1
|
Xie R, Shi Z, Wang L. Coupled-trajectory surface hopping with sign consistency. J Chem Phys 2025; 162:164103. [PMID: 40260798 DOI: 10.1063/5.0264049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/02/2025] [Indexed: 04/24/2025] Open
Abstract
The framework of exact factorization (XF) has inspired a series of trajectory-based nonadiabatic dynamics methods by introducing different approximations. Recently, the coupled-trajectory surface hopping (CTSH) method has been proposed to combine the key advantages of the coupled-trajectory mixed quantum-classical method based on XF and the fewest switches surface hopping. We here present a novel variant of CTSH, namely, sign-consistent CTSH (SC-CTSH), which considers proper trajectory clustering to reconstruct the nuclear density distribution and the consistency between wave function and active states to introduce decoherence. Using the exact quantum solutions as references, the high performance of SC-CTSH is benchmarked in the widely studied scattering models and compared with other related XF-based methods. Due to the incorporation of new trajectory clustering and sign consistency algorithms, SC-CTSH obtains more accurate quantum momentum and decoherence during the nonadiabatic dynamics, which makes the combination of XF and surface hopping more consistent and reliable. This study further highlights the significance of internal consistency between wave function and active states, which is important in the further development of mixed quantum-classical dynamics methods.
Collapse
Affiliation(s)
- Rixin Xie
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhecun Shi
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Linjun Wang
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Huang L, Shi Z, Wang L. Detailed Complementary Consistency: Wave Function Tells Particle How to Hop, Particle Tells Wave Function How to Collapse. J Phys Chem Lett 2024; 15:6771-6781. [PMID: 38912973 DOI: 10.1021/acs.jpclett.4c01313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
In mixed quantum-classical dynamics, the quantum subsystem can have both wave function and particle-like descriptions. However, they may yield inconsistent results for the expectation value of the same physical quantity. We here propose a novel detailed complementary consistency (DCC) method based on the principle of detailed internal consistency. Namely, the wave function along each trajectory tells the particle how to hop, while the particle tells the wave function how to collapse based on active states in the trajectory ensemble. As benchmarked in a diverse array of representative models with localized nonadiabatic couplings, DCC not only achieves fully consistent results (i.e., identical populations calculated based on wave functions and active states) but also closely reproduces the exact quantum results. Due to the high performance, our new DCC method has great potential to give a consistent and accurate mixed quantum-classical description of general nonadiabatic dynamics after further development.
Collapse
Affiliation(s)
- Lei Huang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhecun Shi
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Zhao H, Sun Z. Higher-Order Split Operator Schemes for Solving Tetratomic Reactions Using the Time-Dependent Wave Packet Method. J Phys Chem A 2024; 128:4911-4922. [PMID: 38847623 DOI: 10.1021/acs.jpca.4c01802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In this work, using the time-dependent quantum wave packet method, quite a few typical higher-order split operators (HOSOs) were for the first time applied to calculate the tetratomic reactive scattering processes in the hyperspherical coordinate. It was found that the HOSOs were hardly efficient for a tetratomic reaction calculation, unlike those for a triatomic reactive scattering calculation. We proposed an efficient HOSO with a force gradient (denoted as 2G1 in the main text) for efficiently and accurately calculating a tetratomic reaction using the quantum wave packet method. Several typical tetratomic reactions, such as H2 + OH, HF + OH, and H2 + OH+, are calculated for demonstrating the effectiveness of the proposed 2G1 in terms of (product state-resolved) reaction probability and inelastic probability, by comparing with the performance of the previously reported various HOSOs. We suggest that the 2G1 propagator could be applied to efficiently calculate a general tetratomic reaction.
Collapse
Affiliation(s)
- Hailin Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Zhigang Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| |
Collapse
|
4
|
Xu J, Shi Z, Wang L. Consistent Construction of the Density Matrix from Surface Hopping Trajectories. J Chem Theory Comput 2024; 20:2349-2361. [PMID: 38490993 DOI: 10.1021/acs.jctc.4c00137] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Proper construction of the density matrix based on surface hopping trajectories remains a difficult problem. Due to the well-known overcoherence in traditional surface hopping simulations, the electronic wave function cannot be used directly. In this work, we propose a consistent density matrix construction method, which takes the advantage of occupation of active states to rescale the coherence calculated by wave functions and ensures the intrinsic consistency of the density matrix. This new trajectory analysis method can be used for both Tully's fewest switches surface hopping (FSSH) and our recently proposed branching corrected surface hopping (BCSH). As benchmarked in both one- and two-dimensional standard scattering models, the new approach combined with BCSH trajectories achieves highly accurate time-dependent spatial distributions of adiabatic populations and coherence compared to exact quantum results.
