1
|
Avisar D, Tannor DJ. Excited-state wavepacket and potential reconstruction by coherent anti-Stokes Raman scattering. Phys Chem Chem Phys 2015; 17:2297-310. [DOI: 10.1039/c4cp03233k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We propose a methodology for reconstructing polyatomic excited-state molecular wavepackets and potential energy surfaces by multiple pulse optical spectroscopy.
Collapse
Affiliation(s)
- David Avisar
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - David J. Tannor
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| |
Collapse
|
2
|
De AK, Monahan D, Dawlaty JM, Fleming GR. Two-dimensional fluorescence-detected coherent spectroscopy with absolute phasing by confocal imaging of a dynamic grating and 27-step phase-cycling. J Chem Phys 2014; 140:194201. [DOI: 10.1063/1.4874697] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
3
|
HAN YONGCHANG, YUAN KAIJUN, CONG SHULIN. CONTROLLING WAVE PACKET INTERFERENCE OF DISSOCIATING MOLECULES BY SHAPING LASER PULSES IN FREQUENCY DOMAIN. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633608004453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The interference of dissociating wave packets for the Br 2 molecule in femtosecond laser field is studied theoretically using time-dependent quantum wave packet method. The interference of dissociating wave packets can be determined by the spectrum of laser field. By shaping laser pulses in frequency domain, the corresponding R- and v-dependent density functions can be effectively controlled. Compared with the 2-pulse excitation scheme, the resolution of the interference patterns can be improved by using 3- and 4-pulse excitation schemes. The dissociating velocity can be steered by varying laser parameters.
Collapse
Affiliation(s)
- YONG-CHANG HAN
- Department of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - KAI-JUN YUAN
- Department of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - SHU-LIN CONG
- Department of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China
| |
Collapse
|
4
|
Korolkov MV, Weitzel KM. Femtosecond interferometry of molecular dynamics – the role of relative and absolute phase of two individual laser pulses. Z PHYS CHEM 2011. [DOI: 10.1524/zpch.2011.0154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Dynamical implications of the dissociation of a molecular ion under the influence of interferometrically generated light fields have been investigated by numerical solution of time dependent Schrödinger equations. As an example the dissociation of DCl+ ions by means of two interfering 7 fs laser pulses at 800 nm has been chosen. We demonstrate that product branching ratios D+:Cl+ can be manipulated from 10:1 to 1:10 not only by adjusting the appropriate delay time in the time-shifted two-pulse approach, but also by choosing the proper carrier envelope phase (CEP) of the two partial light fields. The effects of the phase shift related to the time shift and that of the CEP can be clearly distinguished.
Collapse
|
5
|
Yuen-Zhou J, Aspuru-Guzik A. Quantum process tomography of excitonic dimers from two-dimensional electronic spectroscopy. I. General theory and application to homodimers. J Chem Phys 2011; 134:134505. [PMID: 21476762 DOI: 10.1063/1.3569694] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Is it possible to infer the time evolving quantum state of a multichromophoric system from a sequence of two-dimensional electronic spectra (2D-ES) as a function of waiting time? Here we provide a positive answer for a tractable model system: a coupled dimer. After exhaustively enumerating the Liouville pathways associated to each peak in the 2D-ES, we argue that by judiciously combining the information from a series of experiments varying the polarization and frequency components of the pulses, detailed information at the amplitude level about the input and output quantum states at the waiting time can be obtained. This possibility yields a quantum process tomography (QPT) of the single-exciton manifold, which completely characterizes the open quantum system dynamics through the reconstruction of the process matrix. In this manuscript, we present the general theory as well as specific and numerical results for a homodimer, for which we prove that signals stemming from coherence to population transfer and vice versa vanish upon isotropic averaging, therefore, only allowing for a partial QPT in such case. However, this fact simplifies the spectra, and it follows that only two polarization controlled experiments (and no pulse-shaping requirements) suffice to yield the elements of the process matrix, which survive under isotropic averaging. Redundancies in the 2D-ES amplitudes allow for the angle between the two site transition dipole moments to be self-consistently obtained, hence simultaneously yielding structural and dynamical information of the dimer. Model calculations are presented, as well as an error analysis in terms of the angle between the dipoles and peak amplitude extraction. In the second article accompanying this study, we numerically exemplify the theory for heterodimers and carry out a detailed error analysis for such case. This investigation reveals an exciting quantum information processing (QIP) approach to spectroscopic experiments of excitonic systems, and hence, bridges an important gap between theoretical studies on excitation energy transfer from the QIP standpoint and experimental methods to study such systems in the chemical physics community.
