1
|
Cai YM, Witham S, Patron NJ. Tuning Plant Promoters Using a Simple Split Luciferase Method to Assess Transcription Factor-DNA Interactions. ACS Synth Biol 2023; 12:3482-3486. [PMID: 37856867 PMCID: PMC10661027 DOI: 10.1021/acssynbio.3c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Indexed: 10/21/2023]
Abstract
Sequence features, including the affinity of binding motifs for their cognate transcription factors, are important contributors to promoter behavior. The ability to predictably recode affinity enables the development of synthetic promoters with varying levels of response to known cellular signals. Here we describe a luminescence-based microplate assay for comparing the interactions of transcription factors with short DNA probes. We then demonstrate how these data can be used to design synthetic plant promoters of varying strengths that respond to the same transcription factor.
Collapse
Affiliation(s)
- Y.-M. Cai
- Engineering
Biology, Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, U.K.
| | - S. Witham
- Engineering
Biology, Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, U.K.
| | - N. J. Patron
- Engineering
Biology, Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, U.K.
| |
Collapse
|
2
|
Identification and Functional Evaluation of Three Polyubiquitin Promoters from Hevea brasiliensis. FORESTS 2022. [DOI: 10.3390/f13060952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hevea brasiliensis is an economically important tree species that provides the only commercial source of natural rubber. The replacement of the CaMV35S promoter by endogenous polyubiquitin promoters may be a viable way to improve the genetic transformation of this species. However, no endogenous polyubiquitin promoters in Hevea have been reported yet. Here, we identified three Hevea polyubiquitin genes HbUBI10.1, HbUBI10.2 and HbUBI10.3, which encode ubiquitin monomers having nearly identical amino acid sequences to that of AtUBQ10. The genomic fragments upstream of these HbUBI genes, including the signature leading introns, were amplified as putative HbUBI promoters. In silico analysis showed that a number of cis-acting elements which are conserved within strong constitutive polyubiquitin promoters were presented in these HbUBI promoters. Transcriptomic data revealed that HbUBI10.1 and HbUBI10.2 had a constitutive expression in Hevea plants. Semi-quantitative RT-PCR showed that these three HbUBI genes were expressed higher than the GUS gene driven by CaMV35S in transgenic Hevea leaves. All three HbUBI promoters exhibited the capability to direct GFP expression in both transient and stable transformation assays, although they produced lower protoplast transformation efficiencies than the CaMV35S promoter. These HbUBI promoters will expand the availability of promoters for driving the transgene expression in Hevea genetic engineering.
Collapse
|
3
|
Matsunaga W, Shimura H, Shirakawa S, Isoda R, Inukai T, Matsumura T, Masuta C. Transcriptional silencing of 35S driven-transgene is differentially determined depending on promoter methylation heterogeneity at specific cytosines in both plus- and minus-sense strands. BMC PLANT BIOLOGY 2019; 19:24. [PMID: 30642254 PMCID: PMC6332629 DOI: 10.1186/s12870-019-1628-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/02/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND De novo DNA methylation triggered by short interfering RNAs is called RNA-directed DNA methylation (RdDM). Transcriptional gene silencing (TGS) through RdDM can be induced using a viral vector. We have previously induced RdDM on the 35S promoter in the green fluorescent protein (GFP)-expressing Nicotiana benthamiana line 16c using the cucumber mosaic virus vector. The GFP fluorescence phenotype segregated into two types, "red" and "orange" in the first self-fertilized (S1) progeny plants by the difference in degree of recovery from TGS on GFP expression. In the second self-fertilized generation (S2 plants), the phenotypes again segregated. Explaining what generates the red and orange types could answer a very important question in epigenetics: How is the robustness of TGS maintained after RdDM induction? RESULTS In bisulfite sequencing analyses, we found a significant difference in the overall promoter hypermethylation pattern between the red and orange types in S1 plants but little difference in S2 plants. Therefore, we assumed that methylation at some specific cytosine residues might be important in determining the two phenotypes. To find the factor that discriminates stable, robust TGS from the unstable TGS with incomplete inheritance, we analyzed the direct effect of methylated cytosine residues on TGS. Because it has not yet been demonstrated that DNA methylation at a few specific cytosine residues on known sequence elements can indeed determine TGS robustness, we newly developed a method by which we can directly evaluate the effect of specific methylation on promoter activity. In this assay, we found that the effects of the specific cytosine methylation on TGS differed between the plus- and minus-strands. CONCLUSIONS We found two distinct phenotypes, the stable and unstable TGS in the progenies of virus-induced TGS plants. Our bisulfite sequencing analyses suggested that methylation at some specific cytosine residues in the 35S promoter played a role in determining whether stable or unstable TGSs are induced. Using the developed method, we inferred that DNA methylation heterogeneity in and between the plus- and minus-strands can differentially determine TGS.