Collapse
Affiliation(s)
- Jiabo Xu
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhecun Shi
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Guo X, Li G, Shi Z, Wang L. Surface Hopping with Reliable Wave Function by Introducing Auxiliary Wave Packets to Trajectory Branching. J Phys Chem Lett 2024:3345-3353. [PMID: 38498301 DOI: 10.1021/acs.jpclett.4c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
It is well-known that the widely utilized fewest switches surface hopping method suffers from the severe overcoherence problem, and thus adiabatic populations calculated by wave functions are generally inferior to those based on active states. More importantly, to achieve a complete description of nonadiabatic dynamics, the density matrix is essential. In this paper, we present an auxiliary branching corrected surface hopping (A-BCSH) method that introduces auxiliary wave packets (WPs) on the adiabatic potential energy surfaces for trajectory branching. Both rapid and gradual separation of WP components on different surfaces are characterized, and thus the correct decoherence time along each trajectory is captured. As demonstrated in the three standard Tully models, A-BCSH exhibits excellent internal consistency. Namely, close adiabatic populations are obtained based on both wave functions and active states. In particular, A-BCSH successfully obtains a reliable time-dependent spatial distribution of the density matrix, which relies only on electronic wave functions. Due to its high performance, our A-BCSH method provides a new and highly promising perspective on further development of more consistent surface hopping with reliable wave function.
Collapse
Affiliation(s)
- Xin Guo
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Guijie Li
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhecun Shi
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Li G, Shi Z, Guo X, Wang L. What is Missing in the Mean Field Description of Spatial Distribution of Population? Important Role of Auxiliary Wave Packets in Trajectory Branching. J Phys Chem Lett 2023; 14:9855-9863. [PMID: 37890155 DOI: 10.1021/acs.jpclett.3c02690] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
When the traditional Ehrenfest mean field approach is employed to simulate nonadiabatic dynamics, an effective wave packet (WP) on the average potential energy surface (PES) is utilized to describe the nuclear motion. In the fully quantum picture, however, the WP components on different adiabatic PESs gradually separate in space because they evolve under different velocities and forces. Due to trajectory branching of the WP components, proper decoherence needs to be taken into account, and the spatial distribution of population cannot be described by a single effective WP. Here, we propose an auxiliary branching corrected mean field (A-BCMF) method, where trajectories of auxiliary WPs on adiabatic PESs are introduced. As benchmarked in the three standard Tully models, A-BCMF not only gives correct channel populations but also captures an accurate time-dependent spatial distribution of population. Thereby, we reveal the important role of auxiliary WPs in solving intrinsic problems of the widely used mean field description of nonadiabatic dynamics.
Collapse
Affiliation(s)
- Guijie Li
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhecun Shi
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xin Guo
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Lorentzen AB, Bouatou M, Chacon C, Dappe YJ, Lagoute J, Brandbyge M. Quantum Transport in Large-Scale Patterned Nitrogen-Doped Graphene. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2556. [PMID: 37764585 PMCID: PMC10538011 DOI: 10.3390/nano13182556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
It has recently been demonstrated how the nitrogen dopant concentration in graphene can be controlled spatially on the nano-meter scale using a molecular mask. This technique may be used to create ballistic electron optics-like structures of high/low doping regions; for example, to focus electron beams, harnessing the quantum wave nature of the electronic propagation. Here, we employ large-scale Greens function transport calculations based on a tight-binding approach. We first benchmark different tight-binding models of nitrogen in graphene with parameters based on density functional theory (DFT) and the virtual crystal approximation (VCA). Then, we study theoretically how the random distribution within the masked regions and the discreteness of the nitrogen scattering centers impact the transport behavior of sharp n-p and n-n' interfaces formed by different, realistic nitrogen concentrations. We investigate how constrictions for the current can be realized by patterned high/low doping regions with experimentally feasible nitrogen concentrations. The constrictions can guide the electronic current, while the quantized conductance is significantly washed out due to the nitrogen scattering. The implications for device design is that a p-n junction with nitrogen corrugation should still be viable for current focusing. Furthermore, a guiding channel with less nitrogen in the conducting canal preserves more features of quantized conductance and, therefore, its low-noise regime.
Collapse
Affiliation(s)
| | - Mehdi Bouatou
- Laboratoire Matériaux et Phénomènes Quantiques, CNRS-Université Paris Cité, 10 Rue Alice Domon et Léonie Duquet, CEDEX 13, 75205 Paris, France; (M.B.); (C.C.); (J.L.)
| | - Cyril Chacon
- Laboratoire Matériaux et Phénomènes Quantiques, CNRS-Université Paris Cité, 10 Rue Alice Domon et Léonie Duquet, CEDEX 13, 75205 Paris, France; (M.B.); (C.C.); (J.L.)
| | - Yannick J. Dappe
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, CEDEX, 91191 Gif-sur-Yvette, France;
| | - Jérôme Lagoute
- Laboratoire Matériaux et Phénomènes Quantiques, CNRS-Université Paris Cité, 10 Rue Alice Domon et Léonie Duquet, CEDEX 13, 75205 Paris, France; (M.B.); (C.C.); (J.L.)
