1
|
Kuhlen M, Weins AB, Stadler N, Angelova-Toshkina D, Frühwald MC. Non-malignant features of cancer predisposition syndromes manifesting in childhood and adolescence: a guide for the general pediatrician. World J Pediatr 2025; 21:131-148. [PMID: 39641826 PMCID: PMC11885337 DOI: 10.1007/s12519-024-00853-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/17/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE Cancer predisposition syndromes are genetic disorders that significantly raise the risk of developing malignancies. Although the malignant manifestations of cancer predisposition syndromes are well-studied, recognizing their non-malignant features is crucial for early diagnosis, especially in children and adolescents. METHODS A comprehensive literature search was conducted using the PubMed database, focusing on non-malignant manifestations of cancer predisposition syndromes in children and adolescents. Key sources included the Clinical Cancer Research pediatric oncology series and ORPHANET. Studies that described clinical signs and symptoms affecting specific organ systems were included. RESULTS Non-malignant dermatological features often serve as early indicators of cancer predisposition syndromes, including café-au-lait spots in Neurofibromatosis Type 1 and facial angiofibromas in Tuberous Sclerosis Complex. Neurological and developmental anomalies such as cerebellar ataxia in ataxia-telangiectasia and intellectual disabilities in neurofibromatosis type 1 and tuberous sclerosis complex are significant indicators. Growth and metabolic anomalies are also notable, including overgrowth in Beckwith-Wiedemann syndrome and growth hormone deficiency in neurofibromatosis Type 1. In addition, facial anomalies, ocular manifestations, hearing issues, and thyroid anomalies are prevalent across various cancer predisposition syndromes. For instance, hearing loss may be significant in neurofibromatosis Type 2, while thyroid nodules are common in PTEN hamartoma tumor syndrome and DICER1 syndrome. Cardiovascular, abdominal, musculoskeletal, pulmonary, genitourinary manifestations, and prenatal deviations further complicate the clinical picture. CONCLUSIONS Recognizing non-malignant features of cancer predisposition syndromes is essential for early diagnosis and management. This organ-specific overview furthers awareness among healthcare providers, facilitating timely genetic counseling, surveillance programs, and preventive measures, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Michaela Kuhlen
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, 86156, Augsburg, Germany.
| | - Andreas B Weins
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, 86156, Augsburg, Germany
- Augsburger Zentrum für Seltene Erkrankungen, Faculty of Medicine, University of Augsburg, 86156, Augsburg, Germany
| | - Nicole Stadler
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, 86156, Augsburg, Germany
| | - Daniela Angelova-Toshkina
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, 86156, Augsburg, Germany
| | - Michael C Frühwald
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, 86156, Augsburg, Germany
| |
Collapse
|
2
|
Alamri L. Severe Immune Thrombocytopenic Purpura in a Pediatric Patient With Fanconi Anemia: A Case Report. Cureus 2024; 16:e68973. [PMID: 39385892 PMCID: PMC11463894 DOI: 10.7759/cureus.68973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Fanconi anemia (FA) is a rare inherited disorder characterized by progressive bone marrow failure, chromosomal instability, and an increased predisposition to malignancies. Autoimmune manifestations are uncommon in FA, with immune thrombocytopenic purpura (ITP) being a particularly rare presentation. ITP is an autoimmune disorder marked by immune-mediated platelet destruction, leading to severe thrombocytopenia and an increased risk of bleeding. This case report presents a pediatric patient with FA and severe ITP, illustrating the clinical challenges of managing autoimmune complications in the context of FA. This case report describes the case of a six-year-old boy with known FA who presented with a three-day history of spontaneous bruising, petechiae, and epistaxis. He had severe thrombocytopenia (platelet count: 8,000/µL) without other significant cytopenias. The initial workup excluded viral infections and other secondary causes, leading to the diagnosis of ITP. The patient was treated with intravenous immunoglobulin (IVIG) and corticosteroids, resulting in a transient improvement. However, his platelet counts declined, prompting treatment with rituximab, which achieved a sustained response. He was discharged after four weeks of rituximab therapy and remained stable at follow-up with a platelet count of 100,000/µL. This case highlights the rare occurrence of ITP in FA and the successful use of rituximab for refractory thrombocytopenia. The findings suggest a need for ongoing research into the mechanisms of immune dysregulation in FA and the development of optimized therapeutic strategies for managing autoimmune manifestations in this complex patient population.