Collapse
Affiliation(s)
- Wataru Matsunaga
- Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, 060-8589 Japan
| | - Hanako Shimura
- Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, 060-8589 Japan
| | - Senri Shirakawa
- Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, 060-8589 Japan
| | - Reika Isoda
- Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, 060-8589 Japan
| | - Tsuyoshi Inukai
- Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, 060-8589 Japan
| | - Takeshi Matsumura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517 Japan
| | - Chikara Masuta
- Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, 060-8589 Japan
| |
Collapse
|
4
|
Li D, Palanca AMS, Won SY, Gao L, Feng Y, Vashisht AA, Liu L, Zhao Y, Liu X, Wu X, Li S, Le B, Kim YJ, Yang G, Li S, Liu J, Wohlschlegel JA, Guo H, Mo B, Chen X, Law JA. The MBD7 complex promotes expression of methylated transgenes without significantly altering their methylation status. eLife 2017; 6. [PMID: 28452714 PMCID: PMC5462541 DOI: 10.7554/elife.19893] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 04/24/2017] [Indexed: 12/23/2022] Open
Abstract
DNA methylation is associated with gene silencing in eukaryotic organisms. Although pathways controlling the establishment, maintenance and removal of DNA methylation are known, relatively little is understood about how DNA methylation influences gene expression. Here we identified a METHYL-CpG-BINDING DOMAIN 7 (MBD7) complex in Arabidopsis thaliana that suppresses the transcriptional silencing of two LUCIFERASE (LUC) reporters via a mechanism that is largely downstream of DNA methylation. Although mutations in components of the MBD7 complex resulted in modest increases in DNA methylation concomitant with decreased LUC expression, we found that these hyper-methylation and gene expression phenotypes can be genetically uncoupled. This finding, along with genome-wide profiling experiments showing minimal changes in DNA methylation upon disruption of the MBD7 complex, places the MBD7 complex amongst a small number of factors acting downstream of DNA methylation. This complex, however, is unique as it functions to suppress, rather than enforce, DNA methylation-mediated gene silencing. DOI:http://dx.doi.org/10.7554/eLife.19893.001
Collapse
Affiliation(s)
- Dongming Li
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, United States.,School of Life Sciences, Lanzhou University, Lanzhou, China.,State Key Laboratory of Plant Cell and Chromosome Engineering, Hebei Collaboration Innovation Center for Cell Signaling, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Ana Marie S Palanca
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - So Youn Won
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, United States
| | - Lei Gao
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, United States.,College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen, China
| | - Ying Feng
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, United States.,State Key Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing, China
| | - Ajay A Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, United States
| | - Li Liu
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, United States
| | - Yuanyuan Zhao
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, United States
| | - Xigang Liu
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, United States.,State Key Laboratory of Plant Cell and Chromosome Engineering, Hebei Collaboration Innovation Center for Cell Signaling, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Xiuyun Wu
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, United States.,Laboratory of Molecular Biology and Protein Science, Laboratory of the Ministry of Education, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | - Shaofang Li
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, United States
| | - Brandon Le
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, United States
| | - Yun Ju Kim
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, United States
| | - Guodong Yang
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, United States
| | - Shengben Li
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, United States
| | - Jinyuan Liu
- Laboratory of Molecular Biology and Protein Science, Laboratory of the Ministry of Education, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, United States
