1
|
Moss KR, Bopp TS, Johnson AE, Höke A. New evidence for secondary axonal degeneration in demyelinating neuropathies. Neurosci Lett 2021; 744:135595. [PMID: 33359733 PMCID: PMC7852893 DOI: 10.1016/j.neulet.2020.135595] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/31/2020] [Accepted: 12/19/2020] [Indexed: 12/28/2022]
Abstract
Development of peripheral nervous system (PNS) myelin involves a coordinated series of events between growing axons and the Schwann cell (SC) progenitors that will eventually ensheath them. Myelin sheaths have evolved out of necessity to maintain rapid impulse propagation while accounting for body space constraints. However, myelinating SCs perform additional critical functions that are required to preserve axonal integrity including mitigating energy consumption by establishing the nodal architecture, regulating axon caliber by organizing axonal cytoskeleton networks, providing trophic and potentially metabolic support, possibly supplying genetic translation materials and protecting axons from toxic insults. The intermediate steps between the loss of these functions and the initiation of axon degeneration are unknown but the importance of these processes provides insightful clues. Prevalent demyelinating diseases of the PNS include the inherited neuropathies Charcot-Marie-Tooth Disease, Type 1 (CMT1) and Hereditary Neuropathy with Liability to Pressure Palsies (HNPP) and the inflammatory diseases Acute Inflammatory Demyelinating Polyneuropathy (AIDP) and Chronic Inflammatory Demyelinating Polyneuropathy (CIDP). Secondary axon degeneration is a common feature of demyelinating neuropathies and this process is often correlated with clinical deficits and long-lasting disability in patients. There is abundant electrophysiological and histological evidence for secondary axon degeneration in patients and rodent models of PNS demyelinating diseases. Fully understanding the involvement of secondary axon degeneration in these diseases is essential for expanding our knowledge of disease pathogenesis and prognosis, which will be essential for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kathryn R Moss
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Taylor S Bopp
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Anna E Johnson
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
2
|
Fabrizi GM, Tamburin S, Cavallaro T, Cabrini I, Ferrarini M, Taioli F, Magrinelli F, Zanette G. The spectrum of Charcot-Marie-Tooth disease due to myelin protein zero: An electrodiagnostic, nerve ultrasound and histological study. Clin Neurophysiol 2017; 129:21-32. [PMID: 29136549 DOI: 10.1016/j.clinph.2017.09.117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/13/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Nerve ultrasound (US) data on myelin protein zero (MPZ)-related Charcot-Marie-Tooth disease (CMT) are lacking. To offer a comprehensive perspective on MPZ-related CMTs, we combined nerve US with clinics, electrodiagnosis and histopathology. METHODS We recruited 36 patients (12 MPZ mutations), and correlated nerve US to clinical, electrodiagnostic measures, and sural nerve biopsy. RESULTS According to motor nerve conduction velocity (MNCV) criteria, nine patients were categorized as "demyelinating" CMT1B, 17 as "axonal" CMT2I/J, and 10 as dominant "intermediate" CMTDID. Sural nerve biopsy showed hypertrophic de-remyelinating neuropathy with numerous complex onion bulbs in one patient, de-remyelinating neuropathy with scanty/absent onion bulbs in three, axonal neuropathy in two, mixed demyelinating-axonal neuropathy in five. Electrodiagnosis significantly differed in CMT1B vs. CMT2I/J and CMTDID subgroups. CMT1B had slightly enlarged nerve cross sectional area (CSA) especially at proximal upper-limb (UL) sites. CSA was negatively correlated to UL MNCV and not increased at entrapment sites. Major sural nerve pathological patterns were uncorrelated to UL nerve US and MNCV. CONCLUSIONS Sural nerve biopsy confirmed the wide pathological spectrum of MPZ-CMT. UL nerve US identified two major patterns corresponding to the CMT1B and CMT2I/J-CMTDID subgroups. SIGNIFICANCE Nerve US phenotype of MPZ-CMT diverged from those in other demyelinating peripheral neuropathies and may have diagnostic value.
Collapse
Affiliation(s)
- Gian Maria Fabrizi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Neurology Division, Department of Neuroscience, AOUI Verona, Verona, Italy
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Neurology Division, Department of Neuroscience, AOUI Verona, Verona, Italy.
