1
|
Chegini F, Kopaničáková A, Krause R, Weiser M. Efficient identification of scars using heterogeneous model hierarchies. Europace 2021; 23:i113-i122. [PMID: 33751083 DOI: 10.1093/europace/euaa402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/09/2020] [Indexed: 11/14/2022] Open
Abstract
AIMS Detection and quantification of myocardial scars are helpful for diagnosis of heart diseases and for personalized simulation models. Scar tissue is generally characterized by a different conduction of excitation. We aim at estimating conductivity-related parameters from endocardial mapping data. Solving this inverse problem requires computationally expensive monodomain simulations on fine discretizations. We aim at accelerating the estimation by combining electrophysiology models of different complexity. METHODS AND RESULTS Distributed parameter estimation is performed by minimizing the misfit between simulated and measured electrical activity on the endocardial surface, subject to the monodomain model and regularization. We formulate this optimization problem, including the modelling of scar tissue and different regularizations, and design an efficient solver. We consider grid hierarchies and monodomain-eikonal model hierarchies in a recursive multilevel trust-region method. With numerical examples, efficiency and estimation quality, depending on the data, are investigated. The multilevel solver is significantly faster than a comparable single level solver. Endocardial mapping data of realistic density appears to be sufficient to provide quantitatively reasonable estimates of location, size, and shape of scars close to the endocardial surface. CONCLUSION In several situations, scar reconstruction based on eikonal and monodomain models differ significantly, suggesting the use of the more involved monodomain model for this purpose. Eikonal models can accelerate the computations considerably, enabling the use of complex electrophysiology models for estimating myocardial scars from endocardial mapping data.
Collapse
Affiliation(s)
- Fatemeh Chegini
- Institute of Computational Science, USI, Lugano, Switzerland.,Center for Computational Medicine in Cardiology, USI, Lugano, Switzerland
| | - Alena Kopaničáková
- Institute of Computational Science, USI, Lugano, Switzerland.,Center for Computational Medicine in Cardiology, USI, Lugano, Switzerland
| | - Rolf Krause
- Institute of Computational Science, USI, Lugano, Switzerland.,Center for Computational Medicine in Cardiology, USI, Lugano, Switzerland
| | - Martin Weiser
- Center for Computational Medicine in Cardiology, USI, Lugano, Switzerland.,Zuse Institute Berlin, Takustr 7, 14195 Berlin, Germany
| |
Collapse
|
2
|
Zimik S, Pandit R, Majumder R. Anisotropic shortening in the wavelength of electrical waves promotes onset of electrical turbulence in cardiac tissue: An in silico study. PLoS One 2020; 15:e0230214. [PMID: 32168323 PMCID: PMC7069633 DOI: 10.1371/journal.pone.0230214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/24/2020] [Indexed: 12/03/2022] Open
Abstract
Several pathological conditions introduce spatial variations in the electrical properties of cardiac tissue. These variations occur as localized or distributed gradients in ion-channel functionality over extended tissue media. Electrical waves, propagating through such affected tissue, demonstrate distortions, depending on the nature of the ionic gradient in the diseased substrate. If the degree of distortion is large, reentrant activity may develop, in the form of rotating spiral (2d) and scroll (3d) waves of electrical activity. These reentrant waves are associated with the occurrence of lethal cardiac rhythm disorders, known as arrhythmias, such as ventricular tachycardia (VT) and ventricular fibrillation (VF), which are believed to be common precursors of sudden cardiac arrest. By using state-of-the-art mathematical models for generic, and ionically-realistic (human) cardiac tissue, we study the detrimental effects of these ionic gradients on electrical wave propagation. We propose a possible mechanism for the development of instabilities in reentrant wave patterns, in the presence of ionic gradients in cardiac tissue, which may explain how one type of arrhythmia (VT) can degenerate into another (VF). Our proposed mechanism entails anisotropic reduction in the wavelength of the excitation waves because of anisotropic variation in its electrical properties, in particular the action potential duration (APD). We find that the variation in the APD, which we induce by varying ion-channel conductances, imposes a spatial variation in the spiral- or scroll-wave frequency ω. Such gradients in ω induce anisotropic shortening of wavelength of the spiral or scroll arms and eventually leads to instabilitites.
Collapse
Affiliation(s)
- Soling Zimik
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
| | - Rahul Pandit
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
| | - Rupamanjari Majumder
- Laboratory for Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- * E-mail:
| |
Collapse
|
3
|
Reentry via high-frequency pacing in a mathematical model for human-ventricular cardiac tissue with a localized fibrotic region. Sci Rep 2017; 7:15350. [PMID: 29127361 PMCID: PMC5681702 DOI: 10.1038/s41598-017-15735-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/02/2017] [Indexed: 11/08/2022] Open
Abstract
Localized heterogeneities, caused by the regional proliferation of fibroblasts, occur in mammalian hearts because of diseases like myocardial infarction. Such fibroblast clumps can become sources of pathological reentrant activities, e.g., spiral or scroll waves of electrical activation in cardiac tissue. The occurrence of reentry in cardiac tissue with heterogeneities, such as fibroblast clumps, can depend on the frequency at which the medium is paced. Therefore, it is important to study the reentry-initiating potential of such fibroblast clumps at different frequencies of pacing. We investigate the arrhythmogenic effects of fibroblast clumps at high- and low-frequency pacing. We find that reentrant waves are induced in the medium more prominently at high-frequency pacing than with low-frequency pacing. We also study the other factors that affect the potential of fibroblast clumps to induce reentry in cardiac tissue. In particular, we show that the ability of a fibroblast clump to induce reentry depends on the size of the clump, the distribution and percentage of fibroblasts in the clump, and the excitability of the medium. We study the process of reentry in two-dimensional and a three-dimensional mathematical models for cardiac tissue.
Collapse
|
4
|
Campanari L, You MJ, Langfield P, Glass L, Shrier A. Varieties of reentrant dynamics. CHAOS (WOODBURY, N.Y.) 2017; 27:041101. [PMID: 28456163 DOI: 10.1063/1.4979602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Experiments were carried out in monolayer tissue cultures of embryonic chick heart cells imaged using a calcium sensitive fluorescent dye. The cells were grown in annular geometries and in annular geometries with an isthmus connecting antipodal region of the annulus. We observed a large number of spatially different patterns of propagation consisting of one or more circulating waves. As well, we also observed rhythms in which rotors embedded in the annuli generated propagating pulses. These results demonstrate that many different patterns of excitation can be present in cardiac tissue with simple geometries.
Collapse
Affiliation(s)
- Lucas Campanari
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montréal, Quebec H3G 1Y6, Canada
| | - Min Ju You
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montréal, Quebec H3G 1Y6, Canada
| | - Peter Langfield
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montréal, Quebec H3G 1Y6, Canada
| | - Leon Glass
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montréal, Quebec H3G 1Y6, Canada
| | - Alvin Shrier
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montréal, Quebec H3G 1Y6, Canada
| |
Collapse
|
5
|
Quail T, Shrier A, Glass L. Spatial symmetry breaking determines spiral wave chirality. PHYSICAL REVIEW LETTERS 2014; 113:158101. [PMID: 25375745 DOI: 10.1103/physrevlett.113.158101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Indexed: 05/27/2023]
Abstract
Chirality represents a fundamental property of spiral waves. Introducing obstacles into cardiac monolayers leads to the initiation of clockwise-rotating, counterclockwise-rotating, and pairs of spiral waves. Simulations show that the precise location of the obstacle and the pacing frequency determine spiral wave chirality. Instabilities predicted by curves relating the action potential duration and the pacing frequency at different spatial locations predict sites of wave break initiation and, hence, spiral wave chirality.
Collapse
Affiliation(s)
- Thomas Quail
- Department of Physiology, McGill University, Montreal, Canada H3G 1Y6
| | - Alvin Shrier
- Department of Physiology, McGill University, Montreal, Canada H3G 1Y6
| | - Leon Glass
- Department of Physiology, McGill University, Montreal, Canada H3G 1Y6
| |
Collapse
|
6
|
Majumder R, Pandit R, Panfilov AV. Turbulent electrical activity at sharp-edged inexcitable obstacles in a model for human cardiac tissue. Am J Physiol Heart Circ Physiol 2014; 307:H1024-35. [DOI: 10.1152/ajpheart.00593.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wave propagation around various geometric expansions, structures, and obstacles in cardiac tissue may result in the formation of unidirectional block of wave propagation and the onset of reentrant arrhythmias in the heart. Therefore, we investigated the conditions under which reentrant spiral waves can be generated by high-frequency stimulation at sharp-edged obstacles in the ten Tusscher-Noble-Noble-Panfilov (TNNP) ionic model for human cardiac tissue. We show that, in a large range of parameters that account for the conductance of major inward and outward ionic currents of the model [fast inward Na+ current ( INa), L—type slow inward Ca2+ current ( ICaL), slow delayed-rectifier current ( IKs), rapid delayed-rectifier current ( IKr), inward rectifier K+ current ( IK1)], the critical period necessary for spiral formation is close to the period of a spiral wave rotating in the same tissue. We also show that there is a minimal size of the obstacle for which formation of spirals is possible; this size is ∼2.5 cm and decreases with a decrease in the excitability of cardiac tissue. We show that other factors, such as the obstacle thickness and direction of wave propagation in relation to the obstacle, are of secondary importance and affect the conditions for spiral wave initiation only slightly. We also perform studies for obstacle shapes derived from experimental measurements of infarction scars and show that the formation of spiral waves there is facilitated by tissue remodeling around it. Overall, we demonstrate that the formation of reentrant sources around inexcitable obstacles is a potential mechanism for the onset of cardiac arrhythmias in the presence of a fast heart rate.
