1
|
Gerami M, Farrokhpour H, Orangi N. Charge Transfer Surface-Enhanced Raman and Absorption Spectra of the Zwitterionic Form of Cysteine Adsorbed on M@Au 12 (M = Au, Ag, Pt, and Pd) Nanoclusters. J Phys Chem A 2023; 127:3991-4004. [PMID: 37116314 DOI: 10.1021/acs.jpca.3c00362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
The effect of the core atom type of the M@Au12 nanocluster (M = Au, Ag, Pt, and Pd) on the normal (NR) and charge-transfer surface-enhanced Raman spectroscopy (CT-SERS) of the zwitterion form of l-cysteine (ZWCYS) adsorbed on two different sites (D1 and D2) of the nanocluster is investigated separately in the gas phase and water. Because SERS requires the calculation of the absorption spectrum, the effect of the core atom type on the absorption spectrum of M@Au12 and its complex with the ZWCYS has also been investigated. The vibrational bands that show the intensity enhancement in the CT-SERS of the ZWCYS interacting with the D1 site of M@Au12 nanocluster in water are O─C═O asymmetric stretching (M = Au and Ag), NH2 bending (M = Ag), S-H stretching (M = Ag, Pt, and Pd), CH2 bending (M = Pt), and CH2 symmetric stretching (M = Pt and Pd). The ZWCYS at the D2 site of the M@Au12 nanocluster in water exhibits intensity enhancement for O─C═O asymmetric stretching (M = Pt), NH3 wagging (M = Au), and S-H stretching (M = Pd). The intensity of the vibrational bands of ZWCYS does not increase for M = Ag but decreases for O─C═O asymmetric stretching, S-H stretching, CH2 symmetric stretching, CH2 asymmetric stretching, and especially NH2 symmetric stretching.
Collapse
Affiliation(s)
- Mehrdad Gerami
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hossein Farrokhpour
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Nasim Orangi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
2
|
Synthesis of gold, platinum, and gold-platinum alloy nanoparticle colloids with high-power megahertz-repetition-rate lasers: the importance of the beam guidance method. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01693-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AbstractNanoparticles of noble metals and their alloys are of particular interest for biomedicine and catalysis applications. The method of laser ablation of bulk metals in liquids gives facile access to such particles as high-purity colloids and is already used in industrial research. However, the method still lacks sufficient productivity for industrial implementation into series production. The use of innovative laser technology may help to further disseminate this colloid synthesis method in the near future. Ultrashort-pulsed lasers with high powers and megahertz-repetition-rates became available recently, but place high demands on the accurate optical laser pulse delivery on the target. Full lateral pulse separation is necessary to avoid a reduction of nanoparticle productivity due to pulse shielding. In this study, we compare flexible but rather slow galvanometer scanning with much faster but more expensive polygon-wheel scanning in their performance in the production of colloidal nanoparticles by laser ablation in liquid. Both beam guidance technologies are applied in the laser ablation of gold, platinum, and a gold-rich platinum alloy in micromolar saline water. We found that the dimensions of the scan pattern are crucial. A threshold pattern length exists, at which one scan technology becomes more productive than the other one. In addition, a much lower productivity was found for the ablation of gold compared to that of platinum. Alloying gold with only 10 at.% of platinum improved the productivity nearly to the level of platinum, reaching 8.3 g/h.
Collapse
|
3
|
Guan G, Win KY, Yao X, Yang W, Han M. Plasmonically Modulated Gold Nanostructures for Photothermal Ablation of Bacteria. Adv Healthc Mater 2021; 10:e2001158. [PMID: 33184997 DOI: 10.1002/adhm.202001158] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/18/2020] [Indexed: 12/11/2022]
Abstract
With the wide utilization of antibiotics, antibiotic-resistant bacteria have been often developed more frequently to cause potential global catastrophic consequences. Emerging photothermal ablation has been attracting extensive research interest for quick/effective eradication of pathogenic bacteria from contaminated surroundings and infected body. In this field, anisotropic gold nanostructures with tunable size/morphologies have been demonstrated to exhibit their outstanding photothermal performance through strong plasmonic absorption of near-infrared (NIR) light, efficient light to heat conversion, and easy surface modification for targeting bacteria. To this end, this review first introduces thermal treatment of infectious diseases followed by photothermal therapy via heat generation on NIR-absorbing gold nanostructures. Then, the usual synthesis and spectral features of diversified gold nanostructures and composites are systematically overviewed with the emphasis on the importance of size, shape, and composition to achieve strong plasmonic absorption in NIR region. Further, the innovated photothermal applications of gold nanostructures are comprehensively demonstrated to combat against bacterial infections, and some constructive suggestions are also discussed to improve photothermal technologies for practical applications.
