabolism are examined, including regulation of cholesterol-related pathways, interactions with Aβ pathology, influence on tau pathology, and anti-inflammatory effects. The review also highlights challenges and future perspectives, emphasizing standardization, clinical evidence, and personalized medicine approaches to maximize therapeutic potential in AD treatment. Overall, phytoremedies offer promise as a potential avenue for AD management, but further research and collaboration are necessary to fully explore their efficacy, safety, and mechanisms of action.
Collapse
Affiliation(s)
- Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| | - Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| | - Shivkumar S Sammeta
- National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India.
| | - Prajwali V Shende
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| | - Rupali S Pawar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| | | | - Mohit D Umare
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India.
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea.
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| |
Collapse
|
5
|
Villa M, Wu J, Hansen S, Pahnke J. Emerging Role of ABC Transporters in Glia Cells in Health and Diseases of the Central Nervous System. Cells 2024; 13:740. [PMID: 38727275 PMCID: PMC11083179 DOI: 10.3390/cells13090740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
ATP-binding cassette (ABC) transporters play a crucial role for the efflux of a wide range of substrates across different cellular membranes. In the central nervous system (CNS), ABC transporters have recently gathered significant attention due to their pivotal involvement in brain physiology and neurodegenerative disorders, such as Alzheimer's disease (AD). Glial cells are fundamental for normal CNS function and engage with several ABC transporters in different ways. Here, we specifically highlight ABC transporters involved in the maintenance of brain homeostasis and their implications in its metabolic regulation. We also show new aspects related to ABC transporter function found in less recognized diseases, such as Huntington's disease (HD) and experimental autoimmune encephalomyelitis (EAE), as a model for multiple sclerosis (MS). Understanding both their impact on the physiological regulation of the CNS and their roles in brain diseases holds promise for uncovering new therapeutic options. Further investigations and preclinical studies are warranted to elucidate the complex interplay between glial ABC transporters and physiological brain functions, potentially leading to effective therapeutic interventions also for rare CNS disorders.
Collapse
Affiliation(s)
- Maria Villa
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jingyun Wu
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Stefanie Hansen
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
- Institute of Nutritional Medicine (INUM)/Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, D-23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia (LU), Jelgavas iela 3, LV-1004 Rīga, Latvia
- School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University (TAU), Tel Aviv IL-6997801, Israel
| |
Collapse
|
6
|
Bhattacharjee A, Roy PK. Conjoint hepatobiliary-enterohepatic cycles for amyloid excretion and enhancing its drug-induced clearance: a systems biology approach to Alzheimer's disease. J Biomol Struct Dyn 2023; 41:10507-10524. [PMID: 36510663 DOI: 10.1080/07391102.2022.2154842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
The liver is the major organ responsible for metabolism of amyloid-beta, the primary toxic misfolded protein responsible for Alzheimer's disease (AD). The present study focuses on the crucial role of liver in AD. We have developed a framework that formulates and integrates two reciprocal transport processes of amyloid, via hepato-biliary and enterohepatic circulations (EHC). Our system analysis approach shows that activating the liver X-receptor (LXR) can reduce amyloid-beta formation by increasing expression of the genes: ATP-binding-cassette-transporter (ABCA1) and Stearoyl-CoA-desaturase (SCD). Besides, activating the pregnane-X-receptor (PXR) can enhance the clearance of amyloid-beta by increasing the expression of the genes: ATP-Binding-Cassette-Superfamily-G-member-2 (ABCG2) and multidrug-resistance protein-1 (MDR1). We also identified receptor-like apical sodium-dependent bile-acid transporter (ASBT) of intestinal enterocyte, showing affinity towards amyloid-beta, suggesting amyloid-beta's possible reuptake from intestinal contents to the systemic circulation through this receptor. Further, we have performed protein-protein interaction to evaluate the binding affinity of amyloid-beta to these receptors. Moreover, we undertook molecular docking and molecular dynamic simulation of some repurposed drugs (rifampicin, 24-hydroxycholesterols, resveratrol, cilostazol) which can target the aforesaid receptors to enhance amyloid-beta's fecal clearance, reduce amyloid-beta formation, and prevent the reuptake of amyloid-beta from intestinal feces. Additionally, network pharmacology and synergism analysis were utilized to validate our hypothesis and identify the drug combinations, respectively. Gene-ontology investigation, network pharmacology, and consolidated pathway analysis validate the alteration of the above-mentioned gene expression profiles. Furthermore, our neuropharmacological synergism study identifies the optimal combination of the repurposed drugs. Finally, our findings on candidate drugs are substantiated by clinical-trial outcomes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anindita Bhattacharjee
- School of Bio-Medical Engineering, Indian Institute of Technology (B.H.U.), Varanasi, India
| | - Prasun K Roy
- School of Bio-Medical Engineering, Indian Institute of Technology (B.H.U.), Varanasi, India
| |
Collapse
|
7
|
Markowicz-Piasecka M, Markiewicz A, Darłak P, Sikora J, Adla SK, Bagina S, Huttunen KM. Current Chemical, Biological, and Physiological Views in the Development of Successful Brain-Targeted Pharmaceutics. Neurotherapeutics 2022; 19:942-976. [PMID: 35391662 PMCID: PMC9294128 DOI: 10.1007/s13311-022-01228-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
One of the greatest challenges with successful pharmaceutical treatments of central nervous system (CNS) diseases is the delivery of drugs into their target sites with appropriate concentrations. For example, the physically tight blood-brain barrier (BBB) effectively blocks compounds from penetrating into the brain, also by the action of metabolizing enzymes and efflux transport mechanisms. However, many endogenous compounds, including both smaller compounds and macromolecules, like amino acids, sugars, vitamins, nucleosides, hormones, steroids, and electrolytes, have their peculiar internalization routes across the BBB. These delivery mechanisms, namely carrier-mediated transport and receptor-mediated transcytosis have been utilized to some extent in brain-targeted drug development. The incomplete knowledge of the BBB and the smaller than a desirable number of chemical tools have hindered the development of successful brain-targeted pharmaceutics. This review discusses the recent advancements achieved in the field from the point of medicinal chemistry view and discusses how brain drug delivery can be improved in the future.
Collapse
Affiliation(s)
- Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151 Lodz, Poland
| | - Agata Markiewicz
- Students Research Group, Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland
| | - Patrycja Darłak
- Students Research Group, Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland
| | - Joanna Sikora
- Department of Bioinorganic Chemistry, Medical University of Lodz, Medical University of Lodz, ul. Muszyńskiego1, 90-151 Lodz, Poland
| | - Santosh Kumar Adla
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, POB 1627, 70211 Kuopio, Finland
- Institute of Organic Chemistry and Biochemistry (IOCB), Czech Academy of Sciences, Flemingovo Namesti 542/2, 160 00 Prague, Czech Republic
| | - Sreelatha Bagina
- Charles River Discovery Research Services Finland Oy, Neulaniementie 4, 70210 Kuopio, Finland
| | - Kristiina M. Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, POB 1627, 70211 Kuopio, Finland
| |
Collapse
|