1
|
Leckenby G, Sidhu RS, Chen RJ, Mancino R, Szányi B, Bai M, Battino U, Blaum K, Brandau C, Cristallo S, Dickel T, Dillmann I, Dmytriiev D, Faestermann T, Forstner O, Franczak B, Geissel H, Gernhäuser R, Glorius J, Griffin C, Gumberidze A, Haettner E, Hillenbrand PM, Karakas A, Kaur T, Korten W, Kozhuharov C, Kuzminchuk N, Langanke K, Litvinov S, Litvinov YA, Lugaro M, Martínez-Pinedo G, Menz E, Meyer B, Morgenroth T, Neff T, Nociforo C, Petridis N, Pignatari M, Popp U, Purushothaman S, Reifarth R, Sanjari S, Scheidenberger C, Spillmann U, Steck M, Stöhlker T, Tanaka YK, Trassinelli M, Trotsenko S, Varga L, Vescovi D, Wang M, Weick H, Yagüe Lopéz A, Yamaguchi T, Zhang Y, Zhao J. High-temperature 205Tl decay clarifies 205Pb dating in early Solar System. Nature 2024; 635:321-326. [PMID: 39537886 PMCID: PMC11560843 DOI: 10.1038/s41586-024-08130-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024]
Abstract
Radioactive nuclei with lifetimes on the order of millions of years can reveal the formation history of the Sun and active nucleosynthesis occurring at the time and place of its birth1,2. Among such nuclei whose decay signatures are found in the oldest meteorites, 205Pb is a powerful example, as it is produced exclusively by slow neutron captures (the s process), with most being synthesized in asymptotic giant branch (AGB) stars3-5. However, making accurate abundance predictions for 205Pb has so far been impossible because the weak decay rates of 205Pb and 205Tl are very uncertain at stellar temperatures6,7. To constrain these decay rates, we measured for the first time the bound-state β- decay of fully ionized 205Tl81+, an exotic decay mode that only occurs in highly charged ions. The measured half-life is 4.7 times longer than the previous theoretical estimate8 and our 10% experimental uncertainty has eliminated the main nuclear-physics limitation. With new, experimentally backed decay rates, we used AGB stellar models to calculate 205Pb yields. Propagating those yields with basic galactic chemical evolution (GCE) and comparing with the 205Pb/204Pb ratio from meteorites9-11, we determined the isolation time of solar material inside its parent molecular cloud. We find positive isolation times that are consistent with the other s-process short-lived radioactive nuclei found in the early Solar System. Our results reaffirm the site of the Sun's birth as a long-lived, giant molecular cloud and support the use of the 205Pb-205Tl decay system as a chronometer in the early Solar System.
Collapse
Affiliation(s)
- Guy Leckenby
- TRIUMF, Vancouver, British Columbia, Canada.
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Ragandeep Singh Sidhu
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - Rui Jiu Chen
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany.
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany.
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
| | - Riccardo Mancino
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Institut für Kernphysik (Theoriezentrum), Fachbereich Physik, Technische Universität Darmstadt, Darmstadt, Germany
- Institute of Particle and Nuclear Physics, Charles University, Prague, Czech Republic
| | - Balázs Szányi
- Department of Experimental Physics, University of Szeged, Szeged, Hungary
- Konkoly Observatory, HUN-REN CSFK, Budapest, Hungary
- MTA Centre of Excellence, Budapest, Hungary
| | - Mei Bai
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Umberto Battino
- E.A. Milne Centre for Astrophysics, University of Hull, Hull, UK
- Osservatorio Astronomico di Capodimonte, INAF, Napoli, Italy
| | - Klaus Blaum
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - Carsten Brandau
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- I. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Sergio Cristallo
- Osservatorio Astronomico d'Abruzzo, INAF, Teramo, Italy
- INFN Sezione di Perugia, Perugia, Italy
| | - Timo Dickel
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Iris Dillmann
- TRIUMF, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada
| | - Dmytro Dmytriiev
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | | | - Oliver Forstner
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Bernhard Franczak
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Hans Geissel
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Roman Gernhäuser
- Physics Department, Technische Universität München, Garching, Germany
| | - Jan Glorius
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | | | | | - Emma Haettner
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Pierre-Michel Hillenbrand
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- I. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Amanda Karakas
- School of Physics and Astronomy, Monash University, Clayton, Victoria, Australia
- ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO-3D), Melbourne, Australia
- Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Japan
| | - Tejpreet Kaur
- Department of Physics, Panjab University, Chandigarh, India
| | - Wolfram Korten
- Nuclear Physics Division, Institute of Research into the Fundamental Laws of the Universe, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | | | | | - Sergey Litvinov
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Yuri A Litvinov
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany.