| | - Tiziana Cavallaro
- Neurology Division, Department of Neuroscience, AOUI Verona, Verona, Italy
| | - Ilaria Cabrini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Neurology Division, Department of Neuroscience, AOUI Verona, Verona, Italy
| | - Moreno Ferrarini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Neurology Division, Department of Neuroscience, AOUI Verona, Verona, Italy
| | - Federica Taioli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Neurology Division, Department of Neuroscience, AOUI Verona, Verona, Italy
| | - Francesca Magrinelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Neurology Division, Department of Neuroscience, AOUI Verona, Verona, Italy
| | - Giampietro Zanette
- Neurology Division, Pederzoli Hospital, Peschiera del Garda, Verona, Italy
| |
Collapse
|
3
|
Sanmaneechai O, Feely S, Scherer SS, Herrmann DN, Burns J, Muntoni F, Li J, Siskind CE, Day JW, Laura M, Sumner CJ, Lloyd TE, Ramchandren S, Shy RR, Grider T, Bacon C, Finkel RS, Yum SW, Moroni I, Piscosquito G, Pareyson D, Reilly MM, Shy ME. Genotype-phenotype characteristics and baseline natural history of heritable neuropathies caused by mutations in the MPZ gene. Brain 2015; 138:3180-92. [PMID: 26310628 DOI: 10.1093/brain/awv241] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 06/30/2015] [Indexed: 11/14/2022] Open
Abstract
We aimed to characterize genotype-phenotype correlations and establish baseline clinical data for peripheral neuropathies caused by mutations in the myelin protein zero (MPZ) gene. MPZ mutations are the second leading cause of Charcot-Marie-Tooth disease type 1. Recent research makes clinical trials for patients with MPZ mutations a realistic possibility. However, the clinical severity varies with different mutations and natural history data on progression is sparse. We present cross-sectional data to begin to define the phenotypic spectrum and clinical baseline of patients with these mutations. A cohort of patients with MPZ gene mutations was identified in 13 centres of the Inherited Neuropathies Consortium - Rare Disease Clinical Research Consortium (INC-RDCRC) between 2009 and 2012 and at Wayne State University between 1996 and 2009. Patient phenotypes were quantified by the Charcot-Marie-Tooth disease neuropathy score version 1 or 2 and the Charcot-Marie-Tooth disease paediatric scale outcome instruments. Genetic testing was performed in all patients and/or in first- or second-degree relatives to document mutation in MPZ gene indicating diagnosis of Charcot-Marie-Tooth disease type 1B. There were 103 patients from 71 families with 47 different MPZ mutations with a mean age of 40 years (range 3-84 years). Patients and mutations were separated into infantile, childhood and adult-onset groups. The infantile onset group had higher Charcot-Marie-Tooth disease neuropathy score version 1 or 2 and slower nerve conductions than the other groups, and severity increased with age. Twenty-three patients had no family history of Charcot-Marie-Tooth disease. Sixty-one patients wore foot/ankle orthoses, 19 required walking assistance or support, and 10 required wheelchairs. There was hearing loss in 21 and scoliosis in 17. Forty-two patients did not begin walking until after 15 months of age. Half of the infantile onset patients then required ambulation aids or wheelchairs for ambulation. Our results demonstrate that virtually all MPZ mutations are associated with specific phenotypes. Early onset (infantile and childhood) phenotypes likely represent developmentally impaired myelination, whereas the adult-onset phenotype reflects axonal degeneration without antecedent demyelination. Data from this cohort of patients will provide the baseline data necessary for clinical trials of patients with Charcot-Marie-Tooth disease caused by MPZ gene mutations.
Collapse
Affiliation(s)
- Oranee Sanmaneechai
- 1 Department of Neurology, University of Iowa Hospitals and Clinics, Iowa, IA, USA 2 Division of Neurology, Department of Pediatrics, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Shawna Feely
- 1 Department of Neurology, University of Iowa Hospitals and Clinics, Iowa, IA, USA
| | - Steven S Scherer
- 3 The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David N Herrmann
- 4 Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Joshua Burns
- 5 Arthritis and Musculoskeletal Research Group, University of Sydney / Paediatric Gait Analysis Service of NSW, Children's Hospital at Westmead, Sydney / Neuromuscular Research Group, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Francesco Muntoni
- 6 University College London Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Jun Li
- 7 Department of Neurology, Vanderbilt University, Nashville, TN, USA
| | - Carly E Siskind
- 8 Department of Neurology, Stanford University, Stanford, CA, USA
| | - John W Day
- 8 Department of Neurology, Stanford University, Stanford, CA, USA
| | - Matilde Laura
- 9 MRC Centre for Neuromuscular Diseases, University College London Institute of Neurology, London, UK
| | - Charlotte J Sumner
- 10 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas E Lloyd
- 10 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Rosemary R Shy
- 1 Department of Neurology, University of Iowa Hospitals and Clinics, Iowa, IA, USA
| | - Tiffany Grider
- 1 Department of Neurology, University of Iowa Hospitals and Clinics, Iowa, IA, USA
| | - Chelsea Bacon
- 1 Department of Neurology, University of Iowa Hospitals and Clinics, Iowa, IA, USA
| | | | - Sabrina W Yum
- 3 The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA 13 Neuromuscular Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Isabella Moroni
- 14 Departments of Child Neurology, IRCCS Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - Giuseppe Piscosquito
- 15 Departments of Clinical Neurosciences, IRCCS Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - Davide Pareyson
- 15 Departments of Clinical Neurosciences, IRCCS Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - Mary M Reilly
- 9 MRC Centre for Neuromuscular Diseases, University College London Institute of Neurology, London, UK
| | - Michael E Shy
- 1 Department of Neurology, University of Iowa Hospitals and Clinics, Iowa, IA, USA
| | | |
Collapse
|
4
|
Klein CJ, Duan X, Shy ME. Inherited neuropathies: clinical overview and update. Muscle Nerve 2013; 48:604-22. [PMID: 23801417 DOI: 10.1002/mus.23775] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2013] [Indexed: 11/06/2022]
Abstract
Inherited neuropathy is a group of common neurologic disorders with heterogeneous clinical presentations and genetic causes. Detailed neuromuscular evaluations, including nerve conduction studies, laboratory testing, and histopathologic examination, can assist in identification of the inherited component beyond family history. Genetic testing increasingly enables definitive diagnosis of specific inherited neuropathies. Diagnosis, however, is often complex, and neurologic disability may have both genetic and acquired components in individual patients. The decision of which genetic test to order or whether to order genetic tests is often complicated, and the strategies to maximize the value of testing are evolving. Apart from rare inherited metabolic neuropathies, treatment approaches remain largely supportive. We provide a clinical update of the various types of inherited neuropathies, their differential diagnoses, and distinguishing clinical features (where available). A framework is provided for clinical evaluations, including the inheritance assessment, electrophysiologic examinations, and specific genetic tests.
Collapse
Affiliation(s)
- Christopher J Klein
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota, 55905, USA; Department of Medical Genetics, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|