Collapse
Affiliation(s)
- Guijian Guan
- Institute of Molecular Plus Tianjin University No.11 Building, 92 Weijin Road, Nankai District Tianjin 300072 P.R. China
| | - Khin Yin Win
- Institute of Materials Research and Engineering A*STAR 2 Fusionopolis Way Singapore 138634 Singapore
| | - Xiang Yao
- Institute of Molecular Plus Tianjin University No.11 Building, 92 Weijin Road, Nankai District Tianjin 300072 P.R. China
| | - Wensheng Yang
- Institute of Molecular Plus Tianjin University No.11 Building, 92 Weijin Road, Nankai District Tianjin 300072 P.R. China
| | - Ming‐Yong Han
- Institute of Molecular Plus Tianjin University No.11 Building, 92 Weijin Road, Nankai District Tianjin 300072 P.R. China
- Institute of Materials Research and Engineering A*STAR 2 Fusionopolis Way Singapore 138634 Singapore
| |
Collapse
|
4
|
Fagan AM, Jeffries WR, Knappenberger KL, Schaak RE. Synthetic Control of Hot-Electron Thermalization Efficiency in Size-Tunable Au-Pt Hybrid Nanoparticles. ACS NANO 2021; 15:1378-1387. [PMID: 33337141 DOI: 10.1021/acsnano.0c08661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gold nanoparticles are well-known to exhibit size-dependent properties that are responsible for their unique catalytic, optical, and electronic applications. However, electron-phonon coupling, which is important for photocatalysis and light harvesting, is one of the rare properties of gold that is size-independent above a threshold value, e.g., for nanospheres larger than approximately 5 nm in diameter. Here, we show that when interfaced to a comparably sized Pt nanoparticle, the electron-phonon coupling constant of the hybrid material depends on the diameter of the Au domain. This is important because the electron-phonon coupling constant describes the efficiency by which hot electrons are converted to local heat by the primary electron-phonon scattering thermalization channel. We begin by synthesizing a library of Au-Pt hybrid nanoparticle heterodimers by growing size-tunable Au nanoparticles on Pt nanoparticle seeds. By systematically varying reagent concentration and reaction time, the Au domain diameter of the Au-Pt hybrid nanoparticle heterodimers can be tuned between 4.4 and 16 nm while the size of the Pt domain remains constant. Calibration curves allow us to dial in precise Au domain sizes, and microscopic analysis of the Au-Pt heterodimers provides insights into how they grow and how their morphologies evolve. Femtosecond time-resolved transient absorption spectroscopy reveals that for Au-Pt heterodimers having Au domain diameters of 8.7 to 14 nm, the electron-phonon coupling constant decreases by more than 80%, which is not observed for comparably sized Au nanoparticles. Interfacing smaller Au domains with Pt nanoparticle surfaces causes an increase in the density of states near the Fermi level of Au, which results in accelerated thermalization times through an increased number of electron-phonon interactions. The combination of precision hybrid nanoparticle synthesis and size-dependent electron-phonon coupling may be important for designing composite metals for photocatalytic and light-harvesting applications and for engineering different functions into established materials.
Collapse
|
5
|
Sim S, Beierle A, Mantos P, McCrory S, Prasankumar RP, Chowdhury S. Ultrafast relaxation dynamics in bimetallic plasmonic catalysts. NANOSCALE 2020; 12:10284-10291. [PMID: 32363371 DOI: 10.1039/d0nr00831a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Combining a plasmonic metal, such as gold, with other popular catalysts, such as Ni or Pt, can extend its benefits to many energy-extensive reactions catalyzed by those metals. The efficiency of a plasmon-enhanced catalytic reaction is mainly determined by the light absorption cross section and the photoexcited charge carrier relaxation dynamics of the nanoparticles. We have investigated the charge carrier relaxation dynamics of gold/nickel (Au/Ni) and gold/platinum (Au/Pt) bimetallic nanoparticles. We found that the addition of Ni or Pt to gold can reduce light absorption in gold nanoparticles. However, electron-phonon coupling rates of Au/Ni and Au/Pt nanoparticles are significantly faster than that of pure Au nanoparticles. This is due to the fact that both Ni and Pt possess significantly larger electron-phonon coupling constants and higher densities of states near the Fermi level in comparison with Au. Additionally, the phonon-phonon coupling rate of bimetallic Au/Pt and Au/Ni nanoparticles was significantly different from that of pure gold nanoparticles, due to the acoustic impedance mismatch at the nanoparticle/substrate interface. Our findings provide important insights into the rational design of bimetallic plasmonic catalysts.