- Helmholtz Forschungsakademie Hessen für FAIR (HFHF), GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany.
| | - Maria Lugaro
- Konkoly Observatory, HUN-REN CSFK, Budapest, Hungary.
- MTA Centre of Excellence, Budapest, Hungary.
- School of Physics and Astronomy, Monash University, Clayton, Victoria, Australia.
- Institute of Physics and Astronomy, ELTE Eötvös Loránd University, Budapest, Hungary.
| | - Gabriel Martínez-Pinedo
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Institut für Kernphysik (Theoriezentrum), Fachbereich Physik, Technische Universität Darmstadt, Darmstadt, Germany
- Helmholtz Forschungsakademie Hessen für FAIR (HFHF), GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Esther Menz
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Bradley Meyer
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| | - Tino Morgenroth
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Thomas Neff
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Chiara Nociforo
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Nikolaos Petridis
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Marco Pignatari
- Konkoly Observatory, HUN-REN CSFK, Budapest, Hungary
- MTA Centre of Excellence, Budapest, Hungary
- E.A. Milne Centre for Astrophysics, University of Hull, Hull, UK
| | - Ulrich Popp
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | | | - René Reifarth
- J.W. Goethe-Universität, Frankfurt, Germany
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Shahab Sanjari
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- FH Aachen - University of Applied Sciences, Aachen, Germany
| | - Christoph Scheidenberger
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany
- Helmholtz Forschungsakademie Hessen für FAIR (HFHF), GSI Helmholtzzentrum für Schwerionenforschung GmbH, Gießen, Germany
| | - Uwe Spillmann
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Markus Steck
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Thomas Stöhlker
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Friedrich-Schiller-Universität Jena, Jena, Germany
| | | | - Martino Trassinelli
- Institut des NanoSciences de Paris, CNRS, Sorbonne Université, Paris, France
| | - Sergiy Trotsenko
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - László Varga
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Physics Department, Technische Universität München, Garching, Germany
| | - Diego Vescovi
- Osservatorio Astronomico d'Abruzzo, INAF, Teramo, Italy
- INFN Sezione di Perugia, Perugia, Italy
- J.W. Goethe-Universität, Frankfurt, Germany
| | - Meng Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Helmut Weick
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | | | | | - Yuhu Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jianwei Zhao
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| |
Collapse
|
2
|
Casanovas-Hoste A, Domingo-Pardo C, Lerendegui-Marco J, Guerrero C, Tarifeño-Saldivia A, Krtička M, Pignatari M, Calviño F, Schumann D, Heinitz S, Dressler R, Köster U, Aberle O, Andrzejewski J, Audouin L, Bécares V, Bacak M, Balibrea-Correa J, Barbagallo M, Barros S, Bečvář F, Beinrucker C, Berthoumieux E, Billowes J, Bosnar D, Brugger M, Caamaño M, Calviani M, Cano-Ott D, Cardella R, Castelluccio DM, Cerutti F, Chen YH, Chiaveri E, Colonna N, Cortés G, Cortés-Giraldo MA, Cosentino L, Damone LA, Diakaki M, Dupont E, Durán I, Fernández-Domínguez B, Ferrari A, Ferreira P, Finocchiaro P, Furman V, Göbel K, García AR, Gawlik-Ramięga A, Glodariu T, Gonçalves IF, González-Romero E, Goverdovski A, Griesmayer E, Gunsing F, Harada H, Heftrich T, Heyse J, Jenkins DG, Jericha E, Käppeler F, Kadi Y, Katabuchi T, Kavrigin P, Ketlerov V, Khryachkov V, Kimura A, Kivel N, Kokkoris M, Leal-Cidoncha E, Lederer-Woods C, Leeb H, Lo Meo S, Lonsdale SJ, Losito R, Macina D, Marganiec J, Martínez T, Massimi C, Mastinu