Collapse
|
3
|
Bellani MA, Shaik A, Majumdar I, Ling C, Seidman MM. Repair of genomic interstrand crosslinks. DNA Repair (Amst) 2024; 141:103739. [PMID: 39106540 PMCID: PMC11423799 DOI: 10.1016/j.dnarep.2024.103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
Genomic interstrand crosslinks (ICLs) are formed by reactive species generated during normal cellular metabolism, produced by the microbiome, and employed in cancer chemotherapy. While there are multiple options for replication dependent and independent ICL repair, the crucial step for each is unhooking one DNA strand from the other. Much of our insight into mechanisms of unhooking comes from powerful model systems based on plasmids with defined ICLs introduced into cells or cell free extracts. Here we describe the properties of exogenous and endogenous ICL forming compounds and provide an historical perspective on early work on ICL repair. We discuss the modes of unhooking elucidated in the model systems, the concordance or lack thereof in drug resistant tumors, and the evolving view of DNA adducts, including ICLs, formed by metabolic aldehydes.
Collapse
Affiliation(s)
- Marina A Bellani
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Althaf Shaik
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ishani Majumdar
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Chen Ling
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael M Seidman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
4
|
Bianchi E, Bhattacharya B, Bowling AJ, Pence HE, Mundy PC, Jones G, Muriana A, Grever WE, Pappas-Garton A, Sriram S, LaRocca J, Bondesson M. Applications of Zebrafish Embryo Models to Predict Developmental Toxicity for Agrochemical Product Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18132-18145. [PMID: 39087946 DOI: 10.1021/acs.jafc.4c00970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The development of safe crop protection products is a complex process that traditionally relies on intensive animal use for hazard identification. Methods that capture toxicity in early stages of agrochemical discovery programs enable a more efficient and sustainable product development pipeline. Here, we explored whether the zebrafish model can be leveraged to identify mammalian-relevant toxicity. We used transgenic zebrafish to assess developmental toxicity following exposures to known mammalian teratogens and captured larval morphological malformations, including bone and vascular perturbations. We further applied toxicogenomics to identify common biomarker signatures of teratogen exposure. The results show that the larval malformation assay predicted teratogenicity with 82.35% accuracy, 87.50% specificity, and 77.78% sensitivity. Similar and slightly lower accuracies were obtained with the vascular and bone assays, respectively. A set of 20 biomarkers were identified that efficiently segregated teratogenic chemicals from nonteratogens. In conclusion, zebrafish are valuable, robust, and cost-effective models for toxicity testing in the early stages of product development.
Collapse
Affiliation(s)
- Enrica Bianchi
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | | | | | - Heather E Pence
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | - Paige C Mundy
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | - Gabe Jones
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | | | | | | | | | - Jessica LaRocca
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | - Maria Bondesson
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana 47408, United States
| |
Collapse
|
5
|
Matsumoto M, Oyake M, Itonaga T, Maeda M, Suenobu S, Sato D, Sasahara Y, Mishima H, Yoshiura KI, Ihara K. Characteristic phenotypes of ADH5/ALDH2 deficiency during childhood. Eur J Med Genet 2024; 69:104939. [PMID: 38614309 DOI: 10.1016/j.ejmg.2024.104939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
ADH5/ALDH2 deficiency is a rare inherited syndrome characterized by short stature, microcephaly, delayed mental development, and hematopoietic dysfunction and has recently been proposed as a disease paradigm. Acute and severe presentations include aplastic anemia, myelodysplastic syndrome, or leukemia, requiring bone marrow transplantation during childhood. Conversely, non-hematological manifestations may exhibit a prolonged and nonspecific clinical trajectory, with growth failure and developmental delay, most of which are often overlooked, particularly in patients with milder symptoms. Here, we describe the clinical course of a girl with a wide spectrum of clinical presentations, including nonspecific hematopoietic disorders, growth retardation, mild developmental delay, amblyopia, hemophagocytic lymphohistiocytosis, and verruca vulgaris, culminating in a genetic diagnosis of AMeD syndrome at 12 years of age. We also summarized the clinical manifestations of previously reported cases of AMeD syndrome. Cumulatively, 13 females and 5 males have been documented, with a cardinal triad of symptoms, aplastic anemia, short stature, and intellectual disability. Additional characteristic observations included pigmentary deposition in approximately half of the cases and skeletal difficulties in one-quarter. We propose that early diagnosis of patients who exhibit relatively mild phenotypes of skin or skeletal lesions is important for managing and improving the quality of life of patients with AMeD syndrome.
