1
|
Tang D, Liu X, He J. Association between single-nucleotide polymorphisms of ADAMTS13 and severe COVID-19: a case-control study in Chinese Han adults. Arch Med Sci 2024; 20:2067-2071. [PMID: 39967935 PMCID: PMC11831343 DOI: 10.5114/aoms/199514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/25/2024] [Indexed: 02/20/2025] Open
Affiliation(s)
- Daoyan Tang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaoshu Liu
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianqing He
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Gao O, Chen Y, Xie H. COVID-19 induced thrombotic thrombocytopenic purpura in a patient with systemic lupus erythematosus: A rare case report. Medicine (Baltimore) 2024; 103:e40992. [PMID: 39969357 PMCID: PMC11688023 DOI: 10.1097/md.0000000000040992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/28/2024] [Indexed: 02/20/2025] Open
Abstract
RATIONALE Thrombotic thrombocytopenic purpura (TTP) is a severe and rare disease, and its complexity increases in the presence of underlying autoimmune disease and COVID-19 infection, making differential diagnosis and treatment more challenging. PATIENTS CONCERNS A 43-year-old patient presented with high fever, intermittent cough, and tea-colored urine. DIAGNOSES The patient had a long-term history of systemic lupus erythematosus (SLE) and lupus nephritis (LN). The nasopharyngeal swab confirmed the diagnosis of COVID-19 by RT-PCR, and plasma ADAMTS-13 activity was completely deficient (0%). It was considered that COVID-19 infection occurred on the basis of SLE disease and was then complicated with TTP. INTERVENTIONS The patient was successfully treated with plasma exchange, followed by a combination of biologics and immunosuppressants. OUTCOMES After 1 year of follow-up, the patient had completely recovered from COVID-19 infection and TTP, meeting the cure criterion. In addition, the LN was in remission, with an SLEDAI-2K score of 0, indicating a low disease activity state. LESSONS This article indicates that the patient suffers from both long-standing underlying diseases and the sudden occurrence of SARS-CoV-2 infection, which complicates the determination of the etiology and diagnosis of TTP. Consequently, after thorough analysis of the disease progression, clinical manifestations, laboratory results, and treatment outcomes, it was primarily concluded that COVID-19 was the catalyst for the onset of TTP in this patient.
Collapse
Affiliation(s)
- Ou Gao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University, Nanjing, China
| | - Yinghua Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University, Nanjing, China
| | - Honglang Xie
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Demeter F, Bihari G, Vadicsku D, Sinkovits G, Kajdácsi E, Horváth L, Réti M, Müller V, Iványi Z, Gál J, Gopcsa L, Reményi P, Szathmáry B, Lakatos B, Szlávik J, Bobek I, Prohászka ZZ, Förhécz Z, Masszi T, Vályi-Nagy I, Prohászka Z, Cervenak L. Anti-Inflammatory Cytokine Profiles in Thrombotic Thrombocytopenic Purpura-Differences Compared to COVID-19. Int J Mol Sci 2024; 25:10007. [PMID: 39337495 PMCID: PMC11432022 DOI: 10.3390/ijms251810007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Thromboinflammation/immunothrombosis plays a role in several diseases including thrombotic thrombocytopenic purpura (TTP) and COVID-19. Unlike the extensive research that has been conducted on COVID-19 cytokine storms, the baseline and acute phase cytokine profiles of TTP are poorly characterized. Moreover, we compared the cytokine profiles of TTP and COVID-19 to identify the disease-specific/general characteristics of thromboinflammation/immunothrombosis. Plasma concentrations of 33 soluble mediators (SMs: cytokines, chemokines, soluble receptors, and growth factors) were measured by multiplex bead-based LEGENDplex™ immunoassay from 32 COVID-19 patients (32 non-vaccinated patients in three severity groups), 32 TTP patients (remission/acute phase pairs of 16 patients), and 15 control samples. Mainly, the levels of innate immunity-related SMs changed in both diseases. In TTP, ten SMs decreased in both remission and acute phases compared to the control, one decreased, and two increased only in the acute phase compared to remission, indicating mostly anti-inflammatory changes. In COVID-19, ten pro-inflammatory SMs increased, whereas one decreased with increasing severity compared to the control. In severe COVID-19, sixteen SMs exceeded acute TTP levels, with only one higher in TTP. PCA identified CXCL10, IL-1RA, and VEGF as the main discriminators among their cytokine profiles. The innate immune response is altered in both diseases. The cytokine profile of TTP suggests a distinct pathomechanism from COVID-19 and supports referring to TTP as thromboinflammatory rather than immunothrombotic, emphasizing thrombosis over inflammation as the driving force of the acute phase.