Collapse
Affiliation(s)
- Rupamanjari Majumder
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rahul Pandit
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - A. V. Panfilov
- Department of Physics and Astronomy, Gent University, Ghent, Belgium; and
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
7
|
Kuklik P, Sanders P, Szumowski L, Żebrowski JJ. Attraction and repulsion of spiral waves by inhomogeneity of conduction anisotropy--a model of spiral wave interaction with electrical remodeling of heart tissue. J Biol Phys 2013; 39:67-80. [PMID: 23860834 PMCID: PMC3532668 DOI: 10.1007/s10867-012-9286-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 09/05/2012] [Indexed: 11/28/2022] Open
Abstract
Various forms of heart disease are associated with remodeling of the heart muscle, which results in a perturbation of cell-to-cell electrical coupling. These perturbations may alter the trajectory of spiral wave drift in the heart muscle. We investigate the effect of spatially extended inhomogeneity of transverse cell coupling on the spiral wave trajectory using a simple active media model. The spiral wave was either attracted or repelled from the center of inhomogeneity as a function of cell excitability and gradient of the cell coupling. High levels of excitability resulted in an attraction of the wave to the center of inhomogeneity, whereas low levels resulted in an escape and termination of the spiral wave. The spiral wave drift velocity was related to the gradient of the coupling and the initial position of the wave. In a diseased heart, a region of altered transverse coupling corresponds with local gap junction remodeling that may be responsible for stabilization-destabilization of spiral waves and hence reflect potentially important targets in the treatment of heart arrhythmias.
Collapse
Affiliation(s)
- Pawel Kuklik
- Centre for Heart Rhythm Disorders, Royal Adelaide Hospital, University of Adelaide, Adelaide, Australia.
| | | | | | | |
Collapse
|
8
|
Borek B, Shajahan TK, Gabriels J, Hodge A, Glass L, Shrier A. Pacemaker interactions induce reentrant wave dynamics in engineered cardiac culture. CHAOS (WOODBURY, N.Y.) 2012; 22:033132. [PMID: 23020471 DOI: 10.1063/1.4747709] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Pacemaker interactions can lead to complex wave dynamics seen in certain types of cardiac arrhythmias. We use experimental and mathematical models of pacemakers in heterogeneous excitable media to investigate how pacemaker interactions can be a mechanism for wave break and reentrant wave dynamics. Embryonic chick ventricular cells are cultured in vitro so as to create a dominant central pacemaker site that entrains other pacemakers in the medium. Exposure of those cultures to a potassium channel blocker, E-4031, leads to emergence of peripheral pacemakers that compete with each other and with the central pacemaker. Waves emitted by faster pacemakers break up over the slower pacemaker to form reentrant waves. Similar dynamics are observed in a modified FitzHugh-Nagumo model of heterogeneous excitable media with two distinct sites of pacemaking. These findings elucidate a mechanism of pacemaker-induced reentry in excitable media.
Collapse
Affiliation(s)
- Bartłomiej Borek
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Gao X, Feng X, Cai MC, Li BW, Ying HP, Zhang H. Inwardly rotating spirals in nonuniform excitable media. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:016213. [PMID: 22400649 DOI: 10.1103/physreve.85.016213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/28/2011] [Indexed: 05/31/2023]
Abstract
Inwardly rotating spirals (IRSs) have attracted great attention since their observation in an oscillatory reaction-diffusion system. However, IRSs have not yet been reported in planar excitable media. In the present work we investigate rotating waves in a nonuniform excitable medium, consisting of an inner disk part surrounded by an outer ring part with different excitabilities, by numerical simulations of a simple FitzHugh-Nagumo model. Depending on the excitability of the medium as well as the inhomogeneity, we find the occurrence of IRSs, of which the excitation propagates inwardly to the geometrical spiral tip.
Collapse
Affiliation(s)
- Xiang Gao
- Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027, China
| | | | | | | | | | | |
Collapse
|
10
|
SEIGNEURIC RG, CHASSÉ JL, AUGER PM, BARDOU AL. ROLE OF CELLULAR COUPLING AND DISPERSION OF REFRACTORINESS IN CARDIAC ARRHYTHMIAS: A SIMULATION STUDY. J BIOL SYST 2011. [DOI: 10.1142/s0218339099000309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Computer simulation is applied to study the role of cellular coupling, dispersion of refractoriness as well as both of them, in the mechanisms underlying cardiac arrhythmias. We first assumed that local ischemia mainly induces cell to cell dispersion in the coupling resistance (case 1), refractory period (case 2) or both (case 3). Numerical experiments, based on the van Capelle and Durrer model, showed that vortices could not be induced in these conditions. In order to be more realistic about coronary circulation we simulated a patchy dispersion of cellular properties, each patch corresponding to the zone irrigated by a small coronary artery. In these conditions, a single activation wave could give rise to abnormal activities. Probabilities of reentry, estimated for the three cases cited above, showed that a severe alteration of the coupling resistance may be an important factor in the genesis of reentry. Moreover, use of isochronal maps revealed that vortices were both stable and sustained with an alteration of coupling alone or along with reductions of action potential duration. Conversely, simulations with reduction of the refractoriness alone induced only transient patterns.
Collapse
Affiliation(s)
- R. G. SEIGNEURIC
- Centre de Recherche de l'Hôpital du Sacré-Cœur, Montréal, Canada
| | - J-L. CHASSÉ
- Université Claude Bernard Lyon 1, Villeurbanne, France
| | - P. M. AUGER
- Université Claude Bernard Lyon 1, Villeurbanne, France
| | - A. L. BARDOU
- LTSI-INSERM, Université Rennes 1, Rennes, France
| |
Collapse
|
11
|
Mahmud F, Shiozawa N, Makikawa M, Nomura T. Reentrant excitation in an analog-digital hybrid circuit model of cardiac tissue. CHAOS (WOODBURY, N.Y.) 2011; 21:023121. [PMID: 21721763 DOI: 10.1063/1.3597645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We propose an analog-digital hybrid circuit model of one-dimensional cardiac tissue with hardware implementation that allows us to perform real-time simulations of spatially conducting cardiac action potentials. Each active nodal compartment of the tissue model is designed using analog circuits and a dsPIC microcontroller, by which the time-dependent and time-independent nonlinear current-voltage relationships of six types of ion channel currents employed in the Luo-Rudy phase I (LR-I) model for a single mammalian cardiac ventricular cell can be reproduced quantitatively. Here, we perform real-time simulations of reentrant excitation conduction in a ring-shaped tissue model that includes eighty nodal compartments. In particular, we show that the hybrid tissue model can exhibit real-time dynamics for initiation of reentries induced by uni-directional block, as well as those for phase resetting that leads to annihilation of the reentry in response to impulsive current stimulations at appropriate nodes and timings. The dynamics of the hybrid model are comparable to those of a spatially distributed tissue model with LR-I compartments. Thus, it is conceivable that the hybrid model might be a useful tool for large scale simulations of cardiac tissue dynamics, as an alternative to numerical simulations, leading toward further understanding of the reentrant mechanisms.