| | - Hongwei Guo
- State Key Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing, China
| | - Beixin Mo
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, United States.,Howard Hughes Medical Institute, University of California, Riverside, United States
| | - Julie A Law
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| |
Collapse
|
5
|
Kon T, Yoshikawa N. Induction and maintenance of DNA methylation in plant promoter sequences by apple latent spherical virus-induced transcriptional gene silencing. Front Microbiol 2014; 5:595. [PMID: 25426109 PMCID: PMC4226233 DOI: 10.3389/fmicb.2014.00595] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/21/2014] [Indexed: 12/22/2022] Open
Abstract
Apple latent spherical virus (ALSV) is an efficient virus-induced gene silencing vector in functional genomics analyses of a broad range of plant species. Here, an Agrobacterium-mediated inoculation (agroinoculation) system was developed for the ALSV vector, and virus-induced transcriptional gene silencing (VITGS) is described in plants infected with the ALSV vector. The cDNAs of ALSV RNA1 and RNA2 were inserted between the cauliflower mosaic virus 35S promoter and the NOS-T sequences in a binary vector pCAMBIA1300 to produce pCALSR1 and pCALSR2-XSB or pCALSR2-XSB/MN. When these vector constructs were agroinoculated into Nicotiana benthamiana plants with a construct expressing a viral silencing suppressor, the infection efficiency of the vectors was 100%. A recombinant ALSV vector carrying part of the 35S promoter sequence induced transcriptional gene silencing of the green fluorescent protein gene in a line of N. benthamiana plants, resulting in the disappearance of green fluorescence of infected plants. Bisulfite sequencing showed that cytosine residues at CG and CHG sites of the 35S promoter sequence were highly methylated in the silenced generation zero plants infected with the ALSV carrying the promoter sequence as well as in progeny. The ALSV-mediated VITGS state was inherited by progeny for multiple generations. In addition, induction of VITGS of an endogenous gene (chalcone synthase-A) was demonstrated in petunia plants infected with an ALSV vector carrying the native promoter sequence. These results suggest that ALSV-based vectors can be applied to study DNA methylation in plant genomes, and provide a useful tool for plant breeding via epigenetic modification.
Collapse
Affiliation(s)
- Tatsuya Kon
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University Morioka, Japan
| | - Nobuyuki Yoshikawa
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University Morioka, Japan
| |
Collapse
|
6
|
Otagaki S, Kasai M, Masuta C, Kanazawa A. Enhancement of RNA-directed DNA methylation of a transgene by simultaneously downregulating a ROS1 ortholog using a virus vector in Nicotiana benthamiana. Front Genet 2013; 4:44. [PMID: 23565118 PMCID: PMC3613619 DOI: 10.3389/fgene.2013.00044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/12/2013] [Indexed: 12/11/2022] Open
Abstract
Cytosine methylation can be induced by double-stranded RNAs through the RNA-directed DNA methylation (RdDM) pathway. A DNA glycosylase REPRESSOR OF SILENCING 1 (ROS1) participates in DNA demethylation in Arabidopsis and may possibly counteract RdDM. Here, we isolated an ortholog of ROS1 (NbROS1) from Nicotiana benthamiana and examined the antagonistic activity of NbROS1 against virus-induced RdDM by simultaneously inducing RdDM and NbROS1 knockdown using a vector based on Cucumber mosaic virus. Plants were inoculated with a virus that contained a portion of the Cauliflower mosaic virus 35S promoter, which induced RdDM of the promoter integrated in the plant genome and transcriptional silencing of the green fluorescent protein gene driven by the promoter. Plants were also inoculated with a virus that contained a portion of NbROS1, which induced downregulation of NbROS1. Simultaneous induction of RdDM and NbROS1 knockdown resulted in an increase in the level of cytosine methylation of the target promoter. These results provide evidence for the presence of antagonistic activity of NbROS1 against virus-induced RdDM and suggest that the simultaneous induction of promoter-targeting RdDM and NbROS1 knockdown by a virus vector is useful as a tool to enhance targeted DNA methylation.