Collapse
Affiliation(s)
- Sangwan Sim
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Engelbrekt C, Crampton KT, Fishman DA, Law M, Apkarian VA. Efficient Plasmon-Mediated Energy Funneling to the Surface of Au@Pt Core-Shell Nanocrystals. ACS NANO 2020; 14:5061-5074. [PMID: 32167744 DOI: 10.1021/acsnano.0c01653] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The structure and ultrafast photodynamics of ∼8 nm Au@Pt core-shell nanocrystals with ultrathin (<3 atomic layers) Pt-Au alloy shells are investigated to show that they meet the design principles for efficient bimetallic plasmonic photocatalysis. Photoelectron spectra recorded at two different photon energies are used to determine the radial concentration profile of the Pt-Au shell and the electron density near the Fermi energy, which play a key role in plasmon damping and electronic and thermal conductivity. Transient absorption measurements track the flow of energy from the plasmonic core to the electronic manifold of the Pt shell and back to the lattice of the core in the form of heat. We show that strong coupling to the high density of Pt(d) electrons at the Fermi level leads to accelerated dephasing of the Au plasmon on the femtosecond time scale, electron-electron energy transfer from Au(sp) core electrons to Pt(d) shell electrons on the sub-picosecond time scale, and enhanced thermal resistance on the 50 ps time scale. Electron-electron scattering efficiently funnels hot carriers into the ultrathin catalytically active shell at the nanocrystal surface, making them available to drive chemical reactions before losing energy to the lattice via electron-phonon scattering on the 2 ps time scale. The combination of strong broadband light absorption, enhanced electromagnetic fields at the catalytic metal sites, and efficient delivery of hot carriers to the catalyst surface makes core-shell nanocrystals with plasmonic metal cores and ultrathin catalytic metal shells promising nanostructures for the realization of high-efficiency plasmonic catalysts.
Collapse
Affiliation(s)
- Christian Engelbrekt
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Kevin T Crampton
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Dmitry A Fishman
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Matt Law
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Vartkess Ara Apkarian
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
7
|
Mongin D, Maioli P, Burgin J, Langot P, Cottancin E, D'Addato S, Canut B, Treguer M, Crut A, Vallée F, Del Fatti N. Ultrafast electron-lattice thermalization in copper and other noble metal nanoparticles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:084001. [PMID: 30620724 DOI: 10.1088/1361-648x/aaf7eb] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Using time-resolved ultrafast pump-probe spectroscopy we investigated the electron-lattice energy transfer in small copper nanospheres with diameters ranging from 3.2 to 23 nm, either embedded in a glass or dispersed in a solvent. Electron-lattice scattering rate is shown to increase with size reduction, in agreement with our previous results obtained on gold and silver nanoparticles in the low excitation regime. We attribute this effect to the reduction of the screening efficiency of electron-phonon interactions close to the nanoparticle surface. To understand the discrepancy between the results on the electron-lattice scattering in different metals reported in the literature (reduction, no dependence or increase with nanoparticle size), we discuss the experimental conditions required for the accurate determination of electron-lattice energy transfer time from time-resolved investigations in the weak and strong excitation regimes and present power-dependent experiments on gold nanospheres in solution. Our findings are derived from a theoretical analysis based on the two-temperature model predictions and on a complete modeling of the nanoparticle transient extinction cross-section through the resolution of Boltzmann equation in the presence of hot electrons.
Collapse
Affiliation(s)
- Denis Mongin
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière, UMR 5306, F-69622 Villeurbanne, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Nakibli Y, Mazal Y, Dubi Y, Wächtler M, Amirav L. Size Matters: Cocatalyst Size Effect on Charge Transfer and Photocatalytic Activity. NANO LETTERS 2018; 18:357-364. [PMID: 29236508 DOI: 10.1021/acs.nanolett.7b04210] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Hybrid semiconductor-metallic nanostructures play an important role in a wide range of applications and are key components in photocatalysis. Here we reveal that the nature of a nanojunction formed between a semiconductor nanorod and metal nanoparticle is sensitive to the size of the metal component. This is reflected in the activity toward hydrogen production, emission quantum yields, and the efficiency of charge separation which is determined by transient absorption spectroscopy. A set of Ni decorated CdSe@CdS nanorods with different tip size were examined, and an optimal metal domain size of 5.2 nm was obtained. Remarkably, charge separation time constants were found to be nonvariant with metal tip size. It is proposed that electron transfer mechanism encompasses two consecutive but separate processes: slow charge migration along the rod toward the interface, followed by fast interface crossing of the electron from the semiconductor into the metal phase. The first migration step dominates the time constant for the charge separation process and is not affected by the metal size. The efficiency of charge separation on the other hand was found to be sensitive to metal size. It is suggested that Coulomb blockade charging energy and a size-dependent Schottky barrier contribute to the metal size effect on charge transfer probability across the semiconductor-metal nanojunction. These two opposing trends result in an optimal metal size domain for the cocatalyst. This work is expected to benefit a broad range of applications utilizing semiconductor-metal nanocomposites.