| | - Mads Brandbyge
- Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark;
| |
Collapse
|
8
|
Shao C, Shi Z, Xu J, Wang L. Learning Decoherence Time Formulas for Surface Hopping from Quantum Dynamics. J Phys Chem Lett 2023; 14:7680-7689. [PMID: 37606199 DOI: 10.1021/acs.jpclett.3c02019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Surface hopping simulations have achieved great success in many different fields, but their reliability has long been limited by the overcoherence problem. We here present a general machine learning assisted approach to identify optimal decoherence time formulas for surface hopping using exact quantum dynamics as references. In order to avoid computationally expensive force calculations, we use the nuclear kinetic energy and the adiabatic energy difference to iteratively generate the descriptor space. Through multilayer screening of the candidate descriptors and discrete optimization of the relevant parameters, we obtain new energy-based decoherence time formulas. As benchmarked in thousands of diverse multilevel systems and six standard scattering models, surface hopping with our new decoherence time formulas nearly reproduces the exact quantum dynamics while maintaining high efficiency. Thereby, our approach provides a promising avenue for systematically improving the accuracy of surface hopping simulations in complex systems from quantum dynamics data.
Collapse
Affiliation(s)
- Cancan Shao
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhecun Shi
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jiabo Xu
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Li B, Xu J, Li G, Shi Z, Wang L. A Mixed Deterministic-Stochastic Algorithm of the Branching Corrected Mean Field Method for Nonadiabatic Dynamics. J Chem Phys 2022; 156:114116. [DOI: 10.1063/5.0084013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a new algorithm of the branching corrected mean field (BCMF) method for nonadiabatic dynamics [J. Xu and L. Wang, J. Phys. Chem. Lett. 11, 8283 (2020)], which combines the key advantages of the two existed algorithms, i.e., the deterministic BCMF algorithm based on weights of trajectory branches (BCMF-w) and the stochastic BCMF algorithm with random collapse of the electronic wavefunction (BCMF-s). The resulting mixed deterministic-stochastic BCMF algorithm (BCMF-ws) is benchmarked in a series of standard scattering problems with potential wells on the excited-state surfaces, which are common in realistic systems. In all investigated cases, BCMF-ws holds the same high accuracy while the computational time is reduced about two orders of magnitude compared to the original BCMF-w and BCMF-s algorithms, thus promising for nonadiabatic dynamics simulations of general systems.
Collapse
Affiliation(s)
| | | | | | | | - Linjun Wang
- Department of Chemistry, Zhejiang University, China
| |
Collapse
|
10
|
Interpretation of Adiabatic and Diabatic Populations from Trajectories of Branching Corrected Surface Hopping. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2201023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
11
|
Smolyak representations with absorbing boundary conditions for reaction path Hamiltonian model of reactive scattering. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Coccia E, Luppi E. Time-dependent ab initioapproaches for high-harmonic generation spectroscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:073001. [PMID: 34731835 DOI: 10.1088/1361-648x/ac3608] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
High-harmonic generation (HHG) is a nonlinear physical process used for the production of ultrashort pulses in XUV region, which are then used for investigating ultrafast phenomena in time-resolved spectroscopies. Moreover, HHG signal itself encodes information on electronic structure and dynamics of the target, possibly coupled to the nuclear degrees of freedom. Investigating HHG signal leads to HHG spectroscopy, which is applied to atoms, molecules, solids and recently also to liquids. Analysing the number of generated harmonics, their intensity and shape gives a detailed insight of, e.g., ionisation and recombination channels occurring in the strong-field dynamics. A number of valuable theoretical models has been developed over the years to explain and interpret HHG features, with the three-step model being the most known one. Originally, these models neglect the complexity of the propagating electronic wavefunction, by only using an approximated formulation of ground and continuum states. Many effects unravelled by HHG spectroscopy are instead due to electron correlation effects, quantum interference, and Rydberg-state contributions, which are all properly captured by anab initioelectronic-structure approach. In this review we have collected recent advances in modelling HHG by means ofab initiotime-dependent approaches relying on the propagation of the time-dependent Schrödinger equation (or derived equations) in presence of a very intense electromagnetic field. We limit ourselves to gas-phase atomic and molecular targets, and to solids. We focus on the various levels of theory employed for describing the electronic structure of the target, coupled with strong-field dynamics and ionisation approaches, and on the basis used to represent electronic states. Selected applications and perspectives for future developments are also given.