Collapse
Affiliation(s)
- Farhanahani Mahmud
- Graduate School of Engineering Science, Osaka University, Osaka 5608534, Japan
| | | | | | | |
Collapse
|
12
|
Bouchard S, Jacquemet V, Vinet A. Automaticity in acute ischemia: bifurcation analysis of a human ventricular model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:011911. [PMID: 21405717 DOI: 10.1103/physreve.83.011911] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/08/2010] [Indexed: 05/30/2023]
Abstract
Acute ischemia (restriction in blood supply to part of the heart as a result of myocardial infarction) induces major changes in the electrophysiological properties of the ventricular tissue. Extracellular potassium concentration ([K(o)(+)]) increases in the ischemic zone, leading to an elevation of the resting membrane potential that creates an "injury current" (I(S)) between the infarcted and the healthy zone. In addition, the lack of oxygen impairs the metabolic activity of the myocytes and decreases ATP production, thereby affecting ATP-sensitive potassium channels (I(Katp)). Frequent complications of myocardial infarction are tachycardia, fibrillation, and sudden cardiac death, but the mechanisms underlying their initiation are still debated. One hypothesis is that these arrhythmias may be triggered by abnormal automaticity. We investigated the effect of ischemia on myocyte automaticity by performing a comprehensive bifurcation analysis (fixed points, cycles, and their stability) of a human ventricular myocyte model [K. H. W. J. ten Tusscher and A. V. Panfilov, Am. J. Physiol. Heart Circ. Physiol. 291, H1088 (2006)] as a function of three ischemia-relevant parameters [K(o)(+)], I(S), and I(Katp). In this single-cell model, we found that automatic activity was possible only in the presence of an injury current. Changes in [K(o)(+)] and I(Katp) significantly altered the bifurcation structure of I(S), including the occurrence of early-after depolarization. The results provide a sound basis for studying higher-dimensional tissue structures representing an ischemic heart.
Collapse
Affiliation(s)
- Sylvain Bouchard
- Institut de Génie Biomédical, Department of Physiology, Faculty of Medicine, Université de Montréal and Centre de Recherche, Hôpital du Sacré-Coeur, Montréal, Canada,
| | | | | |
Collapse
|
13
|
Models of cardiac tissue electrophysiology: progress, challenges and open questions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 104:22-48. [PMID: 20553746 DOI: 10.1016/j.pbiomolbio.2010.05.008] [Citation(s) in RCA: 309] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 04/09/2010] [Accepted: 05/19/2010] [Indexed: 01/03/2023]
Abstract
Models of cardiac tissue electrophysiology are an important component of the Cardiac Physiome Project, which is an international effort to build biophysically based multi-scale mathematical models of the heart. Models of tissue electrophysiology can provide a bridge between electrophysiological cell models at smaller scales, and tissue mechanics, metabolism and blood flow at larger scales. This paper is a critical review of cardiac tissue electrophysiology models, focussing on the micro-structure of cardiac tissue, generic behaviours of action potential propagation, different models of cardiac tissue electrophysiology, the choice of parameter values and tissue geometry, emergent properties in tissue models, numerical techniques and computational issues. We propose a tentative list of information that could be included in published descriptions of tissue electrophysiology models, and used to support interpretation and evaluation of simulation results. We conclude with a discussion of challenges and open questions.
Collapse
|
14
|
Lin JW, Garber L, Qi YR, Chang MG, Cysyk J, Tung L. Region of slowed conduction acts as core for spiral wave reentry in cardiac cell monolayers. Am J Physiol Heart Circ Physiol 2008; 294:H58-65. [DOI: 10.1152/ajpheart.00631.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pathophysiological heterogeneity in cardiac tissue is related to the occurrence of arrhythmias. Of importance are regions of slowed conduction, which have been implicated in the formation of conduction block and reentry. Experimentally, it has been a challenge to produce local heterogeneity in a manner that is both reversible and well controlled. Consequently, we developed a dual-zone superfusion chamber that can dynamically create a small (5 mm) central island of heterogeneity in cultured cardiac cell monolayers. Three different conditions were studied to explore the effect of regionally slowed conduction on wave propagation and reentry: depolarization by elevated extracellular potassium, sodium channel inhibition with lidocaine, and cell-cell decoupling with palmitoleic acid. Using optical mapping of transmembrane voltage, we found that the central region of slowed conduction always served as the core region around which a spiral wave formed and then revolved following a period of rapid pacing. Because of the localized slowing in the core region, we observed experimentally for the first time an S shape of the spiral wave front near its tip. These results indicate that a small region of slowed conduction can play a crucial role in the formation, anchoring, and modulation of reentrant spiral waves.
Collapse
|
15
|
Tran DX, Yang MJ, Weiss JN, Garfinkel A, Qu Z. Vulnerability to re-entry in simulated two-dimensional cardiac tissue: effects of electrical restitution and stimulation sequence. CHAOS (WOODBURY, N.Y.) 2007; 17:043115. [PMID: 18163779 DOI: 10.1063/1.2784387] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Ventricular fibrillation is a lethal arrhythmia characterized by multiple wavelets usually starting from a single or figure-of-eight re-entrant circuit. Understanding the factors regulating vulnerability to the re-entry is essential for developing effective therapeutic strategies to prevent ventricular fibrillation. In this study, we investigated how pre-existing tissue heterogeneities and electrical restitution properties affect the initiation of re-entry by premature extrastimuli in two-dimensional cardiac tissue models. We studied two pacing protocols for inducing re-entry following the "sinus" rhythm (S1) beat: (1) a single premature (S2) extrastimulus in heterogeneous tissue; (2) two premature extrastimuli (S2 and S3) in homogeneous tissue. In the first case, the vulnerable window of re-entry is determined by the spatial dimension and extent of the heterogeneity, and is also affected by electrical restitution properties and the location of the premature stimulus. The vulnerable window first increases as the action potential duration (APD) difference between the inside and outside of the heterogeneous region increases, but then decreases as this difference increases further. Steeper APD restitution reduces the vulnerable window of re-entry. In the second case, electrical restitution plays an essential role. When APD restitution is flat, no re-entry can be induced. When APD restitution is steep, re-entry can be induced by an S3 over a range of S1S2 intervals, which is also affected by conduction velocity restitution. When APD restitution is even steeper, the vulnerable window is reduced due to collision of the spiral tips.
Collapse
Affiliation(s)
- Diana X Tran
- Cardiovascular Research Laboratories, Department of Physiological Science, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
16
|
López A, Arce H, Guevara MR. Rhythms of high-grade block in an ionic model of a strand of regionally ischemic ventricular muscle. J Theor Biol 2007; 249:29-45. [PMID: 17706682 DOI: 10.1016/j.jtbi.2007.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 06/11/2007] [Accepted: 06/11/2007] [Indexed: 11/15/2022]
Abstract
Electrical alternans, a beat-to-beat alternation in the electrocardiogram or electrogram, is frequently seen during the first few minutes of acute myocardial ischemia, and is often immediately followed by malignant cardiac arrhythmias such as ventricular tachycardia and ventricular fibrillation. As ischemia progresses, higher-order periodic rhythms (e.g., period-4) can replace the period-2 alternans rhythm. This is also seen in modelling work on a two-dimensional (2-D) sheet of regionally ischemic ventricular muscle. In addition, in the experimental work, ventricular arrhythmias are overwhelmingly seen only after the higher-order rhythms arise. We investigate an ionic model of a strand of ischemic ventricular muscle, constructed as a 3-cm-long 1-D cable with a centrally located 1-cm-long segment exposed to an elevated extracellular potassium concentration ([K(+)](o)). As [K(+)](o) is raised in this "ischemic segment" to represent one major effect of ongoing ischemia, the sequence of rhythms {1:1-->2:2 (alternans)-->2:1} is seen. With further increase in [K(+)](o), one sees higher-order periodic 2N:M rhythms {2:1-->4:2-->4:1-->6:2-->6:1-->8:2-->8:1}. In a 2N:M cycle, only M of the 2N action potentials generated at the proximal end of the cable successfully traverse the ischemic segment, with the remaining ones being blocked within the ischemic segment. Finally, there is a transition to complete block {8:1-->2:0-->1:0} (in an n:0 rhythm, all action potentials die out within the ischemic segment). Changing the length of the ischemic segment results in different rhythms and transitions being seen: e.g., when the ischemic segment is 2 cm long, the period-6 rhythms are not seen; when it is 0.5 cm long, there is a 3:1 rhythm interposed between the 2:1 and 1:0 rhythms. We discuss the relevance of our results to the experimental observations on the higher-order rhythms that presage reentrant ischemic ventricular arrhythmias.
Collapse
Affiliation(s)
- Alejandro López
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-542, 04510 México, Distrito Federal, México
| | | | | |
Collapse
|
17
|
Clayton RH, Panfilov AV. A guide to modelling cardiac electrical activity in anatomically detailed ventricles. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 96:19-43. [PMID: 17825362 DOI: 10.1016/j.pbiomolbio.2007.07.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
One of the most recent trends in cardiac electrophysiology is the development of integrative anatomically accurate models of the heart, which include description of cardiac activity from sub-cellular and cellular level to the level of the whole organ. In order to construct this type of model, a researcher needs to collect a wide range of information from books and journal articles on various aspects of biology, physiology, electrophysiology, numerical mathematics and computer programming. The aim of this methodological article is to survey recent developments in integrative modelling of electrical activity in the ventricles of the heart, and to provide a practical guide to the resources and tools that are available for work in this exciting and challenging area.