Collapse
Affiliation(s)
- Yifat Nakibli
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology , Haifa 32000, Israel
| | - Yair Mazal
- Department of Chemistry and the Ilse Katz center for Nanoscale Science and Technology, Ben-Gurion University of the Negev , Beer-Sheva 8410501, Israel
| | - Yonatan Dubi
- Department of Chemistry and the Ilse Katz center for Nanoscale Science and Technology, Ben-Gurion University of the Negev , Beer-Sheva 8410501, Israel
| | - Maria Wächtler
- Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena , Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Lilac Amirav
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology , Haifa 32000, Israel
| |
Collapse
|
9
|
Guo J, Zhang Y, Shi L, Zhu Y, Mideksa MF, Hou K, Zhao W, Wang D, Zhao M, Zhang X, Lv J, Zhang J, Wang X, Tang Z. Boosting Hot Electrons in Hetero-superstructures for Plasmon-Enhanced Catalysis. J Am Chem Soc 2017; 139:17964-17972. [PMID: 29155572 DOI: 10.1021/jacs.7b08903] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hetero-nanostructures featured with both strong plasmon absorption and high catalytic activity are believed to be ideal platforms to realize efficient light-driven catalysis. However, in reality, it remains a great challenge to acquire high-performance catalysis in such hetero-nanostructures due to poor generation and transfer of plamson-induced hot electrons. In this report, we demonstrate that Au nanorod@Pd superstructures (Au@Pd SSs), where the ordered Pd nanoarrays are precisely grown on Au nanorod surfaces via solution-based seed-mediated approach, would be an excellent solution for this challenge. Both experiment and theory disclose that the ordered arrangement of Pd on Au nanorod surfaces largely promotes hot electron generation and transfer via amplified local electromagnetic field and decreased electron-phonon coupling, respectively. Each effect is separately highlighted in experiments by the significant plasmon-enhanced catalytic activity of Au@Pd SSs in two types of important reactions with a distinct time scale of bond-dissociation event: molecular oxygen activation and carbon-carbon coupling reaction. This work opens the door to design and application of new generation photocatalysts.
Collapse
Affiliation(s)
- Jun Guo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China.,Center for Nanochemistry, Peking University , Beijing 100871, P. R. China.,University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Yin Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China.,Center for Nanochemistry, Peking University , Beijing 100871, P. R. China.,University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Lin Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China
| | - Yanfei Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China.,University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Megersa F Mideksa
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China
| | - Ke Hou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China.,Center for Nanochemistry, Peking University , Beijing 100871, P. R. China.,University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Wenshi Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China.,University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Dawei Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China
| | - Meiting Zhao
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798, Singapore
| | - Xiaofei Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China
| | - Jiawei Lv
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China
| | - Xiaoli Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China
| |
Collapse
|
10
|
Wu G, Sun Y, Wu X, Chen R, Wang Y. Large scale structural optimization of trimetallic Cu–Au–Pt clusters up to 147 atoms. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.08.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Wang L, Sagaguchi T, Okuhata T, Tsuboi M, Tamai N. Electron and Phonon Dynamics in Hexagonal Pd Nanosheets and Ag/Pd/Ag Sandwich Nanoplates. ACS NANO 2017; 11:1180-1188. [PMID: 28036162 DOI: 10.1021/acsnano.6b07082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Pd and its hybrid nanostructures have attracted considerable attention over the past decade, with both catalytic and plasmonic properties. The electron and phonon properties directly govern conversion efficiencies in applications such as energy collectors and photocatalysts. We report the dynamic processes of electron-phonon coupling and coherent acoustic phonon vibration in hexagonal Pd nanosheets and Ag/Pd/Ag sandwich nanoplates using transient absorption spectroscopy. The electron-phonon coupling constant of Pd nanosheets, GPd-nanosheet (8.7 × 1017 W/(m3·K)) is larger than that of the bulk GPd (5.0 × 1017 W/(m3·K)). The effective coupling constant Geff of Ag/Pd/Ag nanoplates decreases with increasing Ag shell thickness, finally approaching the bulk GAg. The variation of Geff is explained in terms of reduced density of states near Fermi level of Pd nanosheets with 1.8 nm ultrathin thickness. Coherent acoustic phonon vibration in Pd nanosheets is assigned to a fundamental breathing mode, similar to the vibration of benzene. The period increases with increasing Ag shell thickness. For Ag/Pd/Ag nanoplates with 20 nm thick Ag shells, the vibrational mode is ascribed to a quasi-extensional mode. The results show that the modes of the coherent acoustic phonon vibration transform with the geometric variation of Pd nanosheets and Ag/Pd/Ag nanoplates. Our results represent an understanding of quantum-confinement related electron dynamics and bulk-like phonon kinetics in the ultrathin Pd nanosheets and their hybrid nanostructures.