P, Mastromarco M, Matteucci F, Maugeri EA, Mendoza E, Mengoni A, Milazzo PM, Mingrone F, Mirea M, Montesano S, Musumarra A, Nolte R, Oprea A, Patronis N, Pavlik A, Perkowski J, Porras I, Praena J, Quesada JM, Rajeev K, et alCasanovas-Hoste A, Domingo-Pardo C, Lerendegui-Marco J, Guerrero C, Tarifeño-Saldivia A, Krtička M, Pignatari M, Calviño F, Schumann D, Heinitz S, Dressler R, Köster U, Aberle O, Andrzejewski J, Audouin L, Bécares V, Bacak M, Balibrea-Correa J, Barbagallo M, Barros S, Bečvář F, Beinrucker C, Berthoumieux E, Billowes J, Bosnar D, Brugger M, Caamaño M, Calviani M, Cano-Ott D, Cardella R, Castelluccio DM, Cerutti F, Chen YH, Chiaveri E, Colonna N, Cortés G, Cortés-Giraldo MA, Cosentino L, Damone LA, Diakaki M, Dupont E, Durán I, Fernández-Domínguez B, Ferrari A, Ferreira P, Finocchiaro P, Furman V, Göbel K, García AR, Gawlik-Ramięga A, Glodariu T, Gonçalves IF, González-Romero E, Goverdovski A, Griesmayer E, Gunsing F, Harada H, Heftrich T, Heyse J, Jenkins DG, Jericha E, Käppeler F, Kadi Y, Katabuchi T, Kavrigin P, Ketlerov V, Khryachkov V, Kimura A, Kivel N, Kokkoris M, Leal-Cidoncha E, Lederer-Woods C, Leeb H, Lo Meo S, Lonsdale SJ, Losito R, Macina D, Marganiec J, Martínez T, Massimi C, Mastinu P, Mastromarco M, Matteucci F, Maugeri EA, Mendoza E, Mengoni A, Milazzo PM, Mingrone F, Mirea M, Montesano S, Musumarra A, Nolte R, Oprea A, Patronis N, Pavlik A, Perkowski J, Porras I, Praena J, Quesada JM, Rajeev K, Rauscher T, Reifarth R, Riego-Perez A, Romanets Y, Rout PC, Rubbia C, Ryan JA, Sabaté-Gilarte M, Saxena A, Schillebeeckx P, Schmidt S, Sedyshev P, Smith AG, Stamatopoulos A, Tagliente G, Tain JL, Tassan-Got L, Tsinganis A, Valenta S, Vannini G, Variale V, Vaz P, Ventura A, Vlachoudis V, Vlastou R, Wallner A, Warren S, Weigand M, Weiss C, Wolf C, Woods PJ, Wright T, Žugec P. Shedding Light on the Origin of ^{204}Pb, the Heaviest s-Process-Only Isotope in the Solar System. PHYSICAL REVIEW LETTERS 2024; 133:052702. [PMID: 39159101 DOI: 10.1103/physrevlett.133.052702] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 03/09/2024] [Accepted: 06/07/2024] [Indexed: 08/21/2024]
Abstract
Asymptotic giant branch stars are responsible for the production of most of the heavy isotopes beyond Sr observed in the solar system. Among them, isotopes shielded from the r-process contribution by their stable isobars are defined as s-only nuclei. For a long time the abundance of ^{204}Pb, the heaviest s-only isotope, has been a topic of debate because state-of-the-art stellar models appeared to systematically underestimate its solar abundance. Besides the impact of uncertainties from stellar models and galactic chemical evolution simulations, this discrepancy was further obscured by rather divergent theoretical estimates for the neutron capture cross section of its radioactive precursor in the neutron-capture flow, ^{204}Tl (t_{1/2}=3.78 yr), and by the lack of experimental data on this reaction. We present the first ever neutron capture measurement on ^{204}Tl, conducted at the CERN neutron time-of-flight facility n_TOF, employing a sample of only 9 mg of ^{204}Tl produced at the Institute Laue Langevin high flux reactor. By complementing our new results with semiempirical calculations we obtained, at the s-process temperatures of kT≈8 keV and kT≈30 keV, Maxwellian-averaged cross sections (MACS) of 580(168) mb and 260(90) mb, respectively. These figures are about 3% lower and 20% higher than the corresponding values widely used in astrophysical calculations, which were based only on theoretical calculations. By using the new ^{204}Tl MACS, the uncertainty arising from the ^{204}Tl(n,γ) cross section on the s-process abundance of ^{204}Pb has been reduced from ∼30% down to +8%/-6%, and the s-process calculations are in agreement with the latest solar system abundance of ^{204}Pb reported by K. Lodders in 2021.