Collapse
Affiliation(s)
- Flóra Demeter
- Department of Internal Medicine and Haematology, Semmelweis University, 1088 Budapest, Hungary
| | - György Bihari
- Department of Internal Medicine and Haematology, Semmelweis University, 1088 Budapest, Hungary
| | - Dorina Vadicsku
- Department of Internal Medicine and Haematology, Semmelweis University, 1088 Budapest, Hungary
| | - György Sinkovits
- Department of Internal Medicine and Haematology, Semmelweis University, 1088 Budapest, Hungary
| | - Erika Kajdácsi
- Department of Internal Medicine and Haematology, Semmelweis University, 1088 Budapest, Hungary
- Research Group for Immunology and Hematology, Semmelweis University—HUN-REN-SU (Office for Supported Research Groups), 1085 Budapest, Hungary
| | - Laura Horváth
- Department of Internal Medicine and Haematology, Semmelweis University, 1088 Budapest, Hungary
| | - Marienn Réti
- Department of Haematology and Stem Cell Transplantation, Central Hospital of Southern Pest National Institute of Haematology and Infectious Diseases, 1097 Budapest, Hungary
| | - Veronika Müller
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| | - Zsolt Iványi
- Department of Anaesthesiology and Intensive Therapy, Semmelweis University, 1085 Budapest, Hungary
| | - János Gál
- Department of Anaesthesiology and Intensive Therapy, Semmelweis University, 1085 Budapest, Hungary
| | - László Gopcsa
- Department of Haematology and Stem Cell Transplantation, Central Hospital of Southern Pest National Institute of Haematology and Infectious Diseases, 1097 Budapest, Hungary
| | - Péter Reményi
- Department of Haematology and Stem Cell Transplantation, Central Hospital of Southern Pest National Institute of Haematology and Infectious Diseases, 1097 Budapest, Hungary
| | - Beáta Szathmáry
- Department of Infectology, Central Hospital of Southern Pest, National Institute of Haematology and Infectious Diseases, 1097 Budapest, Hungary
| | - Botond Lakatos
- Department of Infectology, Central Hospital of Southern Pest, National Institute of Haematology and Infectious Diseases, 1097 Budapest, Hungary
| | - János Szlávik
- Department of Infectology, Central Hospital of Southern Pest, National Institute of Haematology and Infectious Diseases, 1097 Budapest, Hungary
| | - Ilona Bobek
- Department of Anaesthesiology and Intensive Therapy, Central Hospital of Southern Pest, National Institute of Haematology and Infectious Diseases, 1097 Budapest, Hungary
| | - Zita Z. Prohászka
- Department of Internal Medicine and Haematology, Semmelweis University, 1088 Budapest, Hungary
| | - Zsolt Förhécz
- Department of Internal Medicine and Haematology, Semmelweis University, 1088 Budapest, Hungary
| | - Tamás Masszi
- Department of Internal Medicine and Haematology, Semmelweis University, 1088 Budapest, Hungary
| | - István Vályi-Nagy
- Department of Haematology and Stem Cell Transplantation, Central Hospital of Southern Pest National Institute of Haematology and Infectious Diseases, 1097 Budapest, Hungary
| | - Zoltán Prohászka
- Department of Internal Medicine and Haematology, Semmelweis University, 1088 Budapest, Hungary
- Research Group for Immunology and Hematology, Semmelweis University—HUN-REN-SU (Office for Supported Research Groups), 1085 Budapest, Hungary
| | - László Cervenak
- Department of Internal Medicine and Haematology, Semmelweis University, 1088 Budapest, Hungary
| |
Collapse
|
4
|
Rahmati N, Keshavarz Motamed P, Maftoon N. Numerical study of ultra-large von Willebrand factor multimers in coagulopathy. Biomech Model Mechanobiol 2024; 23:737-756. [PMID: 38217745 DOI: 10.1007/s10237-023-01803-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/30/2023] [Indexed: 01/15/2024]
Abstract
An excessive von Willebrand factor (VWF) secretion, coupled with a moderate to severe deficiency of ADAMTS13 activity, serves as a linking mechanism between inflammation to thrombosis. The former facilitates platelet adhesion to the vessel wall and the latter is required to cleave VWF multimers. As a result, the ultra-large VWF (UL-VWF) multimers released by Weibel-Palade bodies remain uncleaved. In this study, using a computational model based on first principles, we quantitatively show how the uncleaved UL-VWF multimers interact with the blood cells to initiate microthrombosis. We observed that platelets first adhere to unfolded and stretched uncleaved UL-VWF multimers anchored to the microvessel wall. By the end of this initial adhesion phase, the UL-VWF multimers and platelets make a mesh-like trap in which the red blood cells increasingly accumulate to initiate a gradually growing microthrombosis. Although high-shear rate and blood flow velocity are required to activate platelets and unfold the UL-VWFs, during the initial adhesion phase, the blood velocity drastically drops after thrombosis, and as a result, the wall shear stress is elevated near UL-VWF roots, and the pressure drops up to 6 times of the healthy condition. As the time passes, these trends progressively continue until the microthrombosis fully develops and the effective size of the microthrombosis and these flow quantities remain almost constant. Our findings quantitatively demonstrate the potential role of UL-VWF in coagulopathy.