Collapse
Affiliation(s)
- Mio Matsumoto
- Department of Pediatrics, Oita University School of Medicine, Yufu-City, Oita, Japan
| | - Momoko Oyake
- Department of Pediatrics, Oita University School of Medicine, Yufu-City, Oita, Japan
| | - Tomoyo Itonaga
- Department of Pediatrics, Oita University School of Medicine, Yufu-City, Oita, Japan
| | - Miwako Maeda
- Department of Pediatrics, Oita University School of Medicine, Yufu-City, Oita, Japan
| | - Soichi Suenobu
- Department of Pediatrics, Oita University School of Medicine, Yufu-City, Oita, Japan
| | - Daichi Sato
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai-City, Miyagi, Japan
| | - Yoji Sasahara
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai-City, Miyagi, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki-City, Nagasaki, Japan; Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki-City, Nagasaki, Japan; Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kenji Ihara
- Department of Pediatrics, Oita University School of Medicine, Yufu-City, Oita, Japan.
| |
Collapse
|
6
|
Namikawa T, Tanaka T, Utsunomiya M, Yokota K, Munekage M, Maeda H, Kitagawa H, Kurioka Y, Satake H, Kobayashi M, Hanazaki K, Seo S. Gastric cancer with Fanconi anemia in adolescent and young adult patient diagnosed by comprehensive genome profiling using next-generation sequencing. Clin J Gastroenterol 2024; 17:12-17. [PMID: 37934348 DOI: 10.1007/s12328-023-01886-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023]
Abstract
Recently, the results of gastric cancer treatment have improved; however, its characteristics in adolescents and young adults are not well known. We report the case of a patient with advanced gastric cancer, Fanconi anemia (FA), and primary biliary cholangitis. A 26-year-old woman visited a local physician complaining of epigastralgia. Esophagogastroduodenoscopy revealed edematous changes with poor distension and circumferential thickened folds with erosions in the gastric body. Biopsy results of the lesion specimens revealed poorly differentiated adenocarcinoma. Abdominal contrast-enhanced computed tomography revealed gastric wall with irregular thickness, several nodules in the peritoneal cavity, and a mass lesion in the right ovary. We diagnosed the patient with T4N2M1 stage IV gastric cancer accompanied by peritoneal and ovarian metastases and initiated nivolumab with S-1 plus oxaliplatin as the first-line treatment regimen. Because of immune-related adverse events after one course of systemic treatment, the regimen was changed to ramucirumab combined with nab-paclitaxel chemotherapy as the second-line treatment. After three cycles of weekly nab-paclitaxel with ramucirumab, the decreased platelet count did not recover, and her general condition gradually deteriorated. Comprehensive genome profiling using next-generation sequencing was performed to determine the feasibility of genotype-matched therapies. Alterations in FA complementation group A (FANCA) F1263del (49.1%) and E484Q (12.3%), which encode a key component of the multiprotein FA complex, were identified. The patient died 10 months after treatment initiation. In conclusion, when treating malignancies in adolescent and young adult patients, the genomic background should be considered.