Collapse
Affiliation(s)
- Emanuele Coccia
- Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, via Giorgieri 1, 34127 Trieste, Italy
| | - Eleonora Luppi
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris, France
- CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris, France
| |
Collapse
|
13
|
Mondelo-Martell M, Huarte-Larrañaga F. Competition of quantum effects in H2/ D2 sieving in narrow single-wall carbon nanotubes. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1942277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Manel Mondelo-Martell
- Department of Materials Science and Physical Chemistry, Institute of Theoretical and Computational Chemistry, Faculty of Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Fermín Huarte-Larrañaga
- Department of Materials Science and Physical Chemistry, Institute of Theoretical and Computational Chemistry, Faculty of Chemistry, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Shao C, Xu J, Wang L. Branching and phase corrected surface hopping: A benchmark of nonadiabatic dynamics in multilevel systems. J Chem Phys 2021; 154:234109. [PMID: 34241240 DOI: 10.1063/5.0056224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Since the seminal work of Tully [J. Chem. Phys. 93, 1061 (1990)], two-level scattering models have been extensively adopted as the standard benchmark systems to assess the performance of different trajectory surface hopping methods for nonadiabatic dynamics simulations. Here, we extend the branching and phase corrections to multilevel systems and combine them with both the traditional fewest switches surface hopping (FSSH) and its variant global flux surface hopping (GFSH) algorithms. To get a comprehensive evaluation of the proposed methods, we construct a series of more challenging and diverse three-level and four-level scattering models and use exact quantum solutions as references. Encouragingly, both FSSH and GFSH with the branching and phase corrections produce excellent and nearly identical results in all investigated systems, indicating that the new surface hopping methods are robust to describe multilevel problems and the reliability is insensitive to the definition of self-consistent hopping probabilities in the adiabatic representation. Furthermore, the branching correction is found to be especially important when dealing with strongly repulsive potential energy surfaces, which are common in realistic systems, thus promising for general applications.
Collapse
Affiliation(s)
- Cancan Shao
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jiabo Xu
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
15
|
Woźniak AP, Lesiuk M, Przybytek M, Efimov DK, Prauzner-Bechcicki JS, Mandrysz M, Ciappina M, Pisanty E, Zakrzewski J, Lewenstein M, Moszyński R. A systematic construction of Gaussian basis sets for the description of laser field ionization and high-harmonic generation. J Chem Phys 2021; 154:094111. [PMID: 33685145 DOI: 10.1063/5.0040879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A precise understanding of mechanisms governing the dynamics of electrons in atoms and molecules subjected to intense laser fields has a key importance for the description of attosecond processes such as the high-harmonic generation and ionization. From the theoretical point of view, this is still a challenging task, as new approaches to solve the time-dependent Schrödinger equation with both good accuracy and efficiency are still emerging. Until recently, the purely numerical methods of real-time propagation of the wavefunction using finite grids have been frequently and successfully used to capture the electron dynamics in small one- or two-electron systems. However, as the main focus of attoscience shifts toward many-electron systems, such techniques are no longer effective and need to be replaced by more approximate but computationally efficient ones. In this paper, we explore the increasingly popular method of expanding the wavefunction of the examined system into a linear combination of atomic orbitals and present a novel systematic scheme for constructing an optimal Gaussian basis set suitable for the description of excited and continuum atomic or molecular states. We analyze the performance of the proposed basis sets by carrying out a series of time-dependent configuration interaction calculations for the hydrogen atom in fields of intensity varying from 5 × 1013 W/cm2 to 5 × 1014 W/cm2. We also compare the results with the data obtained using Gaussian basis sets proposed previously by other authors.
Collapse
Affiliation(s)
| | - Michał Lesiuk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Michał Przybytek
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Dmitry K Efimov
- Institute of Theoretical Physics, Jagiellonian University in Krakow, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Jakub S Prauzner-Bechcicki
- Marian Smoluchowski Institute of Physics, Jagiellonian University in Krakow, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Michał Mandrysz
- Institute of Theoretical Physics, Jagiellonian University in Krakow, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Marcelo Ciappina
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860, Castelldefels, Barcelona, Spain
| | - Emilio Pisanty
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860, Castelldefels, Barcelona, Spain
| | - Jakub Zakrzewski
- Institute of Theoretical Physics, Jagiellonian University in Krakow, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Maciej Lewenstein
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860, Castelldefels, Barcelona, Spain
| | - Robert Moszyński
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
16
|
Xiao BY, Xu JB, Wang LJ. New energy-based decoherence correction approaches for trajectory surface hopping. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp2006098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Bing-yang Xiao
- Center for Chemistry of Novel & High-Performance Materials, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jia-bo Xu