Collapse
Affiliation(s)
- Nahid Rahmati
- Department of Systems Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Pouyan Keshavarz Motamed
- Department of Systems Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Nima Maftoon
- Department of Systems Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
- Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
5
|
Favaloro EJ. The Role of the von Willebrand Factor Collagen-Binding Assay (VWF:CB) in the Diagnosis and Treatment of von Willebrand Disease (VWD) and Way Beyond: A Comprehensive 36-Year History. Semin Thromb Hemost 2024; 50:43-80. [PMID: 36807283 DOI: 10.1055/s-0043-1763259] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The von Willebrand factor (VWF) collagen binding (VWF:CB) assay was first reported for use in von Willebrand diagnostics in 1986, by Brown and Bosak. Since then, the VWF:CB has continued to be used to help diagnose von Willebrand disease (VWD) (correctly) and also to help assign the correct subtype, as well as to assist in the monitoring of VWD therapy, especially desmopressin (DDAVP). However, it is important to recognize that the specific value of any VWF:CB is predicated on the use of an optimized VWF:CB, and that not all VWF:CB assays are so optimized. There are some good commercial assays available, but there are also some "not-so-good" commercial assays available, and these may continue to give the VWF:CB "a bad reputation." In addition to VWD diagnosis and management, the VWF:CB found purpose in a variety of other applications, from assessing ADAMTS13 activity, to investigation into acquired von Willebrand syndrome (especially as associated with use of mechanical circulatory support or cardiac assist devices), to assessment of VWF activity in disease states in where an excess of high-molecular-weight VWF may accumulate, and lead to increased (micro)thrombosis risk (e.g., coronavirus disease 2019, thrombotic thrombocytopenic purpura). The VWF:CB turns 37 in 2023. This review is a celebration of the utility of the VWF:CB over this nearly 40-year history.
Collapse
Affiliation(s)
- Emmanuel J Favaloro
- Department of Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), Sydney Centres for Thrombosis and Haemostasis, NSW Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
6
|
Nappi F. To Gain Insights into the Pathophysiological Mechanisms of the Thrombo-Inflammatory Process in the Atherosclerotic Plaque. Int J Mol Sci 2023; 25:47. [PMID: 38203218 PMCID: PMC10778759 DOI: 10.3390/ijms25010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Thromboinflammation, the interplay between thrombosis and inflammation, is a significant pathway that drives cardiovascular and autoimmune diseases, as well as COVID-19. SARS-CoV-2 causes inflammation and blood clotting issues. Innate immune cells have emerged as key modulators of this process. Neutrophils, the most predominant white blood cells in humans, are strategically positioned to promote thromboinflammation. By releasing decondensed chromatin structures called neutrophil extracellular traps (NETs), neutrophils can initiate an organised cell death pathway. These structures are adorned with histones, cytoplasmic and granular proteins, and have cytotoxic, immunogenic, and prothrombotic effects that can hasten disease progression. Protein arginine deiminase 4 (PAD4) catalyses the citrullination of histones and is involved in the release of extracellular DNA (NETosis). The neutrophil inflammasome is also required for this process. Understanding the link between the immunological function of neutrophils and the procoagulant and proinflammatory activities of monocytes and platelets is important in understanding thromboinflammation. This text discusses how vascular blockages occur in thromboinflammation due to the interaction between neutrophil extracellular traps and ultra-large VWF (von Willebrand Factor). The activity of PAD4 is important for understanding the processes that drive thromboinflammation by linking the immunological function of neutrophils with the procoagulant and proinflammatory activities of monocytes and platelets. This article reviews how vaso-occlusive events in thrombo-inflammation occur through the interaction of neutrophil extracellular traps with von Willebrand factor. It highlights the relevance of PAD4 in neutrophil inflammasome assembly and neutrophil extracellular traps in thrombo-inflammatory diseases such as atherosclerosis and cardiovascular disease. Interaction between platelets, VWF, NETs and inflammasomes is critical for the progression of thromboinflammation in several diseases and was recently shown to be active in COVID-19.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| |
Collapse
|
7
|