Collapse
Affiliation(s)
- Shungo Otagaki
- Research Faculty of Agriculture, Hokkaido University Sapporo, Japan
| | | | | | | |
Collapse
|
7
|
Sako K, Maki Y, Kanai T, Kato E, Maekawa S, Yasuda S, Sato T, Watahiki MK, Yamaguchi J. Arabidopsis RPT2a, 19S proteasome subunit, regulates gene silencing via DNA methylation. PLoS One 2012; 7:e37086. [PMID: 22615900 PMCID: PMC3353898 DOI: 10.1371/journal.pone.0037086] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 04/18/2012] [Indexed: 01/03/2023] Open
Abstract
The ubiquitin/proteasome pathway plays a crucial role in many biological processes. Here we report a novel role for the Arabidopsis 19S proteasome subunit RPT2a in regulating gene activity at the transcriptional level via DNA methylation. Knockout mutation of the RPT2a gene did not alter global protein levels; however, the transcriptional activities of reporter transgenes were severely reduced compared to those in the wild type. This transcriptional gene silencing (TGS) was observed for transgenes under control of either the constitutive CaMV 35S promoter or the cold-inducible RD29A promoter. Bisulfite sequencing analysis revealed that both the transgene and endogenous RD29A promoter regions were hypermethylated at CG and non-CG contexts in the rpt2a mutant. Moreover, the TGS of transgenes driven by the CaMV 35S promoters was released by treatment with the DNA methylation inhibitor 5-aza-2'-deoxycytidine, but not by application of the inhibitor of histone deacetylase Trichostatin A. Genetic crosses with the DNA methyltransferase met1 single or drm1drm2cmt3 triple mutants also resulted in a release of CaMV 35S transgene TGS in the rpt2a mutant background. Increased methylation was also found at transposon sequences, suggesting that the 19S proteasome containing AtRPT2a negatively regulates TGS at transgenes and at specific endogenous genes through DNA methylation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Junji Yamaguchi
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
8
|
Arase S, Kasai M, Kanazawa A. In planta assays involving epigenetically silenced genes reveal inhibition of cytosine methylation by genistein. PLANT METHODS 2012; 8:10. [PMID: 22424588 PMCID: PMC3362751 DOI: 10.1186/1746-4811-8-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/19/2012] [Indexed: 05/07/2023]
Abstract
BACKGROUND Cytosine methylation is involved in epigenetic control of gene expression in a wide range of organisms. An increasing number of examples indicate that changing the frequency of cytosine methylation in the genome is a feasible tool to engineer novel traits in plants. Although demethylating effects of compounds have been analyzed in human cultured cells in terms of suppressing cancer, their effect in plant cells has not been analyzed extensively. Here, we developed in planta assay systems to detect inhibition of cytosine methylation using plants that contain a transgene transcriptionally silenced by an epigenetic mechanism. RESULTS Seeds of two transgenic plants were used: a petunia line that has been identified as a revertant of the co-suppression of the chalcone synthase-A (CHS-A) gene and contains CHS-A transgenes whose transcription is repressed; Nicotiana benthamiana plants that contain the green fluorescent protein (GFP) reporter gene whose transcription is repressed through virus-induced transcriptional gene silencing. Seeds of these plants were sown on a medium that contained a demethylating agent, either 5-azacytidine or trichostatin A, and the restoration of the transcriptionally active state of the transgene was detected in seedlings. Using these systems, we found that genistein, a major isoflavonoid compound, inhibits cytosine methylation, thus restoring transgene transcription. Genistein also restored the transcription of an epigenetically silenced endogenous gene in Arabidopsis plants. CONCLUSIONS Our assay systems allowed us to assess the inhibition of cytosine methylation, in particular of maintenance of methylation, by compounds in plant cells. These results suggest a novel role of flavonoids in plant cells and that genistein is useful for modifying the epigenetic state of plant genomes.