Collapse
Affiliation(s)
- R H Clayton
- Department of Computer Science, University of Sheffield, Regent Court, 211 Portobello Street, Sheffield, S1 4DP, UK.
| | | |
Collapse
|
18
|
Zhang H, Zhang ZX, Yang L, Jin YB, Huang YZ. Mechanisms of the acute ischemia-induced arrhythmogenesis – A simulation study. Math Biosci 2006; 203:1-18. [PMID: 16904128 DOI: 10.1016/j.mbs.2006.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 06/10/2006] [Accepted: 06/24/2006] [Indexed: 11/15/2022]
Abstract
The underlying ionic mechanisms of ischemic-induced arrhythmia were studied by the computer simulation method. To approximate the real situation, ischemic cells were simulated by considering the three major component conditions of acute ischemia (elevated extracellular K(+) concentration, acidosis and anoxia) at the level of ionic currents and ionic concentrations, and a round ischemic zone was introduced into a homogeneous healthy sheet to avoid sharp angle of the ischemic tissue. The constructed models were solved using the operator splitting and adaptive time step methods, and the perturbation finite difference (PFD) scheme was first used to integrate the partial differential equations (PDEs) in the model. The numerical experiments showed that the action potential durations (APDs) of ischemic cells did not exhibited rate adaptation characteristic, resulting in flattening of the APD restitution curve. With reduction of sodium channel availability and long recovery of excitability, refractory period of the ischemic tissue was significantly prolonged, and could no longer be considered as same as APD. Slope of the conduction velocity (CV) restitution curve increased both in normal and ischemic region when pacing cycle length (PCL) was short, and refractory period dispersion increased with shortening of PCL as well. Therefore, dynamic changes of CV and dispersion of refractory period rather than APD were suggested to be the fundamental mechanisms of arrhythmia in regional ischemic myocardium.
Collapse
Affiliation(s)
- Hong Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education of China, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | | | | | | | | |
Collapse
|
19
|
Riecke H, Madruga S. Geometric diagnostics of complex patterns: spiral defect chaos. CHAOS (WOODBURY, N.Y.) 2006; 16:013125. [PMID: 16599756 DOI: 10.1063/1.2171515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Motivated by the observation of spiral patterns in a wide range of physical, chemical, and biological systems, we present an automated approach that aims at characterizing quantitatively spiral-like elements in complex stripe-like patterns. The approach provides the location of the spiral tip and the size of the spiral arms in terms of their arc length and their winding number. In addition, it yields the number of pattern components (Betti number of order 1), as well as their size and certain aspects of their shape. We apply the method to spiral defect chaos in thermally driven Rayleigh-Benard convection and find that the arc length of spirals decreases monotonically with decreasing Prandtl number of the fluid and increasing heating. By contrast, the winding number of the spirals is nonmonotonic in the heating. The distribution function for the number of spirals is significantly narrower than a Poisson distribution. The distribution function for the winding number shows approximately an exponential decay. It depends only weakly on the heating, but strongly on the Prandtl number. Large spirals arise only for larger Prandtl numbers (Pr approximately > 1). In this regime the joint distribution for the spiral length and the winding number exhibits a three-peak structure, indicating the dominance of Archimedean spirals of opposite sign and relatively straight sections. For small Prandtl numbers the distribution function reveals a large number of small compact pattern components.
Collapse
Affiliation(s)
- Hermann Riecke
- Engineering Science and Applied Mathematics, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
20
|
Kuklik P, Zebrowski JJ. Reentry wave formation in excitable media with stochastically generated inhomogeneities. CHAOS (WOODBURY, N.Y.) 2005; 15:33301. [PMID: 16252987 DOI: 10.1063/1.1947427] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Clinical research shows that the frequency of arrhythmia events depends on the number and area of the border zones of infarct scars. We investigate the possibility that arrhythmia is initiated by reentry waves generated by the inhomogeneity of conduction velocity at the border zone. The interaction of a plane wave with a spatially extended inhomogeneity is simulated in the FitzHugh- Nagumo model. The inhomogeneity is introduced into the model by modifying the spatial dependence of the diffusion coefficient in a stochastic manner. This results in a rich variety of spatial distributions of conductivity. A plane wave propagating through such a system may break up on the regions with low conductivity and produce numerous spiral waves. The frequency of reentry wave formation is studied as a function of the parameters of the inhomogeneity generation algorithm. Three main scenarios of reentry wave formation were found: unidirectional block, main wave-wavelet collision, and wave break up during collision, on a region in which a conduction velocity gradient occurs. These scenarios are likely candidates for the mechanisms of arrhythmia initiation in a damaged tissue, e.g., the border zone of an infarct scar.
Collapse
Affiliation(s)
- Paweł Kuklik
- Faculty of Physics and Center of Excellence for Complex Systems Research at Warsaw University of Technology, ul. Koszykowa 75, Warsaw, Poland.
| | | |
Collapse
|
21
|
Krogh-Madsen T, Schaffer P, Skriver AD, Taylor LK, Pelzmann B, Koidl B, Guevara MR. An ionic model for rhythmic activity in small clusters of embryonic chick ventricular cells. Am J Physiol Heart Circ Physiol 2005; 289:H398-413. [PMID: 15708964 DOI: 10.1152/ajpheart.00683.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recorded transmembrane potential in whole cell recording mode from small clusters (2-4 cells) of spontaneously beating 7-day embryonic chick ventricular cells after 1-3 days in culture and investigated effects of the blockers D-600, diltiazem, almokalant, and Ba2+. Electrical activity in small clusters is very different from that in reaggregates of several hundred embryonic chick ventricular cells, e.g., TTX-sensitive fast upstrokes in reaggregates vs. TTX-insensitive slow upstrokes in small clusters (maximum upstroke velocity approximately 100 V/s vs. approximately 10 V/s). On the basis of our voltage- and current-clamp results and data from the literature, we formulated a Hodgkin-Huxley-type ionic model for the electrical activity in these small clusters. The model contains a Ca2+ current (ICa), three K+ currents (IKs, IKr, and IK1), a background current, and a seal-leak current. ICa generates the slow upstroke, whereas IKs, IKr, and IK1 contribute to repolarization. All the currents contribute to spontaneous diastolic depolarization, e.g., removal of the seal-leak current increases the interbeat interval from 392 to 535 ms. The model replicates the spontaneous activity in the clusters as well as the experimental results of application of blockers. Bifurcation analysis and simulations with the model predict that annihilation and single-pulse triggering should occur with partial block of ICa. Embryonic chick ventricular cells have been used as an experimental model to investigate various aspects of spontaneous beating of cardiac cells, e.g., mutual synchronization, regularity of beating, and spontaneous initiation and termination of reentrant rhythms; our model allows investigation of these topics through numerical simulation.
Collapse
Affiliation(s)
- Trine Krogh-Madsen
- Dept. of Physiology, McGill University, 3655 Sir William Osler Promenade, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Clayton RH, Holden AV. Propagation of normal beats and re-entry in a computational model of ventricular cardiac tissue with regional differences in action potential shape and duration. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 85:473-99. [PMID: 15142758 DOI: 10.1016/j.pbiomolbio.2003.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is substantial experimental evidence from studies using both intact tissue and isolated single cells to support the existence of different cell types within the ventricular wall of the heart, each possessing different electrical properties. However other studies have failed to find these differences, and instead support the idea that electrical coupling in vivo between regions with different cell types smoothes out differences in action potential shape and duration. In this study we have used a computational model of electrical activation in heterogenous 2D and 3D cardiac tissue to investigate the propagation of both normal beats and arrhythmias. We used the Luo-Rudy dynamic model for guinea pig ventricular cells, with simplified Ca2+ handling and transmural heterogeneity in IKs and Ito. With normal cell-to-cell coupling, a layer of M cells was not necessary for the formation of an upright T wave in the simulated electrocardiogram, and the amplitude and configuration of the T wave was not greatly affected by the thickness and configuration of the M cell layer. Transmural gradients in repolarisation pushed re-entrant waves with an intramural filament towards either the base or the apex of the ventricles, and caused transient break up of re-entry with a transmural filament.