- Center for Chemistry of Novel & High-Performance Materials, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Lin-jun Wang
- Center for Chemistry of Novel & High-Performance Materials, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
17
|
Ando K. Single-electron quantum dynamics in high-harmonic generation spectrum from LiH molecule: Analysis of potential energy surfaces for electrons constructed from a model of localized Gaussian wave packets with valence-bond spin-coupling. J Chem Phys 2020; 152:084306. [DOI: 10.1063/1.5139079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Koji Ando
- Department of Information and Sciences, Tokyo Woman’s Christian University, 2-6-1 Zenpukuji, Suginami-ku, Tokyo 167-8585, Japan
| |
Collapse
|
18
|
Wang R, Lu W, Xie H, Zheng X, Yam C. Theoretical investigation of real-time charge dynamics in open systems coupled to bulk materials. J Chem Phys 2019; 150:174119. [DOI: 10.1063/1.5094189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Rulin Wang
- College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
- Beijing Computational Science Research Center, Haidian District, Beijing 100193, China
| | - Wencai Lu
- College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Hang Xie
- Department of Physics, Chongqing University, Chongqing 401331, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - ChiYung Yam
- Beijing Computational Science Research Center, Haidian District, Beijing 100193, China
| |
Collapse
|
19
|
Xu J, Wang L. Branching corrected surface hopping: Resetting wavefunction coefficients based on judgement of wave packet reflection. J Chem Phys 2019; 150:164101. [DOI: 10.1063/1.5090927] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Jiabo Xu
- Department of Chemistry, Center for Chemistry of Novel and High-Performance Materials, Zhejiang University, Hangzhou 310027, China
| | - Linjun Wang
- Department of Chemistry, Center for Chemistry of Novel and High-Performance Materials, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
20
|
Ando K. Potential energy surfaces for electron dynamics modeled by floating and breathing Gaussian wave packets with valence-bond spin-coupling: An analysis of high-harmonic generation spectrum. J Chem Phys 2018. [DOI: 10.1063/1.5012575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Koji Ando
- Department of Information and Sciences, Tokyo Woman’s Christian University, 2-6-1 Zenpukuji, Suginami-ku, Tokyo 167-8585, Japan
| |
Collapse
|
21
|
Mondelo-Martell M, Huarte-Larrañaga F, Manthe U. Quantum dynamics of H 2 in a carbon nanotube: Separation of time scales and resonance enhanced tunneling. J Chem Phys 2017; 147:084103. [PMID: 28863521 DOI: 10.1063/1.4995550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Quantum confinement effects are known to affect the behavior of molecules adsorbed in nanostructured materials. In order to study these effects on the transport of a single molecule through a nanotube, we present a quantum dynamics study on the diffusion of H2 in a narrow (8,0) carbon nanotube in the low pressure limit. Transmission coefficients for the elementary step of the transport process are calculated using the flux correlation function approach and diffusion rates are obtained using the single hopping model. The different time scales associated with the motion in the confined coordinates and the motion along the nanotube's axis are utilized to develop an efficient and numerically exact approach, in which a diabatic basis describing the fast motion in the confined coordinate is employed. Furthermore, an adiabatic approximation separating the dynamics of confined and unbound coordinates is studied. The results obtained within the adiabatic approximation agree almost perfectly with the numerically exact ones. The approaches allow us to accurately study the system's dynamics on the picosecond time scale and resolve resonance structures present in the transmission coefficients. Resonance enhanced tunneling is found to be the dominant transport mechanism at low energies. Comparison with results obtained using transition state theory shows that tunneling significantly increases the diffusion rate at T < 120 K.
Collapse
Affiliation(s)
- Manel Mondelo-Martell
- Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional, Universitat de Barcelona, C/ Martí i Franquès 1, 08028 Barcelona, Spain
| | - Fermín Huarte-Larrañaga
- Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional, Universitat de Barcelona, C/ Martí i Franquès 1, 08028 Barcelona, Spain
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
22
|
Atom–surface scattering: a comparative study considering real and complex absorbing potentials. ADSORPTION 2017. [DOI: 10.1007/s10450-017-9890-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Dauth M, Graus M, Schelter I, Wießner M, Schöll A, Reinert F, Kümmel S. Perpendicular Emission, Dichroism, and Energy Dependence in Angle-Resolved Photoemission: The Importance of The Final State. PHYSICAL REVIEW LETTERS 2016; 117:183001. [PMID: 27834988 DOI: 10.1103/physrevlett.117.183001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Indexed: 06/06/2023]
Abstract
Angle-resolved photoemission spectroscopy has been developed to a very high accuracy. However, effects that depend sensitively on the state of the emitted photoelectron were so far hard to compute for real molecules. We here show that the real-time propagation approach to time-dependent density functional theory allows us to obtain final-state effects consistently from first principles and with an accuracy that allows for the interpretation of experimental data. In a combined theoretical and experimental study we demonstrate that the approach captures three hallmark effects that are beyond the final-state plane-wave approximation: emission perpendicular to the light polarization, circular dichroism in the photoelectron angular distribution, and a pronounced energy dependence of the photoemission intensity.