Zhang Q, Bignotti A, Yada N, Ye Z, Liu S, Han Z, Zheng XL. Dynamic Assessment of Plasma von Willebrand Factor and ADAMTS13 Predicts Mortality in Hospitalized Patients with SARS-CoV-2 Infection. J Clin Med 2023; 12:7174. [PMID: 38002786 PMCID: PMC10672082 DOI: 10.3390/jcm12227174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Plasma levels of von Willebrand factor (VWF) are significantly elevated in patients with coronavirus disease 2019 (COVID-19). However, dynamic changes and prognostic value of this biomarker in hospitalized patients with COVID-19 have not been determined. METHODS A total of 124 patients infected with SARS-CoV-2 were prospectively recruited for the study. Serial blood samples were obtained at the time of admission (D1), 3-4 days following standard-care treatments (D2), and 1-2 days prior to discharge or any time collected prior to death (D3). Plasma VWF antigen, ADAMTS13 antigen, and ADAMTS13 proteolytic activity, as well as the ratio of VWF/ADAMTS13 were determined, followed by various statistical analyses. RESULTS On admission, plasma levels of VWF in COVID-19 patients were significantly elevated compared with those in the healthy controls, but no statistical significance was detected among patients with different disease severity. Plasma ADAMTS13 activity but not its antigen levels were significantly lower in patients with severe or critical COVID-19 compared with that in other patient groups. Interestingly, the ratios of plasma VWF antigen to ADAMTS13 antigen were significantly higher in patients with severe or critical COVID-19 than in those with mild to moderate disease. More importantly, plasma levels of VWF and the ratios of VWF/ADAMTS13 were persistently elevated in patients with COVID-19 throughout hospitalization. Kaplan-Meier and Cox proportional hazard regression analyses demonstrated that an increased plasma level of VWF or ratio of VWF/ADAMTS13 at D2 and D3 was associated with an increased mortality rate. CONCLUSIONS Persistent endotheliopathy, marked by the elevated levels of plasma VWF or VWF/ADAMTS13 ratio, is present in all hospitalized patients following SARS-CoV-2 infection, which is strongly associated with mortality.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Antonia Bignotti
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Noritaka Yada
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Zhan Ye
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Szumam Liu
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD 21201, USA
| | - X. Long Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA
- Institute of Reproductive and Developmental Sciences, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
8
|
Tomo S, Kiran Kumar PVSN, Yadav D, Sankanagoudar S, Charan J, Purohit A, Nag VL, Bhatia PK, Singh K, Dutt N, Garg MK, Misra S, Sharma P, Purohit P. Association of Serum Complement C3 Levels with Severity and Mortality in COVID 19. Indian J Clin Biochem 2023; 38:447-456. [PMID: 37746543 PMCID: PMC10516839 DOI: 10.1007/s12291-023-01148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/25/2023] [Indexed: 09/26/2023]
Abstract
The severe acute respiratory distress syndrome-associated coronavirus-2 infection can activate innate and adaptive immune responses which may lead to harmful tissue damage, both locally and systemically. C3, a member of complement system of serum proteins, is a major component of innate immune and inflammatory responses. This study is aimed to assess serum C3 as a marker of COVID-19 severity and a predictor of disease progression. A total of 150 COVID-19 patients, confirmed by RT-PCR, and 50 healthy controls were recruited. Serum C3 levels were determined by using direct colorimetric method. Median levels of serum C3 in total cases and controls were 157.8 and 165.7 mg/dL respectively. Serum C3 although not significantly decreased, they were lower in cases when compared to controls. Similarly, significant differences were found between the groups, with severe group (140.6 mg/dL) having low levels of serum C3 protein when compared to mild (161.0 mg/dL) and moderate group (167.1 mg/dL). Interestingly, during hospitalization, significant difference between baseline (admission) and follow-up (discharge) was observed only in patients with moderate disease. Based on our results, lower levels of C3, with an increase in IL-6 and d-dimer levels, are associated with higher odds of mortality. Therefore, we would like to emphasize that measuring serum C3 levels along with other inflammatory markers might give an added advantage in early identification of patients who are prone to having a severe disease course and can help in a more effective follow-up of disease progression. Supplementary Information The online version contains supplementary material available at 10.1007/s12291-023-01148-x.