Collapse
Affiliation(s)
| | | | | | | | | | - M Krtička
- Charles University, Prague, Czech Republic
| | - M Pignatari
- Konkoly Observatory, HUN-REN, Konkoly Thege Miklós út 15-17, H-1121 Budapest, Hungary
- MTA Centre of Excellence, Budapest, Konkoly Thege Miklós út 15-17, H-1121, Hungary
- E. A. Milne Centre for Astrophysics, University of Hull, Hull, United Kingdom
- NuGrid Collaboration 3
| | - F Calviño
- Institut de Tècniques Energètiques (INTE)-Universitat Politècnica de Catalunya, Barcelona, Spain
| | - D Schumann
- Paul Scherrer Institut (PSI), Villigen, Switzerland
| | - S Heinitz
- Paul Scherrer Institut (PSI), Villigen, Switzerland
| | - R Dressler
- Paul Scherrer Institut (PSI), Villigen, Switzerland
| | - U Köster
- Institut Laue-Langevin (ILL), Grenoble, France
| | - O Aberle
- European Organization for Nuclear Research (CERN), Switzerland
| | | | - L Audouin
- Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, F-91406 Orsay Cedex, France
| | - V Bécares
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Spain
| | - M Bacak
- TU Wien, Atominstitut, Stadionallee 2, 1020 Wien, Austria
| | - J Balibrea-Correa
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Spain
| | - M Barbagallo
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - S Barros
- Instituto Superior Técnico, Lisbon, Portugal
| | - F Bečvář
- Charles University, Prague, Czech Republic
| | | | - E Berthoumieux
- CEA Irfu, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - J Billowes
- University of Manchester, Manchester, United Kingdom
| | - D Bosnar
- Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - M Brugger
- European Organization for Nuclear Research (CERN), Switzerland
| | - M Caamaño
- University of Santiago de Compostela, Spain
| | - M Calviani
- European Organization for Nuclear Research (CERN), Switzerland
| | - D Cano-Ott
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Spain
| | - R Cardella
- European Organization for Nuclear Research (CERN), Switzerland
| | - D M Castelluccio
- Agenzia Nazionale per le Nuove Tecnologie (ENEA), Bologna, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Bologna, Italy
| | - F Cerutti
- European Organization for Nuclear Research (CERN), Switzerland
| | - Y H Chen
- Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, F-91406 Orsay Cedex, France
| | - E Chiaveri
- European Organization for Nuclear Research (CERN), Switzerland
| | - N Colonna
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - G Cortés
- Institut de Tècniques Energètiques (INTE)-Universitat Politècnica de Catalunya, Barcelona, Spain
| | | | - L Cosentino
- INFN Laboratori Nazionali del Sud, Catania, Italy
| | - L A Damone
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari, Bari, Italy
| | - M Diakaki
- CEA Irfu, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - E Dupont
- CEA Irfu, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - I Durán
- University of Santiago de Compostela, Spain
| | | | - A Ferrari
- European Organization for Nuclear Research (CERN), Switzerland
| | - P Ferreira
- Instituto Superior Técnico, Lisbon, Portugal
| | | | - V Furman
- Affiliated with an institute (or an international laboratory) covered by a cooperation agreement with CERN
| | - K Göbel
- Goethe University Frankfurt, Frankfurt, Germany
| | - A R García
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Spain
| | | | - T Glodariu
- Horia Hulubei National Institute of Physics and Nuclear Engineering, Romania
| | | | - E González-Romero
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Spain
| | - A Goverdovski
- Institute of Physics and Power Engineering (IPPE), Obninsk, Russia
| | - E Griesmayer
- TU Wien, Atominstitut, Stadionallee 2, 1020 Wien, Austria
| | - F Gunsing
- European Organization for Nuclear Research (CERN), Switzerland
- CEA Irfu, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - H Harada
- Japan Atomic Energy Agency (JAEA), Tokai-Mura, Japan
| | - T Heftrich
- Goethe University Frankfurt, Frankfurt, Germany
| | - J Heyse
- European Commission, Joint Research Centre (JRC), Geel, Retieseweg 111, B-2440 Geel, Belgium
| | | | - E Jericha
- TU Wien, Atominstitut, Stadionallee 2, 1020 Wien, Austria
| | - F Käppeler
- Karlsruhe Institute of Technology, Campus North, IKP, 76021 Karlsruhe, Germany
| | - Y Kadi
- European Organization for Nuclear Research (CERN), Switzerland
| | | | - P Kavrigin
- TU Wien, Atominstitut, Stadionallee 2, 1020 Wien, Austria
| | - V Ketlerov