Collapse
Affiliation(s)
- Richard H Clayton
- Department of Computer Science, University of Sheffield and School of Biomedical Sciences, Regent Court, 211 Portobello Street, Sheffield S1 4DP, UK.
| | | |
Collapse
|
23
|
Abstract
INTRODUCTION It is the hypothesis of this article that the onset of fibrillation following a coronary artery occlusion is a direct consequence of the spatial inhomogeneity of chemical processes that occur following the occlusion. In particular, the localized increase of extracellular potassium and decrease of ATP availability lead to an increase of resting potential in the affected cells. This difference in potential between affected cells and normal cells drives a current, the "current of injury," which may drive oscillations in the border zone, a "border zone arrhythmia." The border zone arrhythmia may drive a "breakup instability" (related to the action potential duration restitution instability) in the surrounding tissue, leading to self-sustained fibrillation. METHODS AND RESULTS In this article, we present a mathematical model demonstrating this transition from normal to fibrillatory dynamics, describing the general conditions under which this transition occurs and showing in a simple ionic model the way in which spatial inhomogeneity alone can initiate self-sustained reentrant activity. CONCLUSION Using general arguments and numerical simulations with generic models of excitable media, we have demonstrated that a spatial region with an elevated resting potential surrounded by a spatial region wherein action potentials are foreshortened can drive a breakup instability, leading to the rapid initiation of a fibrillatory state.
Collapse
Affiliation(s)
- James P Keener
- Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
24
|
Xie F, Qu Z, Yang J, Baher A, Weiss JN, Garfinkel A. A simulation study of the effects of cardiac anatomy in ventricular fibrillation. J Clin Invest 2004; 113:686-93. [PMID: 14991066 PMCID: PMC351312 DOI: 10.1172/jci17341] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2002] [Accepted: 12/16/2003] [Indexed: 11/17/2022] Open
Abstract
In ventricular fibrillation (VF), the principal cause of sudden cardiac death, waves of electrical excitation break up into turbulent and incoherent fragments. The causes of this breakup have been intensely debated. Breakup can be caused by fixed anatomical properties of the tissue, such as the biventricular geometry and the inherent anisotropy of cardiac conduction. However, wavebreak can also be caused purely by instabilities in wave conduction that arise from ion channel dynamics, which represent potential targets for drug action. To study the interaction between these two wave-breaking mechanisms, we used a physiologically based mathematical model of the ventricular cell, together with a realistic three-dimensional computer model of cardiac anatomy, including the distribution of fiber angles throughout the myocardium. We find that dynamical instabilities remain a major cause of the wavebreak that drives VF, even in an anatomically realistic heart. With cell physiology in its usual operating regime, dynamics and anatomical features interact to promote wavebreak and VF. However, if dynamical instability is reduced, for example by modeling of certain pharmacologic interventions, electrical waves do not break up into fibrillation, despite anatomical complexity. Thus, interventions that promote dynamical wave stability show promise as an antifibrillatory strategy in this more realistic setting.
Collapse
Affiliation(s)
- Fagen Xie
- Department of Medicine (Cardiology), Cardiovascular Research Laboratory, University of California, Los Angeles (UCLA), Los Angeles, California 90095-1679, USA
| | | | | | | | | | | |
Collapse
|
25
|
Qu Z, Karagueuzian HS, Garfinkel A, Weiss JN. Effects of Na+ channel and cell coupling abnormalities on vulnerability to reentry: a simulation study. Am J Physiol Heart Circ Physiol 2004; 286:H1310-21. [PMID: 14630634 DOI: 10.1152/ajpheart.00561.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of dynamic instabilities in the initiation of reentry in diseased (remodeled) hearts remains poorly explored. Using computer simulations, we studied the effects of altered Na+ channel and cell coupling properties on the vulnerable window (VW) for reentry in simulated two-dimensional cardiac tissue with and without dynamic instabilities. We related the VW for reentry to effects on conduction velocity, action potential duration (APD), effective refractory period dispersion and restitution, and concordant and discordant APD alternans. We found the following: 1) reduced Na+ current density and slowed recovery promoted postrepolarization refractoriness and enhanced concordant and discordant APD alternans, which increased the VW for reentry; 2) uniformly reduced cell coupling had little effect on cellular electrophysiological properties and the VW for reentry. However, randomly reduced cell coupling combined with decoupling promoted APD dispersion and alternans, which also increased the VW for reentry; 3) the combination of decreased Na+ channel conductance, slowed Na+ channel recovery, and cellular uncoupling synergistically increased the VW for reentry; and 4) the VW for reentry was greater when APD restitution slope was steep than when it was flat. In summary, altered Na+ channel and cellular coupling properties increase vulnerability to reentrant arrhythmias. In remodeled hearts with altered Na+ channel properties and cellular uncoupling, dynamic instabilities arising from electrical restitution exert important influences on the VW for reentry.
Collapse
Affiliation(s)
- Zhilin Qu
- Department of Medicine, Cedars-Sinai Research Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
26
|
Ng KT, Yan R. Three-dimensional pseudospectral modelling of cardiac propagation in an inhomogeneous anisotropic tissue. Med Biol Eng Comput 2003; 41:618-24. [PMID: 14686586 DOI: 10.1007/bf02349968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Various investigators have used the monodomain model to study cardiac propagation behaviour. In many cases, the governing non-linear parabolic equation is solved using the finite-difference method. An adequate discretisation of cardiac tissue with realistic dimensions, however, often leads to a large model size that is computationally demanding. Recently, it has been demonstrated, for a two-dimensional homogeneous monodomain, that the Chebyshev pseudospectral method can offer higher computational efficiency than the finite-difference technique. Here, an extension of the pseudospectral approach to a three-dimensional inhomogeneous case with fibre rotation is presented. The unknown transmembrane potential is expanded in terms of Chebyshev polynomial trial functions, and the monodomain equation is enforced at the Gauss-Lobatto node points. The forward Euler technique is used to advance the solution in time. Numerical results are presented that demonstrate that the Chebyshev pseudospectral method offered an even larger improvement in computational performance over the finite-difference method in the three-dimensional case. Specifically, the pseudospectral method allowed the number of nodes to be reduced by approximately 85 times, while the same solution accuracy was maintained. Depending on the model size, simulations were performed with approximately 18-41 times less memory and approximately 99-169 times less CPU time.
Collapse
Affiliation(s)
- K T Ng
- Klipsch School of Electrical & Computer Engineering, New Mexico State University, Las Cruces, USA.
| | | |
Collapse
|
27
|
Arce H, Lopez A, Guevara MR. Triggered alternans in an ionic model of ischemic cardiac ventricular muscle. CHAOS (WOODBURY, N.Y.) 2002; 12:807-818. [PMID: 12779609 DOI: 10.1063/1.1499275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
It has been known for several decades that electrical alternans occurs during myocardial ischemia in both clinical and experimental work. There are a few reports showing that this alternans can be triggered into existence by a premature ventricular contraction. Detriggering of alternans by a premature ventricular contraction, as well as pause-induced triggering and detriggering, have also been reported. We conduct a search for triggered alternans in an ionic model of ischemic ventricular muscle in which alternans has been described recently: a one-dimensional cable of length 3 cm, containing a central ischemic zone 1 cm long, with 1 cm segments of normal (i.e., nonischemic) tissue at each end. We use a modified form of the Luo-Rudy [Circ. Res. 68, 1501-1526 (1991)] ionic model to represent the ventricular tissue, modeling the effect of ischemia by raising the external potassium ion concentration ([K(+)](o)) in the central ischemic zone. As [K(+)](o) is increased at a fixed pacing cycle length of 400 ms, there is first a transition from 1:1 rhythm to alternans or 2:2 rhythm, and then a transition from 2:2 rhythm to 2:1 block. There is a range of [K(+)](o) over which there is coexistence of 1:1 and 2:2 rhythms, so that dropping a stimulus from the periodic drive train during 1:1 rhythm can result in the conversion of 1:1 to 2:2 rhythm. Within the bistable range, the reverse transition from 2:2 to 1:1 rhythm can be produced by injection of a well-timed extrastimulus. Using a stimulation protocol involving delivery of pre- and post-mature stimuli, we derive a one-dimensional map that captures the salient features of the results of the cable simulations, i.e., the {1:1-->2:2-->2:1} transitions with {1:1<-->2:2} bistability. This map uses a new index of the global activity in the cable, the normalized voltage integral. Finally, we put forth a simple piecewise linear map that replicates the {1:1<-->2:2} bistability observed in the cable simulations and in the normalized voltage integral map. (c) 2002 American Institute of Physics.
Collapse
Affiliation(s)
- Humberto Arce
- Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-542, 04510 Mexico, Distrito Federal, Mexico
| | | | | |
Collapse
|
28
|
Bub G, Shrier A. Propagation through heterogeneous substrates in simple excitable media models. CHAOS (WOODBURY, N.Y.) 2002; 12:747-753. [PMID: 12779603 DOI: 10.1063/1.1502481] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The interaction of waves and obstacles is simulated by adding heterogeneities to a FitzHugh-Nagumo model and a cellular automata model. The cellular automata model is formulated to account for heterogeneities by modelling the interaction between current sources and current sinks. In both models, wave fronts propagate if the size of the heterogeneities is small, and block if the size of the heterogeneities is large. For intermediate values, wave fronts break up into numerous spiral waves. The theoretical models give insights concerning spiral wave formation in heterogeneous excitable media. (c) 2002 American Institute of Physics.