Collapse
Affiliation(s)
- M Dauth
- Theoretical Physics IV, University of Bayreuth, D-95440 Bayreuth, Germany
| | - M Graus
- Experimental Physics VII, University of Würzburg, D-97074 Würzburg, Germany
| | - I Schelter
- Theoretical Physics IV, University of Bayreuth, D-95440 Bayreuth, Germany
| | - M Wießner
- Experimental Physics VII, University of Würzburg, D-97074 Würzburg, Germany
| | - A Schöll
- Experimental Physics VII, University of Würzburg, D-97074 Würzburg, Germany
| | - F Reinert
- Experimental Physics VII, University of Würzburg, D-97074 Würzburg, Germany
| | - S Kümmel
- Theoretical Physics IV, University of Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
24
|
Du H, Wu H, Wang H, Yue S, Hu B. Theoretical scheme for simultaneously observing forward-backward photoelectron holography. OPTICS LETTERS 2016; 41:697-700. [PMID: 26872166 DOI: 10.1364/ol.41.000697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Photoelectron angular momentum distribution of He+ driven by a few-cycle laser is investigated numerically. We simultaneously observe two dominant interference patterns with one shot of lasers by solving the 3D time-dependent Schrodinger equation. Analysis of a semiclassical model identifies these two interference patterns as two types of photoelectron holography. The interference pattern with Pz>0 is a type of forward rescattering holography, which comes from the interference between direct (reference) and rescattered (signal) forward electrons ionized in the same quarter-cycle. The interference pattern with Pz<0 is a type of backward rescattering holography, which comes from the interference between a direct electron ionized in the third quarter-cycle and rescattered backward electron ionized in the first quarter-cycle. Moreover, we propose a method to distinguish this backward rescattering holography and intracycle interference patterns of direct electrons.
Collapse
|
25
|
Wang R, Zheng X, Kwok Y, Xie H, Chen G, Yam C. Time-dependent density functional theory for open systems with a positivity-preserving decomposition scheme for environment spectral functions. J Chem Phys 2015; 142:144112. [PMID: 25877567 DOI: 10.1063/1.4917172] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene.
Collapse
Affiliation(s)
- RuLin Wang
- Beijing Computational Science Research Center, No. 3 He-Qing Road, Beijing 100084, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YanHo Kwok
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hang Xie
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - GuanHua Chen
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - ChiYung Yam
- Beijing Computational Science Research Center, No. 3 He-Qing Road, Beijing 100084, China
| |
Collapse
|
26
|
Xie H, Kwok Y, Jiang F, Zheng X, Chen G. Complex absorbing potential based Lorentzian fitting scheme and time dependent quantum transport. J Chem Phys 2014; 141:164122. [DOI: 10.1063/1.4898729] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hang Xie
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yanho Kwok
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Feng Jiang
- Department of Physics, Shanghai University of Electric Power, Shanghai, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - GuanHua Chen
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
27
|
Ando K. Mixed quantal-semiquantal dynamics with stochastic particles for backreaction. J Chem Phys 2014; 141:144106. [DOI: 10.1063/1.4897532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Szekely JE, Seideman T. Coherently driven, ultrafast electron-phonon dynamics in transport junctions. J Chem Phys 2014; 141:044103. [DOI: 10.1063/1.4890344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
29
|
Iida K, Yasuike T, Nobusada K. Development of open-boundary cluster model approach for electrochemical systems and its application to Ag+ adsorption on Au(111) and Ag(111) electrodes. J Chem Phys 2013; 139:104101. [DOI: 10.1063/1.4820360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Cvitaš MT, Althorpe SC. A Chebyshev method for state-to-state reactive scattering using reactant-product decoupling: OH + H2 → H2O + H. J Chem Phys 2013; 139:064307. [DOI: 10.1063/1.4817241] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Skomorowski W, Pawłowski F, Koch CP, Moszynski R. Rovibrational dynamics of the strontium molecule in the AΣu+1, c3Πu, and aΣu+3 manifold from state-of-the-art ab initio calculations. J Chem Phys 2012; 136:194306. [DOI: 10.1063/1.4713939] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
32
|
Investigating transition state resonances in the time domain by means of Bohmian mechanics: The F+HD reaction. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2011.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Panda AN, Herráez-Aguilar D, Jambrina PG, Aldegunde J, Althorpe SC, Aoiz FJ. A state-to-state dynamical study of the Br + H2 reaction: comparison of quantum and classical trajectory results. Phys Chem Chem Phys 2012; 14:13067-75. [DOI: 10.1039/c2cp41825h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Sun Z, Yang W, Zhang DH. Higher-order split operator schemes for solving the Schrödinger equation in the time-dependent wave packet method: applications to triatomic reactive scattering calculations. Phys Chem Chem Phys 2012; 14:1827-45. [DOI: 10.1039/c1cp22790d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
|
36
|
Antipov SV, Gustafsson M, Nyman G. Spin-orbit and rotational couplings in radiative association of C(3P) and N(4S) atoms. J Chem Phys 2011; 135:184302. [PMID: 22088060 DOI: 10.1063/1.3562125] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The role of spin-orbit and rotational couplings in radiative association of C((3)P) and N((4)S) atoms is investigated. Couplings among doublet electronic states of the CN radical are considered, giving rise to a 6-state model of the process. The solution of the dynamical problem is based on the L(2) method, where a complex absorbing potential is added to the Hamiltonian operator in order to treat continuum and bound levels in the same manner. Comparison of the energy-dependent rate coefficients calculated with and without spin-orbit and rotational couplings shows that the couplings have a strong effect on the resonance structure and low-energy baseline of the rate coefficient.