Collapse
Affiliation(s)
- Li Wang
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University , Sanda 669-1337, Japan
| | - Takuya Sagaguchi
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University , Sanda 669-1337, Japan
| | - Tomoki Okuhata
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University , Sanda 669-1337, Japan
| | - Motohiro Tsuboi
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University , Sanda 669-1337, Japan
| | - Naoto Tamai
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University , Sanda 669-1337, Japan
| |
Collapse
|
12
|
Pellarin M, Broyer M, Lermé J, Lebeault MA, Ramade J, Cottancin E. Plasmon resonances tailored by Fano profiles in silver-based core-shell nanoparticles. Phys Chem Chem Phys 2016; 18:4121-33. [PMID: 26780585 DOI: 10.1039/c5cp07113e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The optical absorption of bimetallic nanoparticles M-Ag involving silver as an active plasmonic compound has been the subject of very extensive experimental studies, both for a large range of sizes and a large variety of associated metals. Considering the most commonly encountered core-shell segregated configuration M@Ag involving a transition metal M, the spectral response is found to be weakly discriminating with regard to the chemical order and composition and is characterized by a large unstructured plasmon resonance in the 2 eV to 4 eV range. The plasmon band is essentially shaped by the scars made in the absorption continuum of metal M by Fano-like induced resonances and is surprisingly little sensitive to the exact nature of this metal, giving birth to a "quasi universal" optical signature for M@Ag systems. In this paper, we show how this generic behaviour arises from the specific plasmonic response of silver and stress the role of interband transitions of both metals through their coupling with the free electron oscillation modes. This theoretical discussion will be illustrated through selected experimental results.
Collapse
Affiliation(s)
- Michel Pellarin
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| | - Michel Broyer
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| | - Jean Lermé
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| | - Marie-Ange Lebeault
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| | - Julien Ramade
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| | - Emmanuel Cottancin
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| |
Collapse
|
13
|
Yu S, Zhang J, Tang Y, Ouyang M. Engineering Acoustic Phonons and Electron-Phonon Coupling by the Nanoscale Interface. NANO LETTERS 2015; 15:6282-6288. [PMID: 26313532 DOI: 10.1021/acs.nanolett.5b03227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Precise engineering of phonon-phonon (ph-ph) and electron-phonon (e-ph) interactions by materials design is essential for an in-depth understanding of thermal, electrical, and optical phenomena as well as new technology breakthrough governed by fundamental physical laws. Due to their characteristic length scale, the ph-ph and e-ph interactions can be dramatically modified by nanoscale spatial confinement, thus opening up opportunities to finely maneuver underlying coupling processes through the interplay of confined size, fundamental length scale, and interface. We have combined ultrafast optical spectroscopy with a series of well-designed nanoscale core-shell structures possessing precisely tunable interface to demonstrate for the first time unambiguous experimental evidence of coherent interfacial phonon coupling between the core and shell constituents. Such interfacially coupled phonons can be impulsively excited through the e-ph interaction, in which the critical e-ph coupling constant is further shown to be monotonically controlled by tuning the configuration and constituent of core-shell nanostructure. Precise tunability of elemental physics processes through nanoscale materials engineering should not only offer fundamental insights into different materials properties but also facilitate design of devices possessing desirable functionality and property with rationally tailored nanostructures as building blocks.