Collapse
Affiliation(s)
- Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Jodhpur, Basni Phase 2, Jodhpur, Rajasthan 342005 India
| | - PVSN Kiran Kumar
- Department of Biochemistry, Andhra Medical College, Visakhapatnam, India
| | - Dharamveer Yadav
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Jodhpur, Basni Phase 2, Jodhpur, Rajasthan 342005 India
| | - Shrimanjunath Sankanagoudar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Jodhpur, Basni Phase 2, Jodhpur, Rajasthan 342005 India
| | - Jayakaran Charan
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, India
| | - Abhishek Purohit
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Vijaya Lakshmi Nag
- Department of Microbiology, All India Institute of Medical Sciences, Jodhpur, India
| | - Pradeep Kumar Bhatia
- Department of Anaesthesiology and Critical Care, All India Institute of Medical Sciences, Jodhpur, India
| | - Kuldeep Singh
- Department of Paediatrics, All India Institute of Medical Sciences, Jodhpur, India
| | - Naveen Dutt
- Department of Pulmonary Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Mahendra Kumar Garg
- Department of General Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Sanjeev Misra
- Department of Surgical Oncology, All India Institute of Medical Sciences, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Jodhpur, Basni Phase 2, Jodhpur, Rajasthan 342005 India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Jodhpur, Basni Phase 2, Jodhpur, Rajasthan 342005 India
| |
Collapse
|
9
|
Greistorfer T, Jud P. Pathophysiological Aspects of COVID-19-Associated Vasculopathic Diseases. Thromb Haemost 2023; 123:931-944. [PMID: 37172941 DOI: 10.1055/s-0043-1768969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Since the beginning of coronavirus disease 2019 (COVID-19) pandemic, numerous data reported potential effects on the cardiovascular system due to infection by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), which may lead to COVID-19-associated vasculopathies during the acute phase and measurable vascular changes in the convalescent phase. Infection by SARS-CoV-2 seems to have specific direct and indirect effects on the endothelium, immune and coagulation systems thus promoting endothelial dysfunction, immunothrombosis, and formation of neutrophil extracellular traps although the exact mechanisms still need to be elucidated. This review represents a recent update of pathophysiological pathways of the respective three major mechanisms contributing to COVID-19 vasculopathies and vascular changes and includes clinical implications and significance of outcome data.
Collapse
Affiliation(s)
- Thiemo Greistorfer
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Philipp Jud
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
10
|
Bailey M, Linden D, Guo-Parke H, Earley O, Peto T, McAuley DF, Taggart C, Kidney J. Vascular risk factors for COVID-19 ARDS: endothelium, contact-kinin system. Front Med (Lausanne) 2023; 10:1208866. [PMID: 37448794 PMCID: PMC10336249 DOI: 10.3389/fmed.2023.1208866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/05/2023] [Indexed: 07/15/2023] Open
Abstract
SARS-CoV-2 binds to ACE2 receptors, expressed within the lungs. Risk factors for hospitalization include hypertension, diabetes, ischaemic heart disease and obesity-conditions linked by the presence of endothelial pathology. Viral infection in this setting causes increased conversion of circulating Factor XII to its active form (FXIIa). This is the first step in the contact-kinin pathway, leading to synchronous activation of the intrinsic coagulation cascade and the plasma Kallikrein-Kinin system, resulting in clotting and inflammatory lung disease. Temporal trends are evident from blood results of hospitalized patients. In the first week of symptoms the activated partial thromboplastin time (APTT) is prolonged. This can occur when clotting factors are consumed as part of the contact (intrinsic) pathway. Platelet counts initially fall, reflecting their consumption in coagulation. Lymphopenia occurs after approximately 1 week, reflecting the emergence of a lymphocytic pneumonitis [COVID-19 acute respiratory distress syndrome (ARDS)]. Intrinsic coagulation also induces the contact-kinin pathway of inflammation. A major product of this pathway, bradykinin causes oedema with ground glass opacities (GGO) on imaging in early COVID-19. Bradykinin also causes release of the pleiotrophic cytokine IL-6, which causes lymphocyte recruitment. Thromobosis and lymphocytic pneumonitis are hallmark features of COVID-19 ARDS. In this review we examine the literature with particular reference to the contact-kinin pathway. Measurements of platelets, lymphocytes and APTT should be undertaken in severe infections to stratify for risk of developing ARDS.
Collapse
Affiliation(s)
- Melanie Bailey
- Mater Infirmorum Hospital, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Dermot Linden
- Mater Infirmorum Hospital, Belfast Health and Social Care Trust, Belfast, United Kingdom
- Wellcome - Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Hong Guo-Parke
- Wellcome - Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Olivia Earley
- Mater Infirmorum Hospital, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Tunde Peto
- Mater Infirmorum Hospital, Belfast Health and Social Care Trust, Belfast, United Kingdom
- Wellcome - Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Danny F. McAuley
- Mater Infirmorum Hospital, Belfast Health and Social Care Trust, Belfast, United Kingdom
- Wellcome - Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Clifford Taggart
- Wellcome - Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Joseph Kidney
- Mater Infirmorum Hospital, Belfast Health and Social Care Trust, Belfast, United Kingdom
| |
Collapse
|
11
|
Scaramuzzo G, Nucera F, Asmundo A, Messina R, Mari M, Montanaro F, Johansen MD, Monaco F, Fadda G, Tuccari G, Hansbro NG, Hansbro PM, Hansel TT, Adcock IM, David A, Kirkham P, Caramori G, Volta CA, Spadaro S. Cellular and molecular features of COVID-19 associated ARDS: therapeutic relevance. J Inflamm (Lond) 2023; 20:11. [PMID: 36941580 PMCID: PMC10027286 DOI: 10.1186/s12950-023-00333-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/08/2023] [Indexed: 03/23/2023] Open
Abstract
The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection can be asymptomatic or cause a disease (COVID-19) characterized by different levels of severity. The main cause of severe COVID-19 and death is represented by acute (or acute on chronic) respiratory failure and acute respiratory distress syndrome (ARDS), often requiring hospital admission and ventilator support.The molecular pathogenesis of COVID-19-related ARDS (by now termed c-ARDS) is still poorly understood. In this review we will discuss the genetic susceptibility to COVID-19, the pathogenesis and the local and systemic biomarkers correlated with c-ARDS and the therapeutic options that target the cell signalling pathways of c-ARDS.