Collapse
Affiliation(s)
- Gil Bub
- Center for Nonlinear Dynamics in Physiology and Medicine, Department of Physiology, McIntyer Medical Sciences Building, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | |
Collapse
|
29
|
Christini DJ, Glass L. Introduction: Mapping and control of complex cardiac arrhythmias. CHAOS (WOODBURY, N.Y.) 2002; 12:732-739. [PMID: 12779601 DOI: 10.1063/1.1504061] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This paper serves as an introduction to the Focus Issue on mapping and control of complex cardiac arrhythmias. We first introduce basic concepts of cardiac electrophysiology and describe the main clinical methods being used to treat arrhythmia. We then provide a brief summary of the main themes contained in the articles in this Focus Issue. In recent years there have been important advances in the ability to map the spread of excitation in intact hearts and in laboratory settings. This work has been combined with simulations that use increasingly realistic geometry and physiology. Waves of excitation and contraction in the heart do not always propagate with constant velocity but are often subject to instabilities that may lead to fluctuations in velocity and cycle time. Such instabilities are often treated best in the context of simple one- or two-dimensional geometries. An understanding of the mechanisms of propagation and wave stability is leading to the implementation of different stimulation protocols in an effort to modify or eliminate abnormal rhythms. (c) 2002 American Institute of Physics.
Collapse
Affiliation(s)
- David J. Christini
- Division of Cardiology, Department of Medicine, Weill Medical College of Cornell University, and Department of Physiology and Biophysics, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10021Centre for Nonlinear Dynamics, Department of Physiology, McGill University, 3655 Montreal, H3G1Y6, Quebec, Canada
| | | |
Collapse
|
30
|
Bub G, Shrier A, Glass L. Spiral wave generation in heterogeneous excitable media. PHYSICAL REVIEW LETTERS 2002; 88:058101. [PMID: 11863783 DOI: 10.1103/physrevlett.88.058101] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2001] [Indexed: 05/23/2023]
Abstract
As the coupling in a heterogeneous excitable medium is reduced, three different types of behavior are encountered: plane waves propagate without breaking up, plane waves break up into spiral waves, and plane waves block. We illustrate these phenomena in monolayers of chick embryonic heart cells using calcium sensitive fluorescent dyes. Following the addition of heptanol, an agent that reduces the electrical coupling between cells, we observe breakup of spiral waves. These results are modeled in a heterogeneous cellular automaton model in which the neighborhood of interaction is modified.
Collapse
Affiliation(s)
- Gil Bub
- Department of Physiology, McGill University, 3655 Drummond Street, Montreal, Quebec, Canada H3G 1Y6
| | | | | |
Collapse
|
31
|
Clayton RH. Computational models of normal and abnormal action potential propagation in cardiac tissue: linking experimental and clinical cardiology. Physiol Meas 2001; 22:R15-34. [PMID: 11556683 DOI: 10.1088/0967-3334/22/3/201] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Computational models have the potential to make a huge impact on our understanding of normal and abnormal cardiac function. The aim of this article is to review tools that have been developed to simulate the electrophysiology of cardiac cells and tissue, and to show how computational models have been used to gain insight into normal and abnormal action potential propagation. Some of the practical problems experienced in the development and application of these models are described, and examples are given.
Collapse
Affiliation(s)
- R H Clayton
- School of Biomedical Sciences, University of Leeds, UK.
| |
Collapse
|
32
|
Rappel WJ. Filament instability and rotational tissue anisotropy: A numerical study using detailed cardiac models. CHAOS (WOODBURY, N.Y.) 2001; 11:71-80. [PMID: 12779442 DOI: 10.1063/1.1338128] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The role of cardiac tissue anisotropy in the breakup of vortex filaments is studied using two detailed cardiac models. In the Beeler-Reuter model, modified to produce stable spiral waves in two dimensions, we find that anisotropy can destabilize a vortex filament in a parallelepipedal slab of tissue. The mechanisms of the instability are similar to the ones reported in previous work on a simplified cardiac model by Fenton and Karma [Chaos 8, 20 (1998)]. In the Luo-Rudy model, also modified to produce stable spiral waves in two dimensions, we find that anisotropy does not destabilize filaments. A possible explanation for this model-dependent behavior based on spiral tip trajectories is offered. (c) 2001 American Institute of Physics.
Collapse
Affiliation(s)
- Wouter-Jan Rappel
- Department of Physics, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
33
|
Rousseau G, Kapral R. Asynchronous algorithm for integration of reaction-diffusion equations for inhomogeneous excitable media. CHAOS (WOODBURY, N.Y.) 2000; 10:812-825. [PMID: 12779431 DOI: 10.1063/1.1311979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
An asynchronous algorithm for the integration of reaction-diffusion equations for inhomogeneous excitable media is described. Since many physical systems are inhomogeneous where either the local kinetics or the diffusion or conduction properties vary significantly in space, integration schemes must be able to account for wide variations in the temporal and spatial scales of the solutions. The asynchronous algorithm utilizes a fixed spatial grid and automatically adjusts the time step locally to achieve an efficient simulation where the errors in the solution are controlled. The scheme does not depend on the specific form of the local kinetics and is easily applied to systems with complex geometries. (c) 2000 American Institute of Physics.
Collapse
Affiliation(s)
- Guillaume Rousseau
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | | |
Collapse
|
34
|
Qu Z, Kil J, Xie F, Garfinkel A, Weiss JN. Scroll wave dynamics in a three-dimensional cardiac tissue model: roles of restitution, thickness, and fiber rotation. Biophys J 2000; 78:2761-75. [PMID: 10827961 PMCID: PMC1300866 DOI: 10.1016/s0006-3495(00)76821-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Scroll wave (vortex) breakup is hypothesized to underlie ventricular fibrillation, the leading cause of sudden cardiac death. We simulated scroll wave behaviors in a three-dimensional cardiac tissue model, using phase I of the Luo-Rudy (LR1) action potential model. The effects of action potential duration (APD) restitution, tissue thickness, filament twist, and fiber rotation were studied. We found that APD restitution is the major determinant of scroll wave behavior and that instabilities arising from APD restitution are the main determinants of scroll wave breakup in this cardiac model. We did not see a "thickness-induced instability" in the LR1 model, but a minimum thickness is required for scroll breakup in the presence of fiber rotation. The major effect of fiber rotation is to maintain twist in a scroll wave, promoting filament bending and thus scroll breakup. In addition, fiber rotation induces curvature in the scroll wave, which weakens conduction and further facilitates wave break.
Collapse
Affiliation(s)
- Z Qu
- Department of Medicine (Cardiology), University of California, Los Angeles 90095, USA.
| | | | | | | | | |
Collapse
|
35
|
Arce H, Xu A, Gonzalez H, Guevara MR. Alternans and higher-order rhythms in an ionic model of a sheet of ischemic ventricular muscle. CHAOS (WOODBURY, N.Y.) 2000; 10:411-426. [PMID: 12779397 DOI: 10.1063/1.166508] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Life-threatening arrhythmias such as ventricular tachycardia and fibrillation often occur during acute myocardial ischemia. During the first few minutes following coronary occlusion, there is a gradual rise in the extracellular concentration of potassium ions ([K(+)](0)) within ischemic tissue. This elevation of [K(+)](0) is one of the main causes of the electrophysiological changes produced by ischemia, and has been implicated in inducing arrhythmias. We investigate an ionic model of a 3 cmx3 cm sheet of normal ventricular myocardium containing an ischemic zone, simulated by elevating [K(+)](0) within a centrally-placed 1 cmx1 cm area of the sheet. As [K(+)](0) is gradually raised within the ischemic zone from the normal value of 5.4 mM, conduction first slows within the ischemic zone and then, at higher [K(+)](0), an arc of block develops within that area. The area distal to the arc of block is activated in a delayed fashion by a retrogradely moving wavefront originating from the distal edge of the ischemic zone. With a further increase in [K(+)](0), the point eventually comes where a very small increase in [K(+)](0) (0.01 mM) results in the abrupt transition from a global period-1 rhythm to a global period-2 rhythm in the sheet. In the peripheral part of the ischemic zone and in the normal area surrounding it, there is an alternation of action potential duration, producing a 2:2 response. Within the core of the ischemic zone, there is an alternation between an action potential and a maintained small-amplitude response ( approximately 30 mV in height). With a further increase of [K(+)](0), the maintained small-amplitude response turns into a decrementing subthreshold response, so that there is 2:1 block in the central part of the ischemic zone. A still further increase of [K(+)](0) leads to a transition in the sheet from a global period-2 to a period-4 rhythm, and then to period-6 and period-8 rhythms, and finally to a complete block of propagation within the ischemic core. When the size of the sheet is increased to 4 cmx4 cm (with a 2 cmx2 cm ischemic area), one observes essentially the same sequence of rhythms, except that the period-6 rhythm is not seen. Very similar sequences of rhythms are seen as [K(+)](0) is increased in the central region (1 or 2 cm long) of a thin strand of tissue (3 or 4 cm long) in which propagation is essentially one-dimensional and in which retrograde propagation does not occur. While reentrant rhythms resembling tachycardia and fibrillation were not encountered in the above simulations, well-known precursors to such rhythms (e.g., delayed activation, arcs of block, two-component upstrokes, retrograde activation, nascent spiral tips, alternans) were seen. We outline how additional modifications to the ischemic model might result in the emergence of reentrant rhythms following alternans. (c) 2000 American Institute of Physics.