- Institute of Physics and Power Engineering (IPPE), Obninsk, Russia
| | - V Khryachkov
- Institute of Physics and Power Engineering (IPPE), Obninsk, Russia
| | - A Kimura
- Japan Atomic Energy Agency (JAEA), Tokai-Mura, Japan
| | - N Kivel
- Paul Scherrer Institut (PSI), Villigen, Switzerland
| | - M Kokkoris
- National Technical University of Athens, Athens, Greece
| | | | - C Lederer-Woods
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - H Leeb
- TU Wien, Atominstitut, Stadionallee 2, 1020 Wien, Austria
| | - S Lo Meo
- Agenzia Nazionale per le Nuove Tecnologie (ENEA), Bologna, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Bologna, Italy
| | - S J Lonsdale
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - R Losito
- European Organization for Nuclear Research (CERN), Switzerland
| | - D Macina
- European Organization for Nuclear Research (CERN), Switzerland
| | | | - T Martínez
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Spain
| | - C Massimi
- Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Bologna, Italy
- Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
| | - P Mastinu
- Istituto Nazionale di Fisica Nucleare, Sezione di Legnaro, Legnaro, Italy
| | - M Mastromarco
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - F Matteucci
- Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Trieste, Italy
- Dipartimento di Astronomia, Università di Trieste, Trieste, Italy
| | - E A Maugeri
- Paul Scherrer Institut (PSI), Villigen, Switzerland
| | - E Mendoza
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Spain
| | - A Mengoni
- Agenzia Nazionale per le Nuove Tecnologie (ENEA), Bologna, Italy
| | - P M Milazzo
- Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Trieste, Italy
| | - F Mingrone
- Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Bologna, Italy
| | - M Mirea
- Horia Hulubei National Institute of Physics and Nuclear Engineering, Romania
| | | | - A Musumarra
- INFN Laboratori Nazionali del Sud, Catania, Italy
- Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy
| | - R Nolte
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany
| | - A Oprea
- Horia Hulubei National Institute of Physics and Nuclear Engineering, Romania
| | - N Patronis
- University of Ioannina, Ioannina, Greece
| | - A Pavlik
- University of Vienna, Faculty of Physics, Vienna, Austria
| | | | - I Porras
- European Organization for Nuclear Research (CERN), Switzerland
- University of Granada, Granada, Spain
| | - J Praena
- Universidad de Sevilla, Sevilla, Spain
- University of Granada, Granada, Spain
| | | | - K Rajeev
- Bhabha Atomic Research Centre (BARC), India
| | - T Rauscher
- Centre for Astrophysics Research, University of Hertfordshire, Hatfield, United Kingdom
- Department of Physics, University of Basel, Basel, Switzerland
| | - R Reifarth
- Goethe University Frankfurt, Frankfurt, Germany
| | | | - Y Romanets
- Instituto Superior Técnico, Lisbon, Portugal
| | - P C Rout
- Bhabha Atomic Research Centre (BARC), India
| | - C Rubbia
- European Organization for Nuclear Research (CERN), Switzerland
| | - J A Ryan
- University of Manchester, Manchester, United Kingdom
| | - M Sabaté-Gilarte
- European Organization for Nuclear Research (CERN), Switzerland
- Universidad de Sevilla, Sevilla, Spain
| | - A Saxena
- Bhabha Atomic Research Centre (BARC), India
| | - P Schillebeeckx
- European Commission, Joint Research Centre (JRC), Geel, Retieseweg 111, B-2440 Geel, Belgium
| | - S Schmidt
- Goethe University Frankfurt, Frankfurt, Germany
| | - P Sedyshev
- Affiliated with an institute (or an international laboratory) covered by a cooperation agreement with CERN
| | - A G Smith
- University of Manchester, Manchester, United Kingdom
| | | | - G Tagliente
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | | | - L Tassan-Got
- Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, F-91406 Orsay Cedex, France
| | - A Tsinganis
- National Technical University of Athens, Athens, Greece
| | - S Valenta
- Charles University, Prague, Czech Republic
| | - G Vannini
- Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Bologna, Italy
- Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
| | - V Variale
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - P Vaz
- Instituto Superior Técnico, Lisbon, Portugal
| | - A Ventura
- Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Bologna, Italy
| | | | - R Vlastou
- National Technical University of Athens, Athens, Greece
| | - A Wallner
