1
|
Hermsmeier R, Tscherbul TV. Highly Spin-Polarized Molecules via Collisional Microwave Pumping. PHYSICAL REVIEW LETTERS 2024; 133:173001. [PMID: 39530814 DOI: 10.1103/physrevlett.133.173001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024]
Abstract
We propose a general technique to produce cold spin-polarized molecules in the electronic states of Σ symmetry, in which rotationally excited levels are first populated by coherent microwave excitation, and then allowed to spin flip and relax via collisional quenching, which populates a single final spin state. The steady-state spin polarization is maximized in the regime, where collisional slip-flipping transitions in the ground rotational manifold (N=0) are suppressed by a factor of ≥10 compared to those in the first rotationally excited manifold (N=1), as generally expected for Σ-state molecules at temperatures below the rotational spacing between the N=0 and N=1 manifolds. We theoretically demonstrate the high selectivity of the technique for ^{13}C^{16}O molecules immersed in a cold buffer gas of helium atoms, achieving a high degree (≥95%) of nuclear spin polarization at 1 K.
Collapse
|
2
|
Wang P, He L, Deng Y, Sun S, Lan P, Lu P. Unveiling Nonsecular Collisional Dissipation of Molecular Alignment. PHYSICAL REVIEW LETTERS 2024; 133:033202. [PMID: 39094146 DOI: 10.1103/physrevlett.133.033202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/17/2024] [Accepted: 06/18/2024] [Indexed: 08/04/2024]
Abstract
We conducted a joint theoretical and experimental study to investigate the collisional dissipation of molecular alignment. By comparing experimental measurements to the quantum simulations, the nonsecular effect in the collision dissipation of molecular alignment was unveiled from the gas-density-dependent decay rates of the molecular alignment revival signals. Different from the conventional perspective that the nonsecular collisional effect rapidly fades within the initial few picoseconds following laser excitation, our simulations of the time-dependent decoherence process demonstrated that this effect can last for tens of picoseconds in the low-pressure regime. This extended timescale allows for the distinct identification of the nonsecular effect from molecular alignment signals. Our findings present the pioneering evidence that nonsecular molecular collisional dissipation can endure over an extended temporal span, challenging established concepts and strengthening our understanding of molecular dynamics within dissipative environments.
Collapse
|
3
|
Bournazel M, Ma J, Billard F, Hertz E, Wu J, Boulet C, Faucher O, Hartmann JM. Quantum modeling, beyond secularity, of the collisional dissipation of molecular alignment using the energy-corrected sudden approximation. J Chem Phys 2023; 158:2887565. [PMID: 37125716 DOI: 10.1063/5.0150002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023] Open
Abstract
We propose a Markovian quantum model for the time dependence of the pressure-induced decoherence of rotational wave packets of gas-phase molecules beyond the secular approximation. It is based on a collisional relaxation matrix constructed using the energy-corrected sudden approximation, which improves the previously proposed infinite order sudden one by taking the molecule rotation during collisions into account. The model is tested by comparisons with time-domain measurements of the pressure-induced decays of molecular-axis alignment features (revivals and echoes) for HCl and CO2 gases, pure and diluted in He. For the Markovian systems HCl-He and CO2-He, the comparisons between computed and measured data demonstrate the robustness of our approach, even when the secular approximation largely breaks down. In contrast, significant differences are obtained in the cases of pure HCl and CO2, for which the model underestimates the decay rate of the alignment at short times. This result is attributed to the non-Markovianity of HCl-HCl and CO2-CO2 interactions and the important contribution of those collisions that are ongoing at the time when the system is excited by the aligning laser pulse.