Collapse
Affiliation(s)
- Joel Yuen-Zhou
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
6
|
Avisar D, Tannor DJ. Complete reconstruction of the wave function of a reacting molecule by four-wave mixing spectroscopy. PHYSICAL REVIEW LETTERS 2011; 106:170405. [PMID: 21635022 DOI: 10.1103/physrevlett.106.170405] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Indexed: 05/30/2023]
Abstract
Probing the real time dynamics of a reacting molecule remains one of the central challenges in chemistry. Here we show how the time-dependent wave function of an excited-state reacting molecule can be completely reconstructed from resonant coherent anti-Stokes Raman spectroscopy. The method assumes knowledge of the ground potential but not of any excited potential. The excited-state potential can in turn be constructed from the wave function. The formulation is general for polyatomics and applies to bound as well as dissociative excited potentials. We demonstrate the method on the Li(2) molecule.
Collapse
Affiliation(s)
- David Avisar
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
7
|
Avisar D, Tannor DJ. Wavepacket and potential reconstruction by four-wave mixing spectroscopy: preliminary application to polyatomic molecules. Faraday Discuss 2011; 153:131-48; discussion 189-212. [DOI: 10.1039/c1fd00048a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
8
|
Ruetzel S, Stolzenberger C, Fechner S, Dimler F, Brixner T, Tannor DJ. Molecular quantum control landscapes in von Neumann time-frequency phase space. J Chem Phys 2010; 133:164510. [DOI: 10.1063/1.3495950] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Biggs JD, Cina JA. Using wave-packet interferometry to monitor the external vibrational control of electronic excitation transfer. J Chem Phys 2010; 131:224101. [PMID: 20001018 DOI: 10.1063/1.3257596] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the control of electronic energy transfer in molecular dimers through the preparation of specific vibrational coherences prior to electronic excitation, and its observation by nonlinear wave-packet interferometry (nl-WPI). Laser-driven coherent nuclear motion can affect the instantaneous resonance between site-excited electronic states and thereby influence short-time electronic excitation transfer (EET). We first illustrate this control mechanism with calculations on a dimer whose constituent monomers undergo harmonic vibrations. We then consider the use of nl-WPI experiments to monitor the nuclear dynamics accompanying EET in general dimer complexes following impulsive vibrational excitation by a subresonant control pulse (or control pulse sequence). In measurements of this kind, two pairs of polarized phase-related femtosecond pulses following the control pulse generate superpositions of coherent nuclear wave packets in optically accessible electronic states. Interference contributions to the time- and frequency-integrated fluorescence signals due to overlaps among the superposed wave packets provide amplitude-level information on the nuclear and electronic dynamics. We derive the basic expression for a control-pulse-dependent nl-WPI signal. The electronic transition moments of the constituent monomers are assumed to have a fixed relative orientation, while the overall orientation of the complex is distributed isotropically. We include the limiting case of coincident arrival by pulses within each phase-related pair in which control-influenced nl-WPI reduces to a fluorescence-detected pump-probe difference experiment. Numerical calculations of pump-probe signals based on these theoretical expressions are presented in the following paper [J. D. Biggs and J. A. Cina, J. Chem. Phys. 131, 224302 (2009)].
Collapse
Affiliation(s)
- Jason D Biggs
- Department of Chemistry and Oregon Center for Optics, University of Oregon, Eugene, Oregon 97403, USA
| | | |
Collapse
|
10
|
Cina JA. Wave-Packet Interferometry and Molecular State Reconstruction: Spectroscopic Adventures on the Left-Hand Side of the Schrödinger Equation. Annu Rev Phys Chem 2008; 59:319-42. [DOI: 10.1146/annurev.physchem.59.032607.093753] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jeffrey A. Cina
- Department of Chemistry and Oregon Center for Optics, University of Oregon, Eugene, Oregon 97403;
| |
Collapse
|
11
|
Tekavec PF, Lott GA, Marcus AH. Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation. J Chem Phys 2008; 127:214307. [PMID: 18067357 DOI: 10.1063/1.2800560] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Two-dimensional electronic coherence spectroscopy (ECS) is an important method to study the coupling between distinct optical modes of a material system. Such studies often involve excitation using a sequence of phased ultrashort laser pulses. In conventional approaches, the delays between pulse temporal envelopes must be precisely monitored or maintained. Here, we introduce a new experimental scheme for phase-selective nonlinear ECS, which combines acousto-optic phase modulation with ultrashort laser excitation to produce intensity modulated nonlinear fluorescence signals. We isolate specific nonlinear signal contributions by synchronous detection, with respect to appropriately constructed references. Our method effectively decouples the relative temporal phases from the pulse envelopes of a collinear train of four sequential pulses. We thus achieve a robust and high signal-to-noise scheme for phase-selective ECS to investigate the resonant nonlinear optical response of photoluminescent systems. We demonstrate the validity of our method using a model quantum three-level system-atomic Rb vapor. Moreover, we show how our measurements determine the resonant complex-valued third-order susceptibility.