Collapse
Affiliation(s)
- Sachiko Arase
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Megumi Kasai
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Akira Kanazawa
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
9
|
Kasai M, Koseki M, Goto K, Masuta C, Ishii S, Hellens RP, Taneda A, Kanazawa A. Coincident sequence-specific RNA degradation of linked transgenes in the plant genome. PLANT MOLECULAR BIOLOGY 2012; 78:259-73. [PMID: 22146813 DOI: 10.1007/s11103-011-9863-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 11/18/2011] [Indexed: 05/23/2023]
Abstract
The expression of transgenes in plant genomes can be inhibited by either transcriptional gene silencing or posttranscriptional gene silencing (PTGS). Overexpression of the chalcone synthase-A (CHS-A) transgene triggers PTGS of CHS-A and thus results in loss of flower pigmentation in petunia. We previously demonstrated that epigenetic inactivation of CHS-A transgene transcription leads to a reversion of the PTGS phenotype. Although neomycin phosphotransferase II (nptII), a marker gene co-introduced into the genome with the CHS-A transgene, is not normally silenced in petunia, even when CHS-A is silenced, here we found that nptII was silenced in a petunia line in which CHS-A PTGS was induced, but not in the revertant plants that had no PTGS of CHS-A. Transcriptional activity, accumulation of short interfering RNAs, and restoration of mRNA level after infection with viruses that had suppressor proteins of gene silencing indicated that the mechanism for nptII silencing was posttranscriptional. Read-through transcripts of the CHS-A gene toward the nptII gene were detected. Deep-sequencing analysis revealed a striking difference between the predominant size class of small RNAs produced from the read-through transcripts (22 nt) and that from the CHS-A RNAs (21 nt). These results implicate the involvement of read-through transcription and distinct phases of RNA degradation in the coincident PTGS of linked transgenes and provide new insights into the destabilization of transgene expression.
Collapse
Affiliation(s)
- Megumi Kasai
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Crhák Khaitová L, Fojtová M, Křížová K, Lunerová J, Fulneček J, Depicker A, Kovařík A. Paramutation of tobacco transgenes by small RNA-mediated transcriptional gene silencing. Epigenetics 2011; 6:650-60. [PMID: 21521939 PMCID: PMC3121974 DOI: 10.4161/epi.6.5.15764] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 04/06/2011] [Indexed: 02/03/2023] Open
Abstract
It has been well established that trans-acting small RNAs guide promoter methylation leading to its inactivation and gene silencing at the transcriptional level (TGS). Here we addressed the question of the influence of the locus structure and epigenetic modifications of the target locus on its susceptibility for being paramutated by trans-acting small RNA molecules. Silencing was induced by crossing a 35S promoter silencer locus 271 with two different 35S-driven transgene loci, locus 2 containing a highly expressed single copy gene and locus 1 containing an inverted posttranscriptionally silenced (PTGS) repeat of this gene. Three generations of exposure to RNA signals from the 271 locus were required to complete silencing and methylation of the 35S promoter within locus 2. Segregating methylated locus 2 epialleles were obtained only from the third generation of hybrids, and this methylation was not correlated with silencing. Strikingly, only one generation was required for the PTGS locus 1 to acquire complete TGS and 35S promoter methylation. In this case, paramutated locus 1 epialleles bearing methylated and inactive 35S promoters segregated already from the first generation of hybrids. The results support the hypothesis that PTGS loci containing a palindrome structure and methylation in the coding region are more sensitive to paramutation by small RNAs and exhibit a strong tendency to formation of meiotically transmissible TGS epialleles. These features contrast with a non-methylated single copy transgenic locus that required several generations of contact with RNA silencing molecules to become imprinted in a stable epiallele.