Collapse
Affiliation(s)
- Sergey V Antipov
- Department of Chemistry, University of Gothenburg, SE-412 96 Gothenburg, Sweden.
| | | | | |
Collapse
|
37
|
Sharma S, Singh H. Laser pulse shaping for optimal control of multiphoton dissociation in a diatomic molecule using genetic algorithm optimization. Chem Phys 2011. [DOI: 10.1016/j.chemphys.2011.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Nissen A, Karlsson HO, Kreiss G. A perfectly matched layer applied to a reactive scattering problem. J Chem Phys 2010; 133:054306. [PMID: 20707531 DOI: 10.1063/1.3458888] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Anna Nissen
- Department of Information Technology, Division of Scientific Computing, Uppsala University, Uppsala 751 05, Sweden.
| | | | | |
Collapse
|
39
|
Sherratt PAJ, Cohen H, Seideman T. The information content of electron flow through adsorbed molecular monolayers. J Chem Phys 2009; 131:234701. [DOI: 10.1063/1.3273452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Cvitaš MT, Althorpe SC. Quantum Wave Packet Method for State-to-State Reactive Scattering Calculations on AB + CD → ABC + D Reactions. J Phys Chem A 2009; 113:4557-69. [DOI: 10.1021/jp8111974] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Marko T. Cvitaš
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Stuart C. Althorpe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| |
Collapse
|
41
|
Bargueño P, González-Lezana T, Larrégaray P, Bonnet L, Rayez JC, Hankel M, Smith SC, Meijer AJHM. Study of the H+O2 reaction by means of quantum mechanical and statistical approaches: the dynamics on two different potential energy surfaces. J Chem Phys 2008; 128:244308. [PMID: 18601333 DOI: 10.1063/1.2944246] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The possible existence of a complex-forming pathway for the H+O(2) reaction has been investigated by means of both quantum mechanical and statistical techniques. Reaction probabilities, integral cross sections, and differential cross sections have been obtained with a statistical quantum method and the mean potential phase space theory. The statistical predictions are compared to exact results calculated by means of time dependent wave packet methods and a previously reported time independent exact quantum mechanical approach using the double many-body expansion (DMBE IV) potential energy surface (PES) [Pastrana et al., J. Phys. Chem. 94, 8073 (1990)] and the recently developed surface (denoted XXZLG) by Xu et al. [J. Chem. Phys. 122, 244305 (2005)]. The statistical approaches are found to reproduce only some of the exact total reaction probabilities for low total angular momenta obtained with the DMBE IV PES and some of the cross sections calculated at energy values close to the reaction threshold for the XXZLG surface. Serious discrepancies with the exact integral cross sections at higher energy put into question the possible statistical nature of the title reaction. However, at a collision energy of 1.6 eV, statistical rotationally resolved cross sections managed to reproduce the experimental cross sections for the H+O(2)(v=0,j=1)-->OH(v(')=1,j('))+O process reasonably well.
Collapse
Affiliation(s)
- Pedro Bargueño
- Instituto de Fisica Fundamental (CSIC), Serrano 123, 28006 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Balint-Kurti GG. Time-dependent and time-independent wavepacket approaches to reactive scattering and photodissociation dynamics. INT REV PHYS CHEM 2008. [DOI: 10.1080/01442350802102379] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Silva BC, Barletta P, Munro JJ, Tennyson J. Resonant states of H3+ and D2H+. J Chem Phys 2008; 128:244312. [DOI: 10.1063/1.2945899] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
44
|
|
45
|
Hankel M, Smith SC, Meijer AJHM. State-to-state reaction probabilities for the H+O2(v,j)→O+OH(v′,j′) reaction on three potential energy surfaces. J Chem Phys 2007; 127:064316. [PMID: 17705605 DOI: 10.1063/1.2762220] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report state-to-state and total reaction probabilities for J=0 and total reaction probabilities for J=2 and 4 for the title reaction, both for ground-state and initially rovibrationally excited reactants. The results for three different potential energy surfaces are compared and contrasted. The potential energy surfaces employed are the DMBE IV surface by Pastrana et al. [J. Phys. Chem. 94, 8073 (1990)], the surface by Troe and Ushakov (TU) [J. Chem. Phys. 115, 3621 (2001)], and the new XXZLG ab initio surface by Xu et al. [J. Chem. Phys. 122, 244305 (2005)]. Our results show that the total reaction probabilities from both the TU and XXZLG surfaces are much smaller in magnitude for collision energies above 1.2 eV compared to the DMBE IV surface. The three surfaces also show different behavior with regards to the effect of initial state excitation. The reactivity is increased on the XXZLG and the TU surfaces and decreased on the DMBE IV surface. Vibrational and rotational product state distributions for the XXZLG and the DMBE IV surface show different behaviors for both types of distributions. Our results show that for energies above 1.25 eV the dynamics on the DMBE IV surface are not statistical. However, there is also evidence that the dynamics on the XXZLG surface are not purely statistical for energies above the onset of the first excited product vibrational state v'=1. The magnitude of the total reaction probability is decreased for J>0 for the DMBE IV and the XXZLG surfaces for ground-state reactants. However, for initially rovibrationally excited reactants, the total reaction probability does not decrease as expected for both surfaces. As a result the total cross section averaged over all Boltzmann accessible rotational states may well be larger than the cross section reported in the literature for j=1.