- Australian National University, Canberra, Australia
| | - S Warren
- University of Manchester, Manchester, United Kingdom
| | - M Weigand
- Goethe University Frankfurt, Frankfurt, Germany
| | - C Weiss
- European Organization for Nuclear Research (CERN), Switzerland
- TU Wien, Atominstitut, Stadionallee 2, 1020 Wien, Austria
| | - C Wolf
- Goethe University Frankfurt, Frankfurt, Germany
| | - P J Woods
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - T Wright
- University of Manchester, Manchester, United Kingdom
| | - P Žugec
- European Organization for Nuclear Research (CERN), Switzerland
- Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
3
|
Amaducci S, Colonna N, Cosentino L, Cristallo S, Finocchiaro P, Krtička M, Massimi C, Mastromarco M, Mazzone A, Maugeri EA, Mengoni A, Roederer IU, Straniero O, Valenta S, Vescovi D, Aberle O, Alcayne V, Andrzejewski J, Audouin L, Babiano-Suarez V, Bacak M, Barbagallo M, Bennett S, Berthoumieux E, Billowes J, Bosnar D, Brown A, Busso M, Caamaño M, Caballero-Ontanaya L, Calviño F, Calviani M, Cano-Ott D, Casanovas A, Cerutti F, Chiaveri E, Cortés G, Cortés-Giraldo MA, Damone LA, Davies PJ, Diakaki M, Dietz M, Domingo-Pardo C, Dressler R, Ducasse Q, Dupont E, Durán I, Eleme Z, Fernández-Domínguez B, Ferrari A, Furman V, Göbel K, Garg R, Gawlik-Ramięga A, Gilardoni S, Gonçalves IF, González-Romero E, Guerrero C, Gunsing F, Harada H, Heinitz S, Heyse J, Jenkins DG, Junghans A, Käppeler F, Kadi Y, Kimura A, Knapová I, Kokkoris M, Kopatch Y, Kurtulgil D, Ladarescu I, Lederer-Woods C, Leeb H, Lerendegui-Marco J, Lonsdale SJ, Macina D, Manna A, Martínez T, Masi A, Mastinu P, Mendoza E, Michalopoulou V, Milazzo PM, Mingrone F, Moreno-Soto J, Musumarra A, Negret A, Nolte R, Ogállar F, Oprea A, Patronis N, Pavlik A, Perkowski J, Petrone C, Piersanti L, Pirovano E, Porras I, Praena J, Quesada JM, et alAmaducci S, Colonna N, Cosentino L, Cristallo S, Finocchiaro P, Krtička M, Massimi C, Mastromarco M, Mazzone A, Maugeri EA, Mengoni A, Roederer IU, Straniero O, Valenta S, Vescovi D, Aberle O, Alcayne V, Andrzejewski J, Audouin L, Babiano-Suarez V, Bacak M, Barbagallo M, Bennett S, Berthoumieux E, Billowes J, Bosnar D, Brown A, Busso M, Caamaño M, Caballero-Ontanaya L, Calviño F, Calviani M, Cano-Ott D, Casanovas A, Cerutti F, Chiaveri E, Cortés G, Cortés-Giraldo MA, Damone LA, Davies PJ, Diakaki M, Dietz M, Domingo-Pardo C, Dressler R, Ducasse Q, Dupont E, Durán I, Eleme Z, Fernández-Domínguez B, Ferrari A, Furman V, Göbel K, Garg R, Gawlik-Ramięga A, Gilardoni S, Gonçalves IF, González-Romero E, Guerrero C, Gunsing F, Harada H, Heinitz S, Heyse J, Jenkins DG, Junghans A, Käppeler F, Kadi Y, Kimura A, Knapová I, Kokkoris M, Kopatch Y, Kurtulgil D, Ladarescu I, Lederer-Woods C, Leeb H, Lerendegui-Marco J, Lonsdale SJ, Macina D, Manna A, Martínez T, Masi A, Mastinu P, Mendoza E, Michalopoulou V, Milazzo PM, Mingrone F, Moreno-Soto J, Musumarra A, Negret A, Nolte R, Ogállar F, Oprea A, Patronis N, Pavlik A, Perkowski J, Petrone C, Piersanti L, Pirovano E, Porras I, Praena J, Quesada JM, Ramos-Doval D, Rauscher T, Reifarth R, Rochman D, Rubbia C, Sabaté-Gilarte M, Saxena A, Schillebeeckx P, Schumann D, Sekhar A, Smith AG, Sosnin NV, Sprung P, Stamatopoulos A, Tagliente G, Tain JL, Tarifeño-Saldivia A, Tassan-Got L, Thomas T, Torres-Sánchez P, Tsinganis A, Ulrich J, Urlass S, Vannini G, Variale V, Vaz P, Ventura A, Vlachoudis V, Vlastou R, Wallner A, Woods PJ, Wright T, Žugec P. Measurement of the ^{140}Ce(n,γ) Cross Section at n_TOF and Its Astrophysical Implications for the Chemical Evolution of the Universe. PHYSICAL REVIEW LETTERS 2024; 132:122701. [PMID: 38579210 DOI: 10.1103/physrevlett.132.122701] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/09/2023] [Accepted: 01/31/2024] [Indexed: 04/07/2024]
Abstract
^{140}Ce(n,γ) is a key reaction for slow neutron-capture (s-process) nucleosynthesis due to being a bottleneck in the reaction flow. For this reason, it was measured with high accuracy (uncertainty ≈5%) at the n_TOF facility, with an unprecedented combination of a high purity sample and low neutron-sensitivity detectors. The measured Maxwellian averaged cross section is up to 40% higher than previously accepted values. Stellar model calculations indicate a reduction around 20% of the s-process contribution to the Galactic cerium abundance and smaller sizeable differences for most of the heavier elements. No variations are found in the nucleosynthesis from massive stars.