Collapse
Affiliation(s)
- Gaetano Scaramuzzo
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Department of Emergency, Section of Intensive Care and Anesthesia, Azienda Ospedaliera-Universitaria Sant’Anna, Ferrara, Italy
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Alessio Asmundo
- Medicina Legale, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Roberto Messina
- Intensive Care Unit, Dipartimento di Patologia Umana e dell’Età Evolutiva Gaetano Barresi, Università di Messina, Messina, Italy
| | - Matilde Mari
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Department of Emergency, Section of Intensive Care and Anesthesia, Azienda Ospedaliera-Universitaria Sant’Anna, Ferrara, Italy
| | - Federica Montanaro
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Department of Emergency, Section of Intensive Care and Anesthesia, Azienda Ospedaliera-Universitaria Sant’Anna, Ferrara, Italy
| | - Matt D. Johansen
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW Australia
| | - Francesco Monaco
- Chirurgia Toracica, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Guido Fadda
- Section of Pathological Anatomy, Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Giovanni Tuccari
- Section of Pathological Anatomy, Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Nicole G. Hansbro
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW Australia
| | - Philip M. Hansbro
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW Australia
| | - Trevor T. Hansel
- Medical Research Council and Asthma, UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Ian M. Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Antonio David
- Intensive Care Unit, Dipartimento di Patologia Umana e dell’Età Evolutiva Gaetano Barresi, Università di Messina, Messina, Italy
| | - Paul Kirkham
- Department of Biomedical Sciences, Faculty of Sciences and Engineering, University of Wolverhampton, West Midlands, Wolverhampton, UK
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Carlo Alberto Volta
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Department of Emergency, Section of Intensive Care and Anesthesia, Azienda Ospedaliera-Universitaria Sant’Anna, Ferrara, Italy
| | - Savino Spadaro
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Department of Emergency, Section of Intensive Care and Anesthesia, Azienda Ospedaliera-Universitaria Sant’Anna, Ferrara, Italy
| |
Collapse
|
12
|
Missense Variants of von Willebrand Factor in the Background of COVID-19 Associated Coagulopathy. Genes (Basel) 2023; 14:genes14030617. [PMID: 36980889 PMCID: PMC10048626 DOI: 10.3390/genes14030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
COVID-19 associated coagulopathy (CAC), characterized by endothelial dysfunction and hypercoagulability, evokes pulmonary immunothrombosis in advanced COVID-19 cases. Elevated von Willebrand factor (vWF) levels and reduced activities of the ADAMTS13 protease are common in CAC. Here, we aimed to determine whether common genetic variants of these proteins might be associated with COVID-19 severity and hemostatic parameters. A set of single nucleotide polymorphisms (SNPs) in the vWF (rs216311, rs216321, rs1063856, rs1800378, rs1800383) and ADAMTS13 genes (rs2301612, rs28729234, rs34024143) were genotyped in 72 COVID-19 patients. Cross-sectional cohort analysis revealed no association of any polymorphism with disease severity. On the other hand, analysis of variance (ANOVA) uncovered associations with the following clinical parameters: (1) the rs216311 T allele with enhanced INR (international normalized ratio); (2) the rs1800383 C allele with elevated fibrinogen levels; and (3) the rs1063856 C allele with increased red blood cell count, hemoglobin, and creatinine levels. No association could be observed between the phenotypic data and the polymorphisms in the ADAMTS13 gene. Importantly, in silico protein conformational analysis predicted that these missense variants would display global conformational alterations, which might affect the stability and plasma levels of vWF. Our results imply that missense vWF variants might modulate the thrombotic risk in COVID-19.