Collapse
Affiliation(s)
- Humberto Arce
- Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-542, 04510 Mexico, Distrito Federal, Mexico
| | | | | | | |
Collapse
|
36
|
Garfinkel A, Kim YH, Voroshilovsky O, Qu Z, Kil JR, Lee MH, Karagueuzian HS, Weiss JN, Chen PS. Preventing ventricular fibrillation by flattening cardiac restitution. Proc Natl Acad Sci U S A 2000; 97:6061-6. [PMID: 10811880 PMCID: PMC18558 DOI: 10.1073/pnas.090492697] [Citation(s) in RCA: 369] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ventricular fibrillation is the leading cause of sudden cardiac death. In fibrillation, fragmented electrical waves meander erratically through the heart muscle, creating disordered and ineffective contraction. Theoretical and computer studies, as well as recent experimental evidence, have suggested that fibrillation is created and sustained by the property of restitution of the cardiac action potential duration (that is, its dependence on the previous diastolic interval). The restitution hypothesis states that steeply sloped restitution curves create unstable wave propagation that results in wave break, the event that is necessary for fibrillation. Here we present experimental evidence supporting this idea. In particular, we identify the action of the drug bretylium as a prototype for the future development of effective restitution-based antifibrillatory agents. We show that bretylium acts in accord with the restitution hypothesis: by flattening restitution curves, it prevents wave break and thus prevents fibrillation. It even converts existing fibrillation, either to a periodic state (ventricular tachycardia, which is much more easily controlled) or to quiescent healthy tissue.
Collapse
Affiliation(s)
- A Garfinkel
- Department of Medicine (Cardiology), Cardiovascular Research Laboratory, University of California School of Medicine, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Qu Z, Weiss JN, Garfinkel A. From local to global spatiotemporal chaos in a cardiac tissue model. PHYSICAL REVIEW. E, STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED INTERDISCIPLINARY TOPICS 2000; 61:727-732. [PMID: 11046316 DOI: 10.1103/physreve.61.727] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/1999] [Indexed: 05/23/2023]
Abstract
Two kinds of chaos can occur in cardiac tissue, chaotic meander of a single intact spiral wave and chaotic spiral wave breakup. We studied these behaviors in a model of two-dimensional cardiac tissue based on the Luo-Rudy I action potential model. In the chaotic meander regime, chaos is spatially localized to the core of the spiral wave. When persistent spiral wave breakup occurs, there is a transition from local to global spatiotemporal chaos.
Collapse
Affiliation(s)
- Z Qu
- Department of Medicine (Cardiology), University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
38
|
Yehia AR, Jeandupeux D, Alonso F, Guevara MR. Hysteresis and bistability in the direct transition from 1:1 to 2:1 rhythm in periodically driven single ventricular cells. CHAOS (WOODBURY, N.Y.) 1999; 9:916-931. [PMID: 12779889 DOI: 10.1063/1.166465] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The transmembrane potential of a single quiescent cell isolated from rabbit ventricular muscle was recorded using a suction electrode in whole-cell recording mode. The cell was then driven with a periodic train of current pulses injected into the cell through the same recording electrode. When the interpulse interval or basic cycle length (BCL) was sufficiently long, 1:1 rhythm resulted, with each stimulus pulse producing an action potential. Gradual decrease in BCL invariably resulted in loss of 1:1 synchronization at some point. When the pulse amplitude was set to a fixed low level and BCL gradually decreased, N+1:N rhythms (N>/=2) reminiscent of clinically observed Wenckebach rhythms were seen. Further decrease in BCL then yielded a 2:1 rhythm. In contrast, when the pulse amplitude was set to a fixed high level, a period-doubled 2:2 rhythm resembling alternans rhythm was seen before a 2:1 rhythm occurred. With the pulse amplitude set to an intermediate level (i.e., to a level between those at which Wenckebach and alternans rhythms were seen), there was a direct transition from 1:1 to 2:1 rhythm as the BCL was decreased: Wenckebach and alternans rhythms were not seen. When at that point the BCL was increased, the transition back to 1:1 rhythm occurred at a longer BCL than that at which the {1:1-->2:1} transition had initially occurred, demonstrating hysteresis. With the BCL set to a value within the hysteresis range, injection of a single well-timed extrastimulus converted 1:1 rhythm into 2:1 rhythm or vice versa, providing incontrovertible evidence of bistability (the coexistence of two different periodic rhythms at a fixed set of stimulation parameters). Hysteresis between 1:1 and 2:1 rhythms was also seen when the stimulus amplitude, rather than the BCL, was changed. Simulations using numerical integration of an ionic model of a single ventricular cell formulated as a nonlinear system of differential equations provided results that were very similar to those found in the experiments. The steady-state action potential duration restitution curve, which is a plot of the duration of the action potential during 1:1 rhythm as a function of the recovery time or diastolic interval immediately preceding that action potential, was determined. Iteration of a finite-difference equation derived using the restitution curve predicted the direct {1:1<-->2:1} transition, as well as bistability, in both the experimental and modeling work. However, prediction of the action potential duration during 2:1 rhythm was not as accurate in the experiments as in the model. Finally, we point out a few implications of our findings for cardiac arrhythmias (e.g., Mobitz type II block, ischemic alternans). (c) 1999 American Institute of Physics.
Collapse
Affiliation(s)
- Ali R. Yehia
- Department of Physiology and Centre for Nonlinear Dynamics in Physiology and Medicine, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | |
Collapse
|
39
|
Comtois P, Vinet A. Curvature effects on activation speed and repolarization in an ionic model of cardiac myocytes. PHYSICAL REVIEW. E, STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED INTERDISCIPLINARY TOPICS 1999; 60:4619-28. [PMID: 11970323 DOI: 10.1103/physreve.60.4619] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/1998] [Indexed: 04/18/2023]
Abstract
Reentry is a major mechanism underlying the initiation and perpetuation of many cardiac arrhythmias. Stimulated ventricular myocytes give action potential characterized by a fast upstroke, a long-lasting plateau, and a late repolarization phase. The plateau phase determines the action potential duration (APD) during which the system remains refractory, a property essential to the synchronization of the heart cycle. The APD varies much with prematurity and this change has been shown to be the main determinant of the dynamics in models of paced cells and cable, and during reentry in the one-dimensional loop. Curvature has also been shown to be an important factor for propagation in experimental and theoretical cardiac extended tissue. The objective of this paper is to combine both curvature and prematurity effects in a kinematical model of propagation in cardiac tissue. First, an approximation of the ionic model is used to obtain the effects of curvature and prematurity on the speed of propagation, the APD, and the absolute refractory period. Two versions of the ionic model are studied that differ in their rate of excitability recovery. The functions are used in a kinematical model describing the propagation of period-1 solutions around an annulus.
Collapse
Affiliation(s)
- P Comtois
- Institute of Biomedical Engineering, Université de Montréal and Research Centre, Hôpital du Sacré-Coeur, 5400 Gouin West Blvd, Montréal, Québec, Canada H4J 1C5
| | | |
Collapse
|
40
|
Keener JP, Lewis TJ. The biphasic mystery: why a biphasic shock is more effective than a monophasic shock for defibrillation. J Theor Biol 1999; 200:1-17. [PMID: 10479536 DOI: 10.1006/jtbi.1999.0972] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We demonstrate that a biphasic shock is more effective than a monophasic shock at eliminating reentrant electrical activity in an ionic model of cardiac ventricular electrical activity. This effectiveness results from early hyperpolarization that enhances the recovery of sodium inactivation, thereby enabling earlier activation of recovering cells. The effect can be seen easily in a model of a single cell and also in a cable model with a ring of excitable cells. Finally, we demonstrate the phenomenon in a two-dimensional model of cardiac tissue.