Collapse
Affiliation(s)
- M Bournazel
- Laboratoire Interdisciplinaire CARNOT de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, BP 47870, 21078 Dijon, France
| | - J Ma
- Laboratoire Interdisciplinaire CARNOT de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, BP 47870, 21078 Dijon, France
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - F Billard
- Laboratoire Interdisciplinaire CARNOT de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, BP 47870, 21078 Dijon, France
| | - E Hertz
- Laboratoire Interdisciplinaire CARNOT de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, BP 47870, 21078 Dijon, France
| | - J Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - C Boulet
- Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris-Saclay, Orsay F-91405, France
| | - O Faucher
- Laboratoire Interdisciplinaire CARNOT de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, BP 47870, 21078 Dijon, France
| | - J-M Hartmann
- Laboratoire de Météorologie Dynamique/IPSL, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Sorbonne Université, Ecole Normale Supérieure, Université PSL, F-91120 Palaiseau, France
| |
Collapse
|
4
|
Yu XF, Wang S. Molecular orientation of thermal ensemble induced by two-color slow turn-on and rapid turn-off laser pulses. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Chatterley AS, Baatrup MO, Schouder CA, Stapelfeldt H. Laser-induced alignment dynamics of gas phase CS 2 dimers. Phys Chem Chem Phys 2020; 22:3245-3253. [PMID: 31995073 DOI: 10.1039/c9cp06260b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rotational dynamics of gas phase carbon disulfide (CS2) dimers were induced by a moderately intense, circularly polarized alignment laser pulse and measured as a function of time by Coulomb explosion imaging with an intense fs probe pulse. For the alignment pulse, two different temporal intensity profiles were used: a truncated pulse with a 150 ps turn-on and a 8 ps turn-off, or a 'kick' pulse with a duration of 1.3 ps. For both types of pulse, rich rotational dynamics with characteristic full and fractional revivals were recorded, showing that the intermolecular carbon-carbon axis periodically aligns along the propagation direction of the laser pulses. The truncated pulse gave the strongest alignment, which we rationalize as being due to a flat relative phase between the components in the rotational wave packet generated. Fourier analysis of the alignment dynamics gave well-spaced peaks which were fit to determine the rotational constant, B, and the centrifugal constant, DJ, for the ground state of the dimer. Our results agree with values from high-resolution IR spectroscopy. Numerical simulations of the alignment accurately reproduced the experimental dynamics when the truncated pulse or a low intensity kick pulse was used, but failed to reproduce the dynamics induced by a high intensity kick pulse. We posit that the discrepancy is due to excitation of the intermolecular torsional motion by the kick pulse.
Collapse
Affiliation(s)
| | - Mia O Baatrup
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Constant A Schouder
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | | |
Collapse
|
6
|
Hartmann JM, Boulet C, Zhang H, Billard F, Faucher O, Lavorel B. Collisional dissipation of the laser-induced alignment of ethane gas: Energy corrected sudden quantum model. J Chem Phys 2018; 149:214305. [PMID: 30525727 DOI: 10.1063/1.5053963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We present the first quantum mechanical model of the collisional dissipation of the alignment of a gas of symmetric-top molecules (ethane) impulsively induced by a linearly polarized non-resonant laser field. The approach is based on use of the Bloch model and of the Markov and secular approximations in which the effects of collisions are taken into account through the state-to-state rates associated with exchanges among the various rotational states. These rates are constructed using the Energy Corrected Sudden (ECS) approximation with (a few) input parameters obtained independently from fits of the pressure-broadening coefficients of ethane absorption lines. Based on knowledge of the laser pulse characteristics and on these rates, the time-dependent equation driving the evolution of the density matrix during and after the laser pulse is solved and the time dependence of the so-called "alignment factor" is computed. Comparisons with measurements, free of any adjusted parameter, show that the proposed approach leads to good agreement with measurements. The analysis of the ECS state-to-state collisional rates demonstrates that, as in the case of linear molecules, collision-induced changes of the rotational angular momentum orientation are slower than those of its magnitude. This explains why the collisional decay of the permanent component of the alignment is significantly slower than that of the amplitudes of the transient revivals in both experimental and computed results. It is also shown that, since intermolecular forces within C2H6 colliding pairs weakly depend on rotations of the molecules around their C-C bond, the dissipation mechanism of the alignment in pure ethane is close to that involved in linear molecules.