Collapse
|
13
|
Stefanini L, Ruberto F, Curreli M, Chistolini A, Schiera E, Marrapodi R, Visentini M, Ceccarelli G, D'Ettorre G, Santoro C, Gandini O, Moro EF, Zullino V, Pugliese F, Pulcinelli FM. Increased von Willebrand Factor Platelet-Binding Capacity Is Related to Poor Prognosis in COVID-19 Patients. Thromb Haemost 2023; 123:118-122. [PMID: 36252812 PMCID: PMC9831687 DOI: 10.1055/a-1962-5447] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lucia Stefanini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Franco Ruberto
- Department of General Surgery, Surgical Specialties and Organ Transplantation “Paride Stefanini” Sapienza University of Rome, Rome, Italy
| | | | - Antonio Chistolini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Eleonora Schiera
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Ramona Marrapodi
- Department of General Surgery, Surgical Specialties and Organ Transplantation “Paride Stefanini” Sapienza University of Rome, Rome, Italy
| | - Marcella Visentini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Gabriella D'Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Cristina Santoro
- Department of Hematology, University Hospital Policlinico Umberto I, Rome, Italy
| | - Orietta Gandini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Emilia F. Moro
- Department of General Surgery, Surgical Specialties and Organ Transplantation “Paride Stefanini” Sapienza University of Rome, Rome, Italy
| | - Veronica Zullino
- Department of General Surgery, Surgical Specialties and Organ Transplantation “Paride Stefanini” Sapienza University of Rome, Rome, Italy
| | - Francesco Pugliese
- Department of General Surgery, Surgical Specialties and Organ Transplantation “Paride Stefanini” Sapienza University of Rome, Rome, Italy
| | - Fabio M. Pulcinelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy,Address for correspondence Fabio M. Pulcinelli, MD Department of Experimental Medicine, Sapienza University of RomeRome 00191Italy
| |
Collapse
|
14
|
Matošević M, Kos I, Davidović M, Ban M, Matković H, Jakopčić I, Vuković Brinar I, Szilágyi Á, Csuka D, Sinkovits G, Prohászka Z, Vrljičak K, Lamot L. Hemolytic uremic syndrome in the setting of COVID-19 successfully treated with complement inhibition therapy: An instructive case report of a previously healthy toddler and review of literature. Front Pediatr 2023; 11:1092860. [PMID: 36873657 PMCID: PMC9975343 DOI: 10.3389/fped.2023.1092860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
INTRODUCTION As the global pandemic continues, new complications of COVID-19 in pediatric population have turned up, one of them being hemolytic uremic syndrome (HUS), a complement-mediated thrombotic microangiopathy (CM-TMA) characterized by triad of thrombocytopenia, microangiopathic hemolytic anemia and acute kidney injury (AKI). With both multisystem inflammatory syndrome in children (MIS-C) and HUS sharing complement dysregulation as one of the key factors, the aim of this case report is to highlight differences between these two conditions and also emphasize the importance of complement blockade as a treatment modality. CASE REPORT We describe a 21-month-old toddler who initially presented with fever and confirmed COVID-19. His condition quickly deteriorated and he developed oliguria, accompanied with diarrhea, vomiting and oral intake intolerance. HUS was suspected, supported with compelling laboratory findings, including decreased platelets count and C3 levels, elevated LDH, urea, serum creatinine and sC5b-9 and presence of schistocytes in peripheral blood, negative fecal Shiga toxin and normal ADAMTS13 metalloprotease activity. The patient was given C5 complement blocker Ravulizumab and started to display rapid improvement. CONCLUSION Although reports of HUS in the setting of COVID-19 continue to pour in, the questions of exact mechanism and similarities to MIS-C remain. Our case for the first time accentuates the use of complement blockade as a valuable treatment option in this scenario. We sincerely believe that reporting on HUS as a complication of COVID-19 in children will give rise to improved diagnosis and treatment, as well as better understanding of both of these intricating diseases.