Collapse
Affiliation(s)
- Shangjie Yu
- Department of Physics and Center for Nanophysics and Advanced Materials and ‡Department of Electrical and Computer Engineering, University of Maryland , College Park, Maryland 20742, United States
| | - Jiatao Zhang
- Department of Physics and Center for Nanophysics and Advanced Materials and ‡Department of Electrical and Computer Engineering, University of Maryland , College Park, Maryland 20742, United States
| | - Yun Tang
- Department of Physics and Center for Nanophysics and Advanced Materials and ‡Department of Electrical and Computer Engineering, University of Maryland , College Park, Maryland 20742, United States
| | - Min Ouyang
- Department of Physics and Center for Nanophysics and Advanced Materials and ‡Department of Electrical and Computer Engineering, University of Maryland , College Park, Maryland 20742, United States
| |
Collapse
|
14
|
Yu K, Sader JE, Zijlstra P, Hong M, Xu QH, Orrit M. Probing silver deposition on single gold nanorods by their acoustic vibrations. NANO LETTERS 2014; 14:915-922. [PMID: 24422602 DOI: 10.1021/nl404304h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Acoustic vibrations of single gold nanorods coated with silver were investigated. We used single-particle pump-probe spectroscopy to monitor the silver deposition through the particle vibrations. Two vibration modes, the breathing mode and extensional mode, are observed, and the vibrational frequencies are measured as functions of the amount of silver deposited on single gold nanorods. The breathing mode frequency was found to decrease with silver deposition, while the extensional mode frequency was almost constant for silver shells up to 6 nm. The frequency changes agree with a model based on continuum mechanics and on the assumption of a uniform silver coating. The quality factors for the breathing mode and the extensional mode are hardly affected by silver deposition, indicating that the introduced interface between gold and silver contributes negligibly to the damping of the particle vibrations. Finally, we demonstrated that an atomic layer of silver can be detected using the particle acoustic vibrations.
Collapse
Affiliation(s)
- Kuai Yu
- Institute of Physics, Leiden University , Rapenburg 70, 2311 EZ Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
Mahmoud MA, Szymanski P, El-Sayed MA. Different Methods of Increasing the Mechanical Strength of Gold Nanocages. J Phys Chem Lett 2012; 3:3527-3531. [PMID: 26290983 DOI: 10.1021/jz301503z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Using the ultrafast coherent modulation of the surface plasmon band intensity with the totally symmetric lattice vibration of gold nanocages, we were able to determine and use their frequencies as a measure of the cage's mechanical stability. The presence of an inner "stiff" transition-metal nanoshell with a higher value of the elastic modulus is found to increase the frequency of the lattice vibration of the outer soft gold nanoshell. This could also explain the observed increase in both the gold lattice vibrational frequency as well as the lattice vibration relaxation time in the Au-Pt and Au-Pd double-shell nanocages. It is also found that when these nanoparticles are assembled into monolayers on quartz substrates by the Langmuir-Blodgett technique, the oscillation frequency of the gold shell with the transition metal having the largest elastic constant suffers the least change in its oscillation frequency as a result of its resistance to distortion as a result of binding to the substrate.
Collapse
Affiliation(s)
- Mahmoud A Mahmoud
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Paul Szymanski
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Mostafa A El-Sayed
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
16
|
Kobayashi Y, Nonoguchi Y, Wang L, Kawai T, Tamai N. Dual Transient Bleaching of Au/PbS Hybrid Core/Shell Nanoparticles. J Phys Chem Lett 2012; 3:1111-1116. [PMID: 26288045 DOI: 10.1021/jz300248p] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We examined the optical response of hybrid Au/PbS core/shell nanoparticles (NPs) using transient absorption spectroscopy. Finite-difference time-domain (FDTD) calculations and transient absorption measurements show that Au/PbS NPs have unique two extinction peaks: the peak at the longer wavelength (∼700 nm) is originated from the plasmon, and that at the shorter wavelength (550 nm) is from the local maximum of the refractive index of PbS. The transient absorption dynamics of Au/PbS NPs excited at 400 nm have clear oscillation behavior, which is assigned to the breathing mode of whole particle. We observed a weak excitation-wavelength dependence of the plasmon band. The time constant of electron-phonon coupling of Au/PbS NPs was obtained by changing the excitation intensity. We show that spectral properties of Au/PbS NPs are strongly altered by the hybrid formations, while their dynamics differ only minimally compared with those of Au NPs.
Collapse
Affiliation(s)
- Yoichi Kobayashi
- †Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Yoshiyuki Nonoguchi
- ‡Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Li Wang
- †Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Tsuyoshi Kawai
- ‡Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Naoto Tamai
- †Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
17
|
Lindquist NC, Nagpal P, McPeak KM, Norris DJ, Oh SH. Engineering metallic nanostructures for plasmonics and nanophotonics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:036501. [PMID: 22790420 PMCID: PMC3396886 DOI: 10.1088/0034-4885/75/3/036501] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Metallic nanostructures now play an important role in many applications. In particular, for the emerging fields of plasmonics and nanophotonics, the ability to engineer metals on nanometric scales allows the development of new devices and the study of exciting physics. This review focuses on top-down nanofabrication techniques for engineering metallic nanostructures, along with computational and experimental characterization techniques. A variety of current and emerging applications are also covered.