Collapse
Affiliation(s)
- J-M Hartmann
- Laboratoire de Météorologie Dynamique/IPSL, CNRS, École polytechnique, Sorbonne Université, École Normale Supérieure, PSL Research University, F-91120 Palaiseau, France
| | - C Boulet
- Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay F-91405, France
| | - H Zhang
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS, Université Bourgogne-Franche Comté, 9 Ave. A. Savary, BP 47 870, F-21078 Dijon Cedex, France
| | - F Billard
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS, Université Bourgogne-Franche Comté, 9 Ave. A. Savary, BP 47 870, F-21078 Dijon Cedex, France
| | - O Faucher
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS, Université Bourgogne-Franche Comté, 9 Ave. A. Savary, BP 47 870, F-21078 Dijon Cedex, France
| | - B Lavorel
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS, Université Bourgogne-Franche Comté, 9 Ave. A. Savary, BP 47 870, F-21078 Dijon Cedex, France
| |
Collapse
|
7
|
Hartmann JM, Boulet C, Zhang H, Billard F, Faucher O, Lavorel B. Collisional dissipation of the laser-induced alignment of ethane gas: A requantized classical model. J Chem Phys 2018; 149:154301. [PMID: 30342447 DOI: 10.1063/1.5046899] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present the first theoretical study of collisional dissipation of the alignment of a symmetric-top molecule (ethane gas) impulsively induced by a linearly polarized non-resonant laser field. For this, Classical Molecular Dynamics Simulations (CMDSs) are carried out for an ensemble of C2H6 molecules based on knowledge of the laser-pulse characteristics and on an input intermolecular potential. These provide, for a given gas pressure and initial temperature, the orientations of all molecules at all times from which the alignment factor is directly obtained. Comparisons with measurements show that these CMDSs well predict the permanent alignment induced by the laser pulse and its decay with time but, as expected, fail in generating alignment revivals. However, it is shown that introducing a simple requantization procedure in the CMDS "creates" these revivals and that their predicted dissipation decay agrees very well with measured values. The calculations also confirm that, as for linear molecules, the permanent alignment of ethane decays more slowly than the transient revivals. The influence of the intermolecular potential is studied as well as that of the degree of freedom associated with the molecular rotation around the symmetry axis. This reveals that ethane practically behaves as a linear molecule because the intermolecular potential is only weakly sensitive to rotation around the C-C axis.
Collapse
Affiliation(s)
- J-M Hartmann
- Laboratoire de Météorologie Dynamique/IPSL, CNRS, École polytechnique, Sorbonne Université, École Normale Supérieure, PSL Research University, F-91120 Palaiseau, France
| | - C Boulet
- Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay F-91405, France
| | - H Zhang
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Université, Bourgogne-Franche Comté, 9 Ave. A. Savary, BP 47 870, F-21078 Dijon Cedex, France
| | - F Billard
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Université, Bourgogne-Franche Comté, 9 Ave. A. Savary, BP 47 870, F-21078 Dijon Cedex, France
| | - O Faucher
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Université, Bourgogne-Franche Comté, 9 Ave. A. Savary, BP 47 870, F-21078 Dijon Cedex, France
| | - B Lavorel
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Université, Bourgogne-Franche Comté, 9 Ave. A. Savary, BP 47 870, F-21078 Dijon Cedex, France
| |
Collapse
|
8
|
Zhang H, Billard F, Yu X, Faucher O, Lavorel B. Dissipation dynamics of field-free molecular alignment for symmetric-top molecules: Ethane (C2H6). J Chem Phys 2018; 148:124303. [DOI: 10.1063/1.5019356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- H. Zhang
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Université, Bourgogne-Franche Comté, 9 Ave. A. Savary, BP 47 870, F-21078 Dijon Cedex, France
| | - F. Billard
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Université, Bourgogne-Franche Comté, 9 Ave. A. Savary, BP 47 870, F-21078 Dijon Cedex, France
| | - X. Yu
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Université, Bourgogne-Franche Comté, 9 Ave. A. Savary, BP 47 870, F-21078 Dijon Cedex, France
| | - O. Faucher
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Université, Bourgogne-Franche Comté, 9 Ave. A. Savary, BP 47 870, F-21078 Dijon Cedex, France
| | - B. Lavorel
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Université, Bourgogne-Franche Comté, 9 Ave. A. Savary, BP 47 870, F-21078 Dijon Cedex, France
| |
Collapse
|
9
|
Grohmann T, Seideman T, Leibscher M. Theory of torsional control for G16-type molecules. J Chem Phys 2018. [DOI: 10.1063/1.4997462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Thomas Grohmann
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208, USA
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Tamar Seideman
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208, USA
| | - Monika Leibscher
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstr. 2, 30167 Hannover, Germany
- Institut für Physikalische Chemie, Christian-Albrechts-Universität Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| |
Collapse
|
10
|
Damari R, Rosenberg D, Fleischer S. Coherent Radiative Decay of Molecular Rotations: A Comparative Study of Terahertz-Oriented versus Optically Aligned Molecular Ensembles. PHYSICAL REVIEW LETTERS 2017; 119:033002. [PMID: 28777613 DOI: 10.1103/physrevlett.119.033002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Indexed: 06/07/2023]
Abstract
The decay of field-free rotational dynamics is experimentally studied by two complementary methods: laser-induced molecular alignment and terahertz-field-induced molecular orientation. A comparison between the decay rates of different molecular species at various gas pressures reveals that oriented molecular ensembles decay faster than aligned ensembles. The discrepancy in decay rates is attributed to the coherent radiation emitted by the transiently oriented ensembles and is absent from aligned molecules. The experimental results reveal the dramatic contribution of coherent radiative emission to the observed decay of rotational dynamics and underline a general phenomenon expected whenever field-free coherent dipole oscillations are induced.