Collapse
Affiliation(s)
- Tsutomu Namikawa
- Department of Surgery, Kochi Medical School, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan.
| | - Tomoki Tanaka
- Department of Surgery, Kochi Medical School, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| | - Masato Utsunomiya
- Department of Surgery, Kochi Medical School, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| | - Keiichiro Yokota
- Department of Surgery, Kochi Medical School, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| | - Masaya Munekage
- Department of Surgery, Kochi Medical School, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| | - Hiromichi Maeda
- Department of Surgery, Kochi Medical School, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| | - Hiroyuki Kitagawa
- Department of Operating Room Management, Kochi Medical School Hospital, Nankoku, Japan
| | - Yusuke Kurioka
- Department of Medical Oncology, Kochi Medical School, Nankoku, Japan
| | - Hironaga Satake
- Department of Medical Oncology, Kochi Medical School, Nankoku, Japan
| | - Michiya Kobayashi
- Department of Human Health and Medical Sciences, Kochi Medical School, Nankoku, Japan
| | - Kazuhiro Hanazaki
- Integrated Center for Advanced Medical Technologies, Kochi Medical School Hospital, Nankoku, Japan
| | - Satoru Seo
- Department of Surgery, Kochi Medical School, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| |
Collapse
|
7
|
Zhang N, Wang X, Miao XJ, Zhang XP, Xia XY, Li L, Sun HP. An acquired BMF with FANCL gene heterozygous mutation: Case report. Medicine (Baltimore) 2023; 102:e34036. [PMID: 37327301 PMCID: PMC10270529 DOI: 10.1097/md.0000000000034036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/29/2023] [Indexed: 06/18/2023] Open
Abstract
RATIONALE Bone marrow failure (BMF) includes inherited and acquired BMFs. Acquired BMF can be secondary to various factors, such as autoimmune dysfunction, benzene, drugs, radiation, viral infection and so on. Fanconi anemia (FA) complementation group L (FANCL) is an E3 ubiquitin ligase that participates in the repair of DNA damage. Homozygous or compound heterozygous mutations of FANCL can lead to the onset of FA, which is one of the most common inherited BMFs. PATIENT CONCERNS AND DIAGNOSES Here, we report a case of acquired BMF. This patient had a history of benzene exposure for half a year before the onset of the disease, and presented with progressive pancytopenia, especially the reduction of erythrocytes and megakaryocyte, without malformation. Interestingly, this patient and his brother/father had a heterozygous (non-homozygous/compound heterozygous) mutation (Exon9, c.745C > T, p.H249Y) in the FANCL gene. INTERVENTIONS AND OUTCOMES The patient successfully underwent unrelated and fully compatible umbilical cord blood hematopoietic stem cell transplantation. LESSONS SUBSECTIONS We report for the first time an acquired BMF case with FANCL gene heterozygous mutation, and the mutation site (Exon9, c.745C > T, p.H249Y) has never been reported. This case suggests that heterozygous mutations in FANCL gene may be associated with increased susceptibility to acquired BMF. Based on current reports and this case, we speculate that heterozygous mutations in the FA complementation gene may exist in a certain proportion of tumor and acquired BMF patients, but have not been detected. We recommend routine screening for FA complementation gene mutations in tumor and acquired BMF patients in clinical practice. If positive results are found, further screening can be conducted on their families.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Hematology, People’s Liberation Army The General Hospital of Western Theater Command, Chengdu, China
| | - Xiao Wang
- Department of Hematology, People’s Liberation Army The General Hospital of Western Theater Command, Chengdu, China
| | - Xiao-Juan Miao
- Department of Hematology, People’s Liberation Army The General Hospital of Western Theater Command, Chengdu, China
| | - Xu-Pai Zhang
- Department of Hematology, People’s Liberation Army The General Hospital of Western Theater Command, Chengdu, China
| | - Xin-Yu Xia
- Department of Hematology, People’s Liberation Army The General Hospital of Western Theater Command, Chengdu, China
| | - Li Li
- Department of Hematology, People’s Liberation Army The General Hospital of Western Theater Command, Chengdu, China
| | - Hao-Ping Sun
- Department of Hematology, People’s Liberation Army The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|