Collapse
Affiliation(s)
- J P Keener
- Department of Mathematics, University of Utah, Salt Lake City, UT, 84112, USA.
| | | |
Collapse
|
41
|
Volford A, Noszticzius Z, Krinsky V, Dupont C, Lázár A, Försterling HD. Amplitude Control of Chemical Waves in Catalytic Membranes. Asymmetric Wave Propagation between Zones Loaded with Different Catalyst Concentrations. J Phys Chem A 1998. [DOI: 10.1021/jp9824609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- András Volford
- Center for Complex and Nonlinear Systems and the Department of Chemical Physics, Technical University of Budapest, H-1521 Budapest, Hungary, Institut Non Lineaire de Nice, UMR 129 CNRS-UNSA, 06560 Valbonne, France, and Fachbereich Physikalische Chemie, Philipps Universität Marburg, D-35032 Marburg/Lahn, Germany
| | - Zoltán Noszticzius
- Center for Complex and Nonlinear Systems and the Department of Chemical Physics, Technical University of Budapest, H-1521 Budapest, Hungary, Institut Non Lineaire de Nice, UMR 129 CNRS-UNSA, 06560 Valbonne, France, and Fachbereich Physikalische Chemie, Philipps Universität Marburg, D-35032 Marburg/Lahn, Germany
| | - Valentin Krinsky
- Center for Complex and Nonlinear Systems and the Department of Chemical Physics, Technical University of Budapest, H-1521 Budapest, Hungary, Institut Non Lineaire de Nice, UMR 129 CNRS-UNSA, 06560 Valbonne, France, and Fachbereich Physikalische Chemie, Philipps Universität Marburg, D-35032 Marburg/Lahn, Germany
| | - Christophe Dupont
- Center for Complex and Nonlinear Systems and the Department of Chemical Physics, Technical University of Budapest, H-1521 Budapest, Hungary, Institut Non Lineaire de Nice, UMR 129 CNRS-UNSA, 06560 Valbonne, France, and Fachbereich Physikalische Chemie, Philipps Universität Marburg, D-35032 Marburg/Lahn, Germany
| | - Attila Lázár
- Center for Complex and Nonlinear Systems and the Department of Chemical Physics, Technical University of Budapest, H-1521 Budapest, Hungary, Institut Non Lineaire de Nice, UMR 129 CNRS-UNSA, 06560 Valbonne, France, and Fachbereich Physikalische Chemie, Philipps Universität Marburg, D-35032 Marburg/Lahn, Germany
| | - Horst-Dieter Försterling
- Center for Complex and Nonlinear Systems and the Department of Chemical Physics, Technical University of Budapest, H-1521 Budapest, Hungary, Institut Non Lineaire de Nice, UMR 129 CNRS-UNSA, 06560 Valbonne, France, and Fachbereich Physikalische Chemie, Philipps Universität Marburg, D-35032 Marburg/Lahn, Germany
| |
Collapse
|
42
|
Winfree AT. Evolving perspectives during 12 years of electrical turbulence. CHAOS (WOODBURY, N.Y.) 1998; 8:1-19. [PMID: 12779707 DOI: 10.1063/1.166306] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This Focus issue describes a problem in electrical dynamics which has fascinated generations of physiologists. There are today so many views of fibrillation that only the rarest generalization can embrace all of them. Fifty-two prominent investigators collaborate here to present aspects of the problem in these eighteen articles (including this introduction) tailored for readers whose principal expertise lies elsewhere. In "The High One's Lay" (Norse Runes, ca. 800) Odin remarks, "Much too early I came to many places: the beer was not yet ready, or was already drunk em leader " but to this one we come at very nearly the right time in 1998. This introduction attempts to guide newcomers by noting the changed or multiple meanings of novel technical terms while sorting the key facts and ideas into an order that facilitates comparison and contrast with those of a dozen years ago. This Focus issue is authored by some of the foremost innovators of both theory and experiment in this area. By assimilating their presentations the readers of Chaos can become well poised to appreciate and evaluate the definitive evidence expected in the next few years. (c) 1998 American Institute of Physics.
Collapse
Affiliation(s)
- A. T. Winfree
- 326 BSW, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
43
|
Roth BJ, Krassowska W. The induction of reentry in cardiac tissue. The missing link: How electric fields alter transmembrane potential. CHAOS (WOODBURY, N.Y.) 1998; 8:204-220. [PMID: 12779722 DOI: 10.1063/1.166298] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This review examines the initiation of reentry in cardiac muscle by strong electric shocks. Specifically, it concentrates on the mechanisms by which electric shocks change the transmembrane potential of the cardiac membrane and create the physiological substrate required by the critical point theory for the initiation of rotors. The mechanisms examined include (1) direct polarization of the tissue by the stimulating current, as described by the one-dimensional cable model and its two- and three-dimensional extensions, (2) the presence of virtual anodes and cathodes, as described by the bidomain model with unequal anisotropy ratios of the intra- and extracellular spaces, (3) polarization of the tissue due to changing orientation of cardiac fibers, and (4) polarization of individual cells or groups of cells by the electric field ("sawtooth potential"). The importance of these mechanisms in the initiation of reentry is examined in two case studies: the induction of rotors using successive stimulation with a unipolar electrode, and the induction of rotors using cross-field stimulation. These cases reveal that the mechanism by which a unipolar stimulation induces arrhythmias can be explained in the framework of the bidomain model with unequal anisotropy ratios. In contrast, none of the examined mechanisms provide an adequate explanation for the induction of rotors by cross-field stimulation. Hence, this study emphasizes the need for further experimental and theoretical work directed toward explaining the mechanism of field stimulation. (c) 1998 American Institute of Physics.
Collapse
Affiliation(s)
- Bradley J. Roth
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235
| | | |
Collapse
|
44
|
Gray RA, Jalife J. Ventricular fibrillation and atrial fibrillation are two different beasts. CHAOS (WOODBURY, N.Y.) 1998; 8:65-78. [PMID: 12779711 DOI: 10.1063/1.166288] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Although the mechanisms of fibrillation are no doubt multi-faceted, the geometry of the heart may play a major role in the dynamics of wave propagation during fibrillation [A. T. Winfree, Science 266, 1003-1006 (1994)]. The ventricles are thick chambers made up of sheets of parallel muscle fibers with the direction of fibers rotating across the ventricular walls (rotational anisotropy). The thick walls of the ventricles allow reentry to develop transmurally, provided the wavelength is sufficiently small. Depending on the kinetics of heart cells, the dynamics of rotating waves in three dimensions may be fundamentally different than in two dimensions, leading to destabilization of reentry and ventricular fibrillation (VF) in thick ventricles. The atria have an intricate geometry comprised of a thin sheet of cardiac tissue attached to a very complex network of pectinate muscles. The branching geometry of the pectinate muscles may lead to destabilization of two-dimensional reentry via "long-distance" electrical connections giving rise to atrial fibrillation (AF). Therefore, although fibrillation occurs via complex three-dimensional wave propagation in the ventricles and the atria, the underlying mechanisms and factors that sustain VF and AF are probably different.(c) 1998 American Institute of Physics.
Collapse
Affiliation(s)
- R. A. Gray
- University of Alabama at Birmingham, Cardiac Rhythm Management Laboratory, B140 Volker Hall, 1670 University Boulevard, Birmingham, Alabama 35294-0019
| | | |
Collapse
|
45
|
Cabo C, Pertsov AM, Davidenko JM, Jalife J. Electrical turbulence as a result of the critical curvature for propagation in cardiac tissue. CHAOS (WOODBURY, N.Y.) 1998; 8:116-126. [PMID: 12779715 DOI: 10.1063/1.166292] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In cardiac tissue, the propagation of electrical excitation waves is dependent on the active properties of the cell membrane (ionic channels) and the passive electrical properties of cardiac tissue (passive membrane properties, distribution of gap junctions, and cell shapes). Initiation of cardiac arrhythmias is usually associated with heterogeneities in the active and/or passive properties of cardiac tissue. However, as a result of the effect of wave front geometry (curvature) on propagation of cardiac waves, inexcitable anatomical obstacles, like veins and arteries, may cause the formation of self-sustained vortices and uncontrolled high-frequency excitation in normal homogeneous myocardium. (c) 1998 American Institute of Physics.
Collapse
Affiliation(s)
- Candido Cabo
- Department of Pharmacology, College of Physicians and Surgeons of Columbia University, New York, New York 10032
| | | | | | | |
Collapse
|