Collapse
Affiliation(s)
- Matija Matošević
- Department of Pediatrics, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivanka Kos
- Division of Nephrology, Dialysis and Transplantation, Department of Pediatrics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Maša Davidović
- Division of Nephrology, Dialysis and Transplantation, Department of Pediatrics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Maja Ban
- Division of Nephrology, Dialysis and Transplantation, Department of Pediatrics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Hana Matković
- Division of Nephrology, Dialysis and Transplantation, Department of Pediatrics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Ivan Jakopčić
- Division of Nephrology, Dialysis and Transplantation, Department of Pediatrics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Ivana Vuković Brinar
- Department of Nephrology, Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, Zagreb, Croatia.,Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Ágnes Szilágyi
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Dorottya Csuka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - György Sinkovits
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Zoltán Prohászka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary.,Research Group for Immunology and Haematology, Semmelweis University- Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Kristina Vrljičak
- Division of Nephrology, Dialysis and Transplantation, Department of Pediatrics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Lovro Lamot
- Department of Pediatrics, University of Zagreb School of Medicine, Zagreb, Croatia.,Division of Nephrology, Dialysis and Transplantation, Department of Pediatrics, University Hospital Center Zagreb, Zagreb, Croatia
| |
Collapse
|
15
|
Xu X, Feng Y, Jia Y, Zhang X, Li L, Bai X, Jiao L. Prognostic value of von Willebrand factor and ADAMTS13 in patients with COVID-19: A systematic review and meta-analysis. Thromb Res 2022; 218:83-98. [PMID: 36027630 PMCID: PMC9385270 DOI: 10.1016/j.thromres.2022.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Endotheliopathy and coagulopathy appear to be the main causes for critical illness and death in patients with coronavirus disease 2019 (COVID-19). The adhesive ligand von Willebrand factor (VWF) has been involved in immunothrombosis responding to endothelial injury. Here, we reviewed the current literature and performed meta-analyses on the relationship between both VWF and its cleaving protease ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motif, member 13) with the prognosis of COVID-19. METHODS We searched MEDLINE, Cochrane Library, Web of Science, and EMBASE databases from inception to 4 March 2022 for studies analyzing the relationship between VWF-related variables and composite clinical outcomes of patients with COVID-19. The VWF-related variables analyzed included VWF antigen (VWF:Ag), VWF ristocetin cofactor (VWF:Rco), ADAMTS13 activity (ADAMTS13:Ac), the ratio of VWF:Ag to ADAMTS13:Ac, and coagulation factor VIII (FVIII). The unfavorable outcomes were defined as mortality, intensive care unit (ICU) admission, and severe disease course. We used random or fixed effects models to create summary estimates of risk. Risk of bias was assessed based on the principle of the Newcastle-Ottawa Scale. RESULTS A total of 3764 patients from 40 studies were included. The estimated pooled means indicated increased plasma levels of VWF:Ag, VWF:Rco, and VWF:Ag/ADAMTS13:Ac ratio, and decreased plasma levels of ADAMTS13:Ac in COVID-19 patients with unfavorable outcomes when compared to those with favorable outcomes (composite outcomes or subgroup analyses of non-survivor versus survivor, ICU versus non-ICU, and severe versus non-severe). In addition, FVIII were higher in COVID-19 patients with unfavorable outcomes. Subgroup analyses indicated that FVIII was higher in patients admitting to ICU, while there was no significant difference between non-survivors and survivors. CONCLUSIONS The imbalance of the VWF-ADAMTS13 axis (massive quantitative and qualitative increases of VWF with relative deficiency of ADAMTS13) is associated with poor prognosis of patients with COVID-19.
Collapse
Affiliation(s)
- Xin Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China.
| | - Yao Feng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China
| | - Yitong Jia
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China
| | - Xiao Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China
| | - Long Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China
| | - Xuesong Bai
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China; Department of Interventional Neuroradiology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China..
| |
Collapse
|
16
|
Gianni P, Goldin M, Ngu S, Zafeiropoulos S, Geropoulos G, Giannis D. Complement-mediated microvascular injury and thrombosis in the pathogenesis of severe COVID-19: A review. World J Exp Med 2022; 12:53-67. [PMID: 36157337 PMCID: PMC9350720 DOI: 10.5493/wjem.v12.i4.53] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/27/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) causes acute microvascular thrombosis in both venous and arterial structures which is highly associated with increased mortality. The mechanisms leading to thromboembolism are still under investigation. Current evidence suggests that excessive complement activation with severe amplification of the inflammatory response (cytokine storm) hastens disease progression and initiates complement-dependent cytotoxic tissue damage with resultant prothrombotic complications. The concept of thromboinflammation, involving overt inflammation and activation of the coagulation cascade causing thrombotic microangiopathy and end-organ damage, has emerged as one of the core components of COVID-19 pathogenesis. The complement system is a major mediator of the innate immune response and inflammation and thus an appealing treatment target. In this review, we discuss the role of complement in the development of thrombotic microangiopathy and summarize the current data on complement inhibitors as COVID-19 therapeutics.
Collapse
Affiliation(s)
- Panagiota Gianni
- Department of Internal Medicine III, Hematology, Oncology, Palliative Medicine, Rheumatology and Infectious Diseases, University Hospital Ulm, Ulm 89070, Germany
| | - Mark Goldin
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, New York, NY 11549, United States
- Feinstein Institutes for Medical Research at Northwell Health, Feinstein Institutes , New York, NY 11030, United States
| | - Sam Ngu
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, New York, NY 11549, United States
| | - Stefanos Zafeiropoulos
- Elmezzi Graduate School of Molecular Medicine, Northwell Health, New York, NY 11030, United States
| | - Georgios Geropoulos
- Department of General Surgery, University College London Hospitals, London NW12BU, United Kingdom
| | - Dimitrios Giannis
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, New York, NY 11549, United States
- North Shore/Long Island Jewish General Surgery, Northwell Health, New York, NY 11021, United States
| |
Collapse
|