Collapse
Affiliation(s)
- Nathan C Lindquist
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, U.S.A
- Physics Department, Bethel University, St. Paul, MN, U.S.A
| | | | - Kevin M McPeak
- Optical Materials Engineering Laboratory, ETH Zürich, Zürich, Switzerland
| | - David J Norris
- Optical Materials Engineering Laboratory, ETH Zürich, Zürich, Switzerland
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, U.S.A
| |
Collapse
|
18
|
Functionalized Nanoparticles and Chitosan-Based Functional Nanomaterials. MULTIFACETED DEVELOPMENT AND APPLICATION OF BIOPOLYMERS FOR BIOLOGY, BIOMEDICINE AND NANOTECHNOLOGY 2012. [DOI: 10.1007/12_2012_200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
19
|
Ershov BG, Abkhalimov EV, Anan’ev AV. Mixed bimetallic palladium-silver nanoparticles in aqueous solution. DOKLADY PHYSICAL CHEMISTRY 2011. [DOI: 10.1134/s0012501611080021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Affiliation(s)
- Gregory V. Hartland
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| |
Collapse
|
21
|
Shen S, Zhuang J, Yang Y, Wang X. Highly monodisperse Cu- and Ag-based bimetallic nanocrystals for the efficient utilization of noble metals in catalysis. NANOSCALE 2011; 3:272-279. [PMID: 21031199 DOI: 10.1039/c0nr00601g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Highly monodisperse Cu- and Ag-based bimetallic noble metal nanocrystals (BNMNs) with diameter 2-7 nm have been synthesized. The synthesis employs a successive reduction process by using inorganic metal salts as precursors at a low temperature (∼110 °C). HRTEM, XPS and XRD analytical techniques were applied for the structural analysis of BNMNs. Catalytic activity investigation (CO oxidation) over different supports (silicate nanotubes and CeO2 nanoparticles) shows that BNMNs have identical and even enhanced performance over pure noble metal nanocrystals with similar size and size distribution, which proves that these BNMNs can significantly reduce the amount and thus make full use of noble metals in catalysis.
Collapse
Affiliation(s)
- Shuling Shen
- Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | | | | | | |
Collapse
|
22
|
Fu YZ, Xiang XD, Liao JH, Wang JM. Transformation of Ag Hexagonal Shape into Ag@Au Core-Shell Nanostructure in a Polymer-Mediated Polyol Process. J DISPER SCI TECHNOL 2010. [DOI: 10.1080/01932690701866492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yun Zhi Fu
- a College of Materials Science and Chemical Engineering , Hainan University , Danzhou , P. R. China
| | - Xiu Dong Xiang
- b Department of Computational Science , China University of Petroleum , Dongying , P. R. China
| | - Jian He Liao
- a College of Materials Science and Chemical Engineering , Hainan University , Danzhou , P. R. China
| | - Jiu Mo Wang
- a College of Materials Science and Chemical Engineering , Hainan University , Danzhou , P. R. China
| |
Collapse
|
23
|
Ferrando R, Jellinek J, Johnston RL. Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles. Chem Rev 2008; 108:845-910. [PMID: 18335972 DOI: 10.1021/cr040090g] [Citation(s) in RCA: 1746] [Impact Index Per Article: 102.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Riccardo Ferrando
- Dipartimento di Fisica, Universita di Genova, INFM and IMEM/CNR, Via Dodecaneso 33, Genova, I16146, Italy, Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439, and School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Julius Jellinek
- Dipartimento di Fisica, Universita di Genova, INFM and IMEM/CNR, Via Dodecaneso 33, Genova, I16146, Italy, Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439, and School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Roy L. Johnston
- Dipartimento di Fisica, Universita di Genova, INFM and IMEM/CNR, Via Dodecaneso 33, Genova, I16146, Italy, Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439, and School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
24
|
UV irradiation induced formation of Au nanoparticles at room temperature: The case of pH values. Colloids Surf A Physicochem Eng Asp 2007. [DOI: 10.1016/j.colsurfa.2006.12.051] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Xu G, Chen Y, Tazawa M, Jin P. Surface plasmon resonance of silver nanoparticles on vanadium dioxide. J Phys Chem B 2006; 110:2051-6. [PMID: 16471782 DOI: 10.1021/jp055744j] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The localized surface plasmon resonance (SPR) spectrum of silver nanoparticles fabricated on a thermochromatic film, vanadium dioxide (VO2), is studied in this paper. Owing to the temperature-dependent dielectric function of VO2, the SPR band dramatically exhibits temperature dependence in the range of 30-80 degrees C. The peak extinction wavelength, lambda(SPR), blueshifts as temperature increases and reversibly redshifts as temperature decreases. The shift magnitude (DeltalambdaSPR) is strongly dependent on the silver mass thickness, dm; a value of 50 nm of DeltalambdaSPR is achieved for particles (mean diameter 51 nm) with dm=2 nm while a value of 250 nm is achieved for particles (mean diameter 133 nm) with dm=10 nm. Beyond the SPR band, it is interesting to find that the spectral line shape of silver particles is dominated by the imaginary part of the dielectric function of VO2. These results can be interpreted based on dynamical Maxwell-Garnett theory.
