Hidalgo M, Coutinho K, Canuto S. Behavior of the dielectric constant of Ar near the critical point.
PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015;
91:032115. [PMID:
25871062 DOI:
10.1103/physreve.91.032115]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Indexed: 06/04/2023]
Abstract
The fundamental question of the behavior of the dielectric constant near the critical point is addressed using Ar as the probe system. The neighborhood of the liquid-vapor critical point of Ar is accessed by classical Monte Carlo simulation and then explicit quantum mechanics calculations are performed to study the behavior of the dielectric constant. The theoretical critical temperature is determined by calculating the position of the discontinuity of the specific heat and is found to be at T(c)Theor=148.7K, only 2 K below the experimental value. The large fluctuations and the inhomogeneity of the density that characterize the critical point rapidly disappear and are not seen at T=T(c)Theor+2K. The structure of Ar obtained by the radial distribution function is found to be in very good agreement with experiment both in the liquid phase and 2 K above the critical temperature. The behavior of the dielectric constant is then analyzed after calculating the static dipole polarizability and using a many-body Clausius-Mossotti equation. The dielectric constant shows a density-independent behavior around the critical density, 2 K above the critical temperature. At this point, the calculated value of the dielectric constant is 1.173±0.005 in excellent agreement with the experimental value of 1.179.
Collapse