Collapse
Affiliation(s)
- Patrick F Tekavec
- Department of Physics, University of Oregon, Eugene, Oregon 97403, USA
| | | | | |
Collapse
|
12
|
|
13
|
Humble TS, Cina JA. Nonlinear wave-packet interferometry and molecular state reconstruction in a vibrating and rotating diatomic molecule. J Phys Chem B 2007; 110:18879-92. [PMID: 16986879 DOI: 10.1021/jp0567669] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We formulate two-color nonlinear wave-packet interferometry (WPI) for application to a diatomic molecule in the gas phase and show that this form of heterodyne-detected multidimensional electronic spectroscopy will permit the reconstruction of photoinduced rovibrational wave packets from experimental data. Using two phase-locked pulse pairs, each resonant with a different electronic transition, nonlinear WPI detects the quadrilinear interference contributions to the population of an excited electronic state. Combining measurements taken with different phase-locking angles isolates various quadrilinear interference terms. One such term gives the complex overlap between a propagated one-pulse target wave packet and a variable three-pulse reference wave packet. The two-dimensional interferogram in the time domain specifies the complex-valued overlap of the given target state with a collection of variable reference states. An inversion procedure based on singular-value decomposition enables reconstruction of the target wave packet from the interferogram without prior detailed characterization of the nuclear Hamiltonian under which the target propagates. With numerically calculated nonlinear WPI signals subject to Gaussian noise, we demonstrate the reconstruction of a rovibrational wave packet launched from the A state and propagated in the E state of Li2.
Collapse
Affiliation(s)
- Travis S Humble
- Department of Chemistry and Oregon Center for Optics, University of Oregon, Eugene, Oregon 97403-1253, USA
| | | |
Collapse
|
14
|
Cao Y, Zhang L, Yang Y, Sun Z, Wang Z. Molecular rovibrational dynamics investigated by two-photon wavepacket interferometry with phase-locked pulse pairs. Chem Phys Lett 2007. [DOI: 10.1016/j.cplett.2007.05.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Deeb O, Leibscher M, Manz J, von Muellern W, Seideman T. Toward Separation of Nuclear Spin Isomers with Coherent Light. Chemphyschem 2007; 8:322-8. [PMID: 17183525 DOI: 10.1002/cphc.200600543] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We propose an approach for separating nuclear spin isomers with coherent light and illustrate it by numerical calculations using fulvene as a model system. The scheme employs the equivalence of torsion and interchange of equivalent H-atoms in a class of molecules of which fulvene is a simple example. The exchange symmetry couples with the rotational symmetry to produce a spatial distinction between the two photo-excited nuclear spin isomers, and wavepacket interferometry is applied to separate the species.
Collapse
Affiliation(s)
- Omar Deeb
- Department of Chemistry and Chemical Technology, Al-Quds University, P.O.Box 20002 Jerusalem (Palestinian Authority)
| | | | | | | | | |
Collapse
|
16
|
Tekavec PF, Dyke TR, Marcus AH. Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation. J Chem Phys 2006; 125:194303. [PMID: 17129099 DOI: 10.1063/1.2386159] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Studies of wave packet dynamics often involve phase-selective measurements of coherent optical signals generated from sequences of ultrashort laser pulses. In wave packet interferometry (WPI), the separation between the temporal envelopes of the pulses must be precisely monitored or maintained. Here we introduce a new (and easy to implement) experimental scheme for phase-selective measurements that combines acousto-optic phase modulation with ultrashort laser excitation to produce an intensity-modulated fluorescence signal. Synchronous detection, with respect to an appropriately constructed reference, allows the signal to be simultaneously measured at two phases differing by 90 degrees. Our method effectively decouples the relative temporal phase from the pulse envelopes of a collinear train of optical pulse pairs. We thus achieve a robust and high signal-to-noise scheme for WPI applications, such as quantum state reconstruction and electronic spectroscopy. The validity of the method is demonstrated, and state reconstruction is performed, on a model quantum system--atomic Rb vapor. Moreover, we show that our measurements recover the correct separation between the absorptive and dispersive contributions to the system susceptibility.