Collapse
Affiliation(s)
- Gang Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.
| | | | | | | |
Collapse
|
26
|
Tunc I, Demirok UK, Suzer S, Correa-Duatre MA, Liz-Marzan LM. Charging/Discharging of Au (Core)/Silica (Shell) Nanoparticles as Revealed by XPS. J Phys Chem B 2005; 109:24182-4. [PMID: 16375410 DOI: 10.1021/jp055614a] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By recording XPS spectra while applying external voltage stress to the sample rod, we can control the extent of charging developed on core-shell-type gold nanoparticles deposited on a copper substrate, in both steady-state and time-resolved fashions. The charging manifests itself as a shift in the measured binding energy of the corresponding XPS peak. Whereas the bare gold nanoparticles exhibit no measurable binding energy shift in the Au 4f peaks, both the Au 4f and the Si 2p peaks exhibit significant and highly correlated (in time and magnitude) shifts in the case of gold (core)/silica (shell) nanoparticles. Using the shift in the Au 4f peaks, the capacitance of the 15-nm gold (core)/6-nm silica (shell) nanoparticle/nanocapacitor is estimated as 60 aF. It is further estimated that, in the fully charged situation, only 1 in 1000 silicon dioxide units in the shell carries a positive charge during our XPS analysis. Our simple method of controlling the charging, by application of an external voltage stress during XPS analysis, enables us to detect, locate, and quantify the charges developed on surface structures in a completely noncontact fashion.
Collapse
Affiliation(s)
- Ilknur Tunc
- Chemistry Department and the Laboratory for Advanced Functional Materials, Bilkent University, 06800 Ankara, Turkey
| | | | | | | | | |
Collapse
|
27
|
Toshima N, Kanemaru M, Shiraishi Y, Koga Y. Spontaneous Formation of Core/Shell Bimetallic Nanoparticles: A Calorimetric Study. J Phys Chem B 2005; 109:16326-31. [PMID: 16853075 DOI: 10.1021/jp051400h] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We showed recently that low entropy core/shell structured nanoparticles form spontaneously from the physical mixture of a dispersion of Ag nanoparticles and that of another noble metal (Rh, Pd, or Pt) at room temperature. Here we use isothermal titration calorimetry (ITC) and show that the initial step of such a spontaneous process is strongly exothermic. When the alcohol dispersion of poly(N-vinyl-2-pyrrolidone) (PVP)-protected Rh nanoparticles (average diameter 2.3 nm) was titrated into the alcoholic dispersion of PVP-protected Ag nanoparticles, a strong exothermic enthalpy change, DeltaH, was observed: DeltaH = -908 kJ/mol for Ag(S) nanoparticle (average diameter 10.8 nm) and -963 kJ/mol for Ag(L) nanoparticles (average diameter 22.5 nm). The strength of interaction increases in the order of Rh/Ag > Pd/Ag > Pt/Ag. This strong exothermic interaction is considered as a driving force to from low entropy bimetallic nanoparticles by simple mixing of two kinds of monometallic nanoparticles. We show also that exothermic interactions occur between a pair of noble metal nanoparticles themselves by using ITC.
Collapse
Affiliation(s)
- Naoki Toshima
- Department of Materials Science and Environmental Engineering, Tokyo University of Science, Yamaguchi, Onoda-shi, Yamaguchi, 756-0884, Japan.
| | | | | | | |
Collapse
|
28
|
Tunc I, Suzer S, Correa-Duarte MA, Liz-Marzán LM. XPS Characterization of Au (Core)/SiO2 (Shell) Nanoparticles. J Phys Chem B 2005; 109:7597-600. [PMID: 16851877 DOI: 10.1021/jp050767j] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Core-shell nanoparticles with ca. 15-nm gold core and 6-nm silica shell were prepared and characterized by XPS. The Au/Si atomic ratio determined by XPS is independent of the electron takeoff angle because of the concentric spherical shape of the nanoparticles. The formula given by Wertheim and DiCenzo (Phys. Rev. B 1988, 37, 844) for spherical nanoparticles and the modified one by Yang et. al. (J. Appl. Phys. 2005, 97, 024303) for core-shell nanoparticles are used to correlate the XPS-derived composition with the geometry of the nanoparticles only after significantly modifying either the bulk density of the silica shell or the attenuation length of the photoelectrons.
Collapse
|
29
|
|