Collapse
Affiliation(s)
- Lucie Crhák Khaitová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno, Czech Republic
| | - Miloslava Fojtová
- Department of Functional Genomics and Proteomics; Institute of Experimental Biology; Faculty of Science; Masaryk University; Brno, Czech Republic
| | - Kateřina Křížová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno, Czech Republic
| | - Jana Lunerová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno, Czech Republic
| | - Jaroslav Fulneček
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno, Czech Republic
| | - Anna Depicker
- Department of Plant Systems Biology; VIB; Department of Plant Biotechnology and Genetics; Ghent University; Ghent, Belgium
| | - Aleš Kovařík
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno, Czech Republic
| |
Collapse
|
11
|
Yamasaki S, Oda M, Daimon H, Mitsukuri K, Johkan M, Nakatsuka T, Nishihara M, Mishiba KI. Epigenetic modifications of the 35S promoter in cultured gentian cells. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:612-619. [PMID: 21421409 DOI: 10.1016/j.plantsci.2011.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 12/26/2010] [Accepted: 01/05/2011] [Indexed: 05/30/2023]
Abstract
Our previous studies found strict gene silencing associated with CaMV-35S promoter-specific de novo methylation in transgenic gentian plants. To dissect the de novo methylation machinery, especially in association with histone modification, 35S-driven sGFP-expressing and -silenced gentian cultured cell lines that originated from a single transformation event were produced and used for epigenetic analyses. A sGFP-expressing primarily induced cell suspension culture (PS) was hypomethylated in the 35S promoter region, although a low level of de novo methylation at the 35S enhancer region (-148 to -85) was detected. In contrast, a sGFP-silenced re-induced cell suspension culture (RS), which originated from leaf tissues of a transgenic plant, was hypermethylated in the 35S promoter region. Chromatin immunoprecipitation analysis showed that in RS, histone H3 of the silenced 35S promoter region was deacetylated and also dimethylated on lysine 9. Interestingly, in the silenced 35S promoter 3' region, dimethylation of histone H3 lysine 4 was also observed. When hypomethylation and histone H3 acetylation of the 35S region occurred in PS, de novo methylation at the 35S enhancer region had already taken place. The de novo methylation status was also resistant to 5-aza-2'-deoxycytidine treatment. These results suggest that de novo methylation of the enhancer region is a primitive process of 35S silencing that triggers histone H3 deacetylation.
Collapse
Affiliation(s)
- Satoshi Yamasaki
- Graduate School of Life and Environmental Sciences, Osaka Prefectural University, 1-1 Gakuen, Sakai, Osaka 599-8531, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kanazawa A, Inaba JI, Shimura H, Otagaki S, Tsukahara S, Matsuzawa A, Kim BM, Goto K, Masuta C. Virus-mediated efficient induction of epigenetic modifications of endogenous genes with phenotypic changes in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:156-168. [PMID: 21175898 DOI: 10.1111/j.1365-313x.2010.04401.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Gene silencing through transcriptional repression can be induced by targeting double-stranded RNA (dsRNA) to a gene promoter. It has been reported that a transgene was silenced by targeting dsRNA to the promoter, and the silenced state was inherited to the progeny plant even after removal of the silencing inducer from cells. In contrast, no plant has been produced that harbors silenced endogenous gene after removal of promoter-targeting dsRNA. Here, we show that heritable gene silencing can be induced by targeting dsRNA to the endogenous gene promoters in petunia and tomato plants, using the Cucumber mosaic virus (CMV)-based vector. We found that efficient silencing of endogenous genes depends on the function of the 2b protein encoded in the vector virus, which has the ability to facilitate epigenetic modifications through the transport of short interfering RNA to nucleus. Bisulfite sequencing analyses on the targeted promoter in the virus-infected and its progeny plants revealed that cytosine methylation was found not only at CG or CNG but also at CNN sites. The observed inheritance of asymmetric DNA methylation is quite unique, suggesting that plants have a mechanism to maintain even asymmetric methylation. This CMV-based gene silencing system provides a useful tool to artificially modify DNA methylation in plant genomes and elucidate the mechanism for epigenetic controls.