Collapse
Affiliation(s)
- Patrick F Tekavec
- Department of Physics, University of Oregon, Eugene, Oregon 97403, USA
| | | | | |
Collapse
|
17
|
Martínez-Galicia R, Romero-Rochín V. Molecular wave packet interferometry and quantum entanglement. J Chem Phys 2005; 122:094101. [PMID: 15836106 DOI: 10.1063/1.1852456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We study wave packet interferometry (WPI) considering the laser pulse fields both classical and quantum mechanically. WPI occurs in a molecule after subjecting it to the interaction with a sequence of phase-locked ultrashort laser pulses. Typically, the measured quantity is the fluorescence of the molecule from an excited electronic state. This signal has imprinted the interference of the vibrational wave packets prepared by the different laser pulses of the sequence. The consideration of the pulses as quantum entities in the analysis allows us to study the entanglement of the laser pulse states with the molecular states. With a simple model for the molecular system, plus several justified approximations, we solve for the fully quantum mechanical molecule-electromagnetic field state. We then study the reduced density matrices of the molecule and the laser pulses separately. We calculate measurable corrections to the case where the fields are treated classically.
Collapse
Affiliation(s)
- Ricardo Martínez-Galicia
- Instituto de Física, Universidad Nacional Autonoma de México, Apartado Postal 20-364, 01000 México, Distrito Federal, Mexico
| | | |
Collapse
|
18
|
Humble TS, Cina JA. Molecular state reconstruction by nonlinear wave packet interferometry. PHYSICAL REVIEW LETTERS 2004; 93:060402. [PMID: 15323614 DOI: 10.1103/physrevlett.93.060402] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Indexed: 05/24/2023]
Abstract
We show that time- and phase-resolved two-color nonlinear wave packet interferometry can be used to reconstruct the probability amplitude of an optically prepared molecular wave packet without prior knowledge of the underlying potential surface. We analyze state reconstruction in pure- and mixed-state model systems excited by shaped laser pulses and propose nonlinear wave packet interferometry as a tool for identifying optimized wave packets in coherent control experiments.
Collapse
Affiliation(s)
- Travis S Humble
- Department of Chemistry, University of Oregon, Eugene 97403, USA
| | | |
Collapse
|
19
|
Ramos-Sánchez S, Romero-Rochín V. Preparation and resolution of molecular states by coherent sequences of phase-locked ultrashort laser pulses. J Chem Phys 2004; 121:2117-24. [PMID: 15260765 DOI: 10.1063/1.1767513] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We study the application of nonlinear wave packet interferometry to the preparation and resolution of the overlaps of nonstationary nuclear wave functions evolving in an excited electronic state of a diatomic molecule. It is shown that possible experiments with two phase-locked ultrashort pulsepairs can be used to determine a specific vibrational wave packet state in terms of coherent states of the ground electronic state. We apply this scheme to an idealized molecule with harmonic potential energy surfaces and to the X <-- B transition states of the iodine molecule. Our results indicate that this scheme is very promising as a potential tool to quantum control.
Collapse
Affiliation(s)
- Saúl Ramos-Sánchez
- Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364, 01000, DF
| | | |
Collapse
|
20
|
Milota F, Sperling J, Szöcs V, Tortschanoff A, Kauffmann HF. Correlation of femtosecond wave packets and fluorescence interference in a conjugated polymer: Towards the measurement of site homogeneous dephasing. J Chem Phys 2004; 120:9870-85. [PMID: 15268004 DOI: 10.1063/1.1704635] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Probing electronic femtosecond (fs) coherence among segmental sites that are congested by static and dynamic site disorder and subject to structural relaxation is a big, experimental challenge in the study of photophysics of poly(p-phenylenevinylene). In this work, fs-wave-packet fluorescence interferometry experiments are presented that measure macroscopic coherent kernels and their phase-relaxation in the low-temperature, bottom-state regime of the density-of-states below the migrational threshold energy where downhill site-to-site transfer is marginal. By using freely propagating and tunable 70 fs excitation/probing pulses and employing narrow-band spectral filtering of wave packets, fluorescence interferograms with strongly damped beatings can be observed. The coherences formally follow the in-phase superpositions of two site-optical free-induction-decays and originate from distinct pairs of coherent doorway-states, different in energy and space, each of them being targeted, by two discrete quantum-arrival-states 1(alpha) and 1(beta), via independent, isoenergetic 0-->1 fluorescence transitions. The coherent transients are explained as site-to-site polarization beatings, caused by the interference of two fluorescence correlation signals. The numerical analysis of the damping regime, based upon second-order perturbational solutions, reveals the lower limit value of homogeneous dephasing in the range from T(2) approximately 100 fs to T(2) approximately 200 fs depending on the site-excitation energy of the bottom-states. The experiments enable to look into the formation of the relaxed state as a special molecular process of electron-phonon coupling and hence open-up a quite new perspective in the puzzle of multichromophore optical dynamics and structural relaxation in conjugated polymers.