Collapse
Affiliation(s)
- Marlies Hankel
- Centre for Computational Molecular Science, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia.
| | | | | |
Collapse
|
46
|
|
47
|
Grozdanov TP, McCarroll R. Multichannel scattering calculations using absorbing potentials and mapped grids. J Chem Phys 2007; 126:034310. [PMID: 17249874 DOI: 10.1063/1.2430523] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The authors investigate the use of absorbing potentials and discrete variable representation grid methods in multichannel time-independent scattering calculations. An exactly solvable, coupled-two-channel problem involving square-well potentials is used to assess the quality of numerical results. Special emphasis is given to the description of scattering resonances and near-threshold regions. Numerical treatment of close vicinities of thresholds requires the introduction of nonequidistant grids through a mapping procedure of the scattering coordinate.
Collapse
Affiliation(s)
- T P Grozdanov
- Institute of Physics, P.O. Box 57, 11001 Belgrade, Serbia
| | | |
Collapse
|
48
|
Bargueño P, González-Lezana T, Larrégaray P, Bonnet L, Claude Rayez J. Time dependent wave packet and statistical calculations on the H + O(2) reaction. Phys Chem Chem Phys 2007; 9:1127-37. [PMID: 17311155 DOI: 10.1039/b613375d] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The H + O(2)--> OH + O reaction has been theoretically investigated by means of an exact time dependent wave packet method and two statistical approaches: a recently developed statistical quantum model and phase-space theory. The exhaustive analysis of reaction probabilities at a zero total angular momentum would, in principle, reveal the existence of a complex-forming mechanism at low collision energies (E(c) = 1.15 eV), whereas deviations from a statistical behaviour at higher energies may be interpreted as the onset of a direct abstraction pathway which favours the production of highly excited rotational states of the OH fragment in its ground vibrational state. The good description by statistical means of previously measured product rotational distributions and excitation functions seems to support such an interpretation. However the statistical predictions clearly overestimate both existing and present exact quantum mechanical reaction probabilities and total cross sections, thereby precluding to conclude definitely the statistical nature of the collision. The exact time dependent method yields values of the integral cross sections in agreement with results by Goldfield and Meijer, and below the experimental findings.
Collapse
Affiliation(s)
- Pedro Bargueño
- Instituto de Matemáticas y Física Fundamental (CSIC), Serrano 123, 28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
49
|
Tennyson J, Barletta P, Munro JJ, Silva BC. The role of asymptotic vibrational states in H3+. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2006; 364:2903-14; discussion 2915-6. [PMID: 17015378 DOI: 10.1098/rsta.2006.1890] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Calculations are discussed which characterize all the vibrational bound states of the H3+ and D2H+ molecular ions using a realistic ab initio potential energy surface. Graphical analysis and calculation of rotational constants show that both ions support a series of atom-diatom-like long-range states: asymptotic vibrational states. The role of these states in the H3+ system and other molecules is discussed. The vibrational calculations are extended above dissociation where the resulting (Feshbach) resonances are shown to be too short-lived to be of importance for the H3+ photodissociation spectrum.
Collapse
Affiliation(s)
- Jonathan Tennyson
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | |
Collapse
|
50
|
Martinazzo R, Tantardini GF. Quantum study of Eley-Rideal reaction and collision induced desorption of hydrogen atoms on a graphite surface. I. H-chemisorbed case. J Chem Phys 2006; 124:124702. [PMID: 16599713 DOI: 10.1063/1.2177654] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Collision induced (CI) processes involving hydrogen atoms on a graphite surface are studied quantum mechanically within the rigid, flat surface approximation, using a time-dependent wave packet method. The Eley-Rideal (ER) reaction and collision induced desorption (CID) cross sections are obtained with the help of two propagations which use different sets of coordinates, a "product" and a "reagent" set. Several adsorbate-substrate initial states of the target H atom in the chemisorption well are considered, and CI processes are studied over a wide range of projectile energy. Results show that (i) the Eley-Rideal reaction is the major reactive outcome and (ii) CID cross sections do not exceed 4 A2 and present dynamic thresholds for low values of the target vibrational quantum number. ER cross sections show oscillations at high energies which cannot be reproduced by classical and quasiclassical trajectory calculations. They are related to the vibrational excitation of the reaction products, which is a rather steep decreasing function of the collision energy. This behavior causes a selective population of the low-lying vibrational states and allows the quantization of the product molecular states to manifest itself in a collisional observable. A peak structure in the CID cross section is also observed and is assigned to the selective population of metastable states of the transient molecular hydrogen.
Collapse
Affiliation(s)
- Rocco Martinazzo
- Department of Physical Chemistry and Electrochemistry, and CIMAINA, University of Milan, Via Golgi 19, 20133 Milan, Italy.
| | | |
Collapse
|