Collapse
Affiliation(s)
- Akira Kanazawa
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Jun-Ichi Inaba
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Hanako Shimura
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Shungo Otagaki
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Sayuri Tsukahara
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Akihiko Matsuzawa
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Bo Min Kim
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Kazunori Goto
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Chikara Masuta
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
13
|
Mishiba KI, Yamasaki S, Nakatsuka T, Abe Y, Daimon H, Oda M, Nishihara M. Strict de novo methylation of the 35S enhancer sequence in gentian. PLoS One 2010; 5:e9670. [PMID: 20351783 PMCID: PMC2843634 DOI: 10.1371/journal.pone.0009670] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 02/19/2010] [Indexed: 11/18/2022] Open
Abstract
A novel transgene silencing phenomenon was found in the ornamental plant, gentian (Gentiana triflora x G. scabra), in which the introduced Cauliflower mosaic virus (CaMV) 35S promoter region was strictly methylated, irrespective of the transgene copy number and integrated loci. Transgenic tobacco having the same vector did not show the silencing behavior. Not only unmodified, but also modified 35S promoters containing a 35S enhancer sequence were found to be highly methylated in the single copy transgenic gentian lines. The 35S core promoter (-90)-introduced transgenic lines showed a small degree of methylation, implying that the 35S enhancer sequence was involved in the methylation machinery. The rigorous silencing phenomenon enabled us to analyze methylation in a number of the transgenic lines in parallel, which led to the discovery of a consensus target region for de novo methylation, which comprised an asymmetric cytosine (CpHpH; H is A, C or T) sequence. Consequently, distinct footprints of de novo methylation were detected in each (modified) 35S promoter sequence, and the enhancer region (-148 to -85) was identified as a crucial target for de novo methylation. Electrophoretic mobility shift assay (EMSA) showed that complexes formed in gentian nuclear extract with the -149 to -124 and -107 to -83 region probes were distinct from those of tobacco nuclear extracts, suggesting that the complexes might contribute to de novo methylation. Our results provide insights into the phenomenon of sequence- and species- specific gene silencing in higher plants.
Collapse
Affiliation(s)
- Kei-ichiro Mishiba
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Kanazawa A, O'Dell M, Hellens RP. Epigenetic inactivation of chalcone synthase-A transgene transcription in petunia leads to a reversion of the post-transcriptional gene silencing phenotype. PLANT & CELL PHYSIOLOGY 2007; 48:638-47. [PMID: 17317685 DOI: 10.1093/pcp/pcm028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Petunia plants that exhibit a white-flowering phenotype as a consequence of chalcone synthase transgene-induced silencing occasionally give rise to revertant branches that produce flowers with wild-type pigmentation. Transcription run-on assays confirmed that the production of white flowers is caused by post-transcriptional gene silencing (PTGS), and indicated that transgene transcription is repressed in the revertant plants, providing evidence that induction of PTGS depends on the transcription rate. Transcriptional repression of the transgene was associated with cytosine methylation at CpG, CpNpG and CpNpN sites, and the expression was restored by treatment with either 5-azacytidine or trichostatin A. These results demonstrate that epigenetic changes occurred in the PTGS line, and these changes interfere with the initiation of transgene transcription, leading to a reversion of the PTGS phenotype.
Collapse
Affiliation(s)
- Akira Kanazawa
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan.
| | | | | |
Collapse
|