Collapse
Affiliation(s)
- F Milota
- Institut fur Physikalische Chemie, Universitat Wien, Wahringerstr. 42, A-1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
21
|
Towards the Reconstruction of Time-dependent Vibronic States from Nonlinear Wavepacket Interferometry Signals. B KOREAN CHEM SOC 2003. [DOI: 10.5012/bkcs.2003.24.8.1111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Abstract
The simplest two-dimensional (2D) spectra show how excitation with one (variable) frequency affects the spectrum at all other frequencies, thus revealing the molecular connections between transitions. Femtosecond 2D Fourier transform (2D FT) spectra are more flexible and share some of the remarkable properties of their conceptual parent, 2D FT nuclear magnetic resonance. When 2D FT spectra are experimentally separated into real absorptive and imaginary refractive parts, the time resolution and frequency resolution can both reach the uncertainty limit set for each resonance by the sample itself. Coherent four-level contributions to the signal provide new molecular phase information, such as relative signs of transition dipoles. The nonlinear response can be picked apart by selecting a single coherence pathway (e.g., specifying the relative signs of energy level difference frequencies during different time intervals as in the photon echo). Because molecules are frozen on the femtosecond timescale, femtosecond 2D FT experiments can separate a distribution of instantaneous molecular environments and intramolecular geometries as inhomogeneous broadening. This review provides an introduction to two-dimensional Fourier transform experiments exploiting second- and third-order vibrational and electronic nonlinearities.
Collapse
Affiliation(s)
- David M Jonas
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA.
| |
Collapse
|
23
|
Cina JA, Kilin DS, Humble TS. Wave packet interferometry for short-time electronic energy transfer: Multidimensional optical spectroscopy in the time domain. J Chem Phys 2003. [DOI: 10.1063/1.1519259] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Cina JA, Humble TS. Molecular Wavepacket Decomposition by Nonlinear Interferometry. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2002. [DOI: 10.1246/bcsj.75.1135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Grimberg BI, Lozovoy VV, Dantus M, Mukamel S. Ultrafast Nonlinear Spectroscopic Techniques in the Gas Phase and Their Density Matrix Representation. J Phys Chem A 2002. [DOI: 10.1021/jp010451l] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bruna I. Grimberg
- Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824
| | - Vadim V. Lozovoy
- Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824
| | - Marcos Dantus
- Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824
| | - Shaul Mukamel
- Department of Chemistry and Rochester Theory Center for Optical Science and Engineering, University of Rochester, P.O. RC Box 270216, Rochester, New York 14627
| |
Collapse
|
26
|
Bihary Z, Karavitis M, Gerber RB, Apkarian VA. Spectral inhomogeneity induced by vacancies and thermal phonons and associated observables in time- and frequency-domain nonlinear spectroscopy: I2 isolated in matrix argon. J Chem Phys 2001. [DOI: 10.1063/1.1408917] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Duarte-Zamorano RP, Romero-Rochı́n V. Analysis on the Cina–Harris proposal for the preparation and detection of chiral superposition states. J Chem Phys 2001. [DOI: 10.1063/1.1370069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Lozovoy VV, Grimberg BI, Pastirk I, Dantus M. The role of microscopic and macroscopic coherence in laser control. Chem Phys 2001. [DOI: 10.1016/s0301-0104(01)00219-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
29
|
Abstract
This review focuses on the study of the dynamics of isolated molecules and their control using coherent nonlinear spectroscopic methods. Emphasis is placed on topics such as bound-to-free excitation and the study of concerted elimination reactions, free-to-bound excitation and the study of bimolecular reactions, and bound-to-bound excitation and the study of intramolecular rovibrational dynamics and coherence relaxation. For each case the detailed time-resolved information reveals possible strategies to control the outcome. Experimental results are shown for each of the reactions discussed. The methods discussed include pump-probe and four-wave mixing processes such as transient grating and photon echo spectroscopy. Off-resonance transient-grating experiments are shown to be ideal for the study of ground state dynamics, molecular structure, and the molecular response to strong field excitation.
Collapse
Affiliation(s)
- M Dantus
- Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824, USA.
| |
Collapse
|