Collapse
Affiliation(s)
- Ran Damari
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, 6997801 Israel and Tel-Aviv University center for Light-Matter-Interaction, Tel Aviv, 6997801 Israel
| | - Dina Rosenberg
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, 6997801 Israel and Tel-Aviv University center for Light-Matter-Interaction, Tel Aviv, 6997801 Israel
| | - Sharly Fleischer
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, 6997801 Israel and Tel-Aviv University center for Light-Matter-Interaction, Tel Aviv, 6997801 Israel
| |
Collapse
|
11
|
Field-free orientation dynamics of CO molecule by combining two-color shaped laser pulse with THz laser pulse train. Chem Phys 2015. [DOI: 10.1016/j.chemphys.2015.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Hartmann JM, Boulet C, Vieillard T, Chaussard F, Billard F, Faucher O, Lavorel B. Dissipation of alignment in CO2 gas: A comparison between ab initio predictions and experiments. J Chem Phys 2013; 139:024306. [DOI: 10.1063/1.4812770] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
LIU YONG, LI JIAN, YU JIE, CONG SHULIN. FIELD-FREE MOLECULAR ORIENTATION IN DISSIPATIVE MEDIA BY A COMBINATION OF FEMTOSECOND AND THz LASER PULSES. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2013. [DOI: 10.1142/s0219633613500065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We present a theoretical scheme for achieving the field-free molecular orientation in dissipative media by a combination of femtosecond and THz laser pulses. Numerical calculations are performed by solving the quantum Liouville equation based on multilevel Bloch model. The molecular orientation degree is sensitive to the carrier-envelope phase of the THz pulse and the delay time between the two pulses. The orientation and the rotational population of CO molecules in dissipative environment are computed at different pressures and temperatures. The influence of pure decoherence on the molecular orientation is also discussed.
Collapse
Affiliation(s)
- YONG LIU
- School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - JIAN LI
- School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - JIE YU
- School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - SHU-LIN CONG
- School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
14
|
Pentlehner D, Nielsen JH, Slenczka A, Mølmer K, Stapelfeldt H. Impulsive laser induced alignment of molecules dissolved in helium nanodroplets. PHYSICAL REVIEW LETTERS 2013; 110:093002. [PMID: 23496707 DOI: 10.1103/physrevlett.110.093002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Indexed: 06/01/2023]
Abstract
We show that a 450 fs nonresonant, moderately intense, linearly polarized laser pulse can induce field-free molecular axis alignment of methyliodide (CH(3)I) molecules dissolved in a helium nanodroplet. Time-resolved measurements reveal rotational dynamics much slower than that of isolated molecules and absence of the sharp transient alignment recurrences characteristic of gas phase molecules. Our results presage a range of new opportunities for exploring both molecular dynamics in a dissipative environment and the properties of He nanodroplets.
Collapse
|
15
|
Ashwell BA, Ramakrishna S, Seideman T. Laser-driven torsional coherences. J Chem Phys 2013; 138:044310. [DOI: 10.1063/1.4773009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Hartmann JM, Boulet C. Quantum and classical approaches for rotational relaxation and nonresonant laser alignment of linear molecules: A comparison for CO2 gas in the nonadiabatic regime. J Chem Phys 2012; 136:184302. [DOI: 10.1063/1.4705264] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Optically Probed Laser-Induced Field-Free Molecular Alignment. SPRINGER SERIES IN CHEMICAL PHYSICS 2011. [DOI: 10.1007/978-3-642-18327-0_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
18
|
Owschimikow N, Königsmann F, Maurer J, Giese P, Ott A, Schmidt B, Schwentner N. Cross sections for rotational decoherence of perturbed nitrogen measured via decay of laser-induced alignment. J Chem Phys 2010; 133:044311. [DOI: 10.1063/1.3464487] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
19
|
Mishima K, Yamashita K. Free-time and fixed end-point optimal control theory in dissipative media: application to entanglement generation and maintenance. J Chem Phys 2009; 131:014109. [PMID: 19586098 DOI: 10.1063/1.3159002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We develop monotonically convergent free-time and fixed end-point optimal control theory (OCT) in the density-matrix representation to deal with quantum systems showing dissipation. Our theory is more general and flexible for tailoring optimal laser pulses in order to control quantum dynamics with dissipation than the conventional fixed-time and fixed end-point OCT in that the optimal temporal duration of laser pulses can also be optimized exactly. To show the usefulness of our theory, it is applied to the generation and maintenance of the vibrational entanglement of carbon monoxide adsorbed on the copper (100) surface, CO/Cu(100). We demonstrate the numerical results and clarify how to combat vibrational decoherence as much as possible by the tailored shapes of the optimal laser pulses. It is expected that our theory will be general enough to be applied to a variety of dissipative quantum dynamics systems because the decoherence is one of the quantum phenomena sensitive to the temporal duration of the quantum dynamics.
Collapse
Affiliation(s)
- K Mishima
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
| | | |
Collapse
|
20
|
Pelzer A, Ramakrishna S, Seideman T. Optimal control of rotational motions in dissipative media. J Chem Phys 2008; 129:134301. [DOI: 10.1063/1.2973633] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
York AG, Milchberg HM. Broadband terahertz lasing in aligned molecules. OPTICS EXPRESS 2008; 16:10557-105645. [PMID: 18607470 DOI: 10.1364/oe.16.010557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
No broadband amplifying medium has been demonstrated yet for terahertz radiation. We present simulations showing that laser-aligned molecules can amplify broadband terahertz radiation, allowing high-energy amplification of few-cycle pulses at terahertz frequencies.
Collapse
Affiliation(s)
- Andrew G York
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
22
|
Gelin MF, Kosov DS. Manifestation of nonequilibrium initial conditions in molecular rotation: The generalized J-diffusion model. J Chem Phys 2007; 127:144511. [DOI: 10.1063/1.2779037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
23
|
Pelzer A, Ramakrishna S, Seideman T. Optimal control of molecular alignment in dissipative media. J Chem Phys 2007; 126:034503. [PMID: 17249880 DOI: 10.1063/1.2408423] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We explore the controllability of nonadiabatic alignment in dissipative media, and the information content of control experiments regarding the bath properties and the bath system interactions. Our approach is based on a solution of the quantum Liouville equation within the multilevel Bloch formalism, assuming Markovian dynamics. We find that the time and energy characteristics of the laser fields that produce desired alignment characteristics at a predetermined instant respond in distinct manners to decoherence and to population relaxation, and are sensitive to both time scales. In particular, the time-evolving spectral composition of the optimal pulse mirrors the time-evolving rotational composition of the wave packet, and points to different mechanisms of rotational excitation in isolated systems, in systems subject to a decoherering bath, and in ones subject to a population relaxing bath.
Collapse
Affiliation(s)
- Adam Pelzer
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
24
|
Kiljunen T, Schmidt B, Schwentner N. Time-dependent alignment of molecules trapped in octahedral crystal fields. J Chem Phys 2006; 124:164502. [PMID: 16674141 DOI: 10.1063/1.2189239] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The hindered rotational states of molecules confined in crystal fields of octahedral symmetry, and their time-dependent alignment obtained by pulsed nonresonant laser fields, are studied computationally. The control over the molecular axis direction is discussed based on the evolution of the rotational wave packet generated in the cubic crystal-field potential. The alignment degree obtained in a cooperative case, where the alignment field is applied in a favorable crystal-field direction, or in a competitive direction, where the crystal field has a saddle point, is presented. The investigation is divided into two time regimes where the pulse duration is either ultrashort, leading to nonadiabatic dynamics, or long with respect to period of molecular libration, which leads to synchronous alignment due to nearly adiabatic following. The results are contrasted to existing gas phase studies. In particular, the irregularity of the crystal-field energies leads to persistent interference patterns in the alignment signals. The use of nonadiabatic alignment for interrogation of crystal-field energetics and the use of adiabatic alignment for directional control of molecular dynamics in solids are proposed as practical applications.
Collapse
Affiliation(s)
- Toni Kiljunen
- Department of Chemistry, P.O. Box 35, FIN-40014 University of Jyväskylä, Finland.
| | | | | |
Collapse
|