Collapse
Affiliation(s)
- S Amaducci
- INFN Laboratori Nazionali del Sud, Catania, Italy
| | - N Colonna
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Italy
| | - L Cosentino
- INFN Laboratori Nazionali del Sud, Catania, Italy
| | - S Cristallo
- Istituto Nazionale di Astrofisica - Osservatorio Astronomico d'Abruzzo, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Italy
| | | | - M Krtička
- Charles University, Prague, Czech Republic
| | - C Massimi
- Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Italy
- Dipartimento di Fisica e Astronomia, Università di Bologna, Italy
| | - M Mastromarco
- European Organization for Nuclear Research (CERN), Switzerland
| | - A Mazzone
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Italy
- Consiglio Nazionale delle Ricerche, Bari, Italy
| | - E A Maugeri
- Paul Scherrer Institut (PSI), Villigen, Switzerland
| | - A Mengoni
- Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Italy
- Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile (ENEA), Italy
| | - I U Roederer
- Department of Physics, North Carolina State University, Raleigh, Norh Carolina 27695, USA
- Department of Astronomy, University of Michigan, Ann Arbor, Michigan 48109, USA
- Joint Institute for Nuclear Astrophysics-Center for the Evolution of the Elements (JINA-CEE), USA
| | - O Straniero
- Istituto Nazionale di Astrofisica - Osservatorio Astronomico d'Abruzzo, Italy
- INFN Sezione Napoli, Napoli, Italy
| | - S Valenta
- Charles University, Prague, Czech Republic
| | - D Vescovi
- Istituto Nazionale di Astrofisica - Osservatorio Astronomico d'Abruzzo, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Italy
| | - O Aberle
- European Organization for Nuclear Research (CERN), Switzerland
| | - V Alcayne
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Spain
| | | | - L Audouin
- Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, F-91406 Orsay Cedex, France
| | - V Babiano-Suarez
- Instituto de Física Corpuscular, CSIC - Universidad de Valencia, Spain
| | - M Bacak
- European Organization for Nuclear Research (CERN), Switzerland
- TU Wien, Atominstitut, Stadionallee 2, 1020 Wien, Austria
- CEA Irfu, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - M Barbagallo
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Italy
- European Organization for Nuclear Research (CERN), Switzerland
| | - S Bennett
- University of Manchester, United Kingdom
| | - E Berthoumieux
- CEA Irfu, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - J Billowes
- University of Manchester, United Kingdom
| | - D Bosnar
- Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - A Brown
- University of York, United Kingdom
| | - M Busso
- Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Italy
- Dipartimento di Fisica e Geologia, Università di Perugia, Italy
| | - M Caamaño
- IGFAE-Universidade de Santiago de Compostela, Spain
| | | | - F Calviño
- Universitat Politècnica de Catalunya, Spain
| | - M Calviani
- European Organization for Nuclear Research (CERN), Switzerland
| | - D Cano-Ott
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Spain
| | | | - F Cerutti
- European Organization for Nuclear Research (CERN), Switzerland
| | - E Chiaveri
- European Organization for Nuclear Research (CERN), Switzerland
- University of Manchester, United Kingdom
| | - G Cortés
- Universitat Politècnica de Catalunya, Spain
| | | | - L A Damone
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Italy
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari, Italy
| | - P J Davies
- University of Manchester, United Kingdom
| | - M Diakaki
- European Organization for Nuclear Research (CERN), Switzerland
- National Technical University of Athens, Greece
| | - M Dietz
- School of Physics and Astronomy, University of Edinburgh, United Kingdom
| | - C Domingo-Pardo
- Instituto de Física Corpuscular, CSIC - Universidad de Valencia, Spain
| | - R Dressler
- Paul Scherrer Institut (PSI), Villigen, Switzerland
| | - Q Ducasse
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany
| | - E Dupont
- CEA Irfu, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - I Durán
- IGFAE-Universidade de Santiago de Compostela, Spain
| | - Z Eleme
- University of Ioannina, Greece
| | | | - A Ferrari
- European Organization for Nuclear Research (CERN), Switzerland
| | - V Furman
- Affiliated with an institute or an international laboratory covered by a cooperation agreement with CERN
| | - K Göbel
- Goethe University Frankfurt, Germany
| | - R Garg
- School of Physics and Astronomy, University of Edinburgh, United Kingdom
| | | | - S Gilardoni
- European Organization for Nuclear Research (CERN), Switzerland
| | | | - E González-Romero
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Spain
| | | | - F Gunsing
- CEA Irfu, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - H Harada
- Japan Atomic Energy Agency (JAEA), Tokai-Mura, Japan
| | - S Heinitz
- Paul Scherrer Institut (PSI), Villigen, Switzerland
| | - J Heyse
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | | | - A Junghans
- Helmholtz-Zentrum Dresden-Rossendorf, Germany
| | - F Käppeler
- Karlsruhe Institute of Technology, Campus North, IKP, 76021 Karlsruhe, Germany
| | - Y Kadi
- European Organization for Nuclear Research (CERN), Switzerland
| | - A Kimura
- Japan Atomic Energy Agency (JAEA), Tokai-Mura, Japan
| | - I Knapová
- Charles University, Prague, Czech Republic
| | - M Kokkoris
- National Technical University of Athens, Greece
| | - Y Kopatch
- Affiliated with an institute or an international laboratory covered by a cooperation agreement with CERN
| | | | - I Ladarescu
- Instituto de Física Corpuscular, CSIC - Universidad de Valencia, Spain
| | - C Lederer-Woods
- School of Physics and Astronomy, University of Edinburgh, United Kingdom
| | - H Leeb
- TU Wien, Atominstitut, Stadionallee 2, 1020 Wien, Austria
| | | | - S J Lonsdale
- School of Physics and Astronomy, University of Edinburgh, United Kingdom
| | - D Macina
- European Organization for Nuclear Research (CERN), Switzerland
| | - A Manna
- Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Italy
- Dipartimento di Fisica e Astronomia, Università di Bologna, Italy
| | - T Martínez
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Spain
| | - A Masi
- European Organization for Nuclear Research (CERN), Switzerland
| | - P Mastinu
- INFN Laboratori Nazionali di Legnaro, Italy
| | - E Mendoza
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Spain
| | - V Michalopoulou
- European Organization for Nuclear Research (CERN), Switzerland
- National Technical University of Athens, Greece
| | - P M Milazzo
- Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Italy
| | - F Mingrone
- European Organization for Nuclear Research (CERN), Switzerland
| | - J Moreno-Soto
- CEA Irfu, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - A Musumarra
- Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Italy
- Department of Physics and Astronomy, University of Catania, Italy
| | - A Negret
- Horia Hulubei National Institute of Physics and Nuclear Engineering, Romania
| | - R Nolte
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany
| | | | - A Oprea
- Horia Hulubei National Institute of Physics and Nuclear Engineering, Romania
| | | | - A Pavlik
- University of Vienna, Faculty of Physics, Vienna, Austria
| | | | - C Petrone
- Horia Hulubei National Institute of Physics and Nuclear Engineering, Romania
| | - L Piersanti
- Istituto Nazionale di Astrofisica - Osservatorio Astronomico d'Abruzzo, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Italy
| | - E Pirovano
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany
| | | | | | | | - D Ramos-Doval
- Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, F-91406 Orsay Cedex, France
| | - T Rauscher
- Department of Physics, University of Basel, Switzerland
- Centre for Astrophysics Research, University of Hertfordshire, United Kingdom
| | | | - D Rochman
- Paul Scherrer Institut (PSI), Villigen, Switzerland
| | - C Rubbia
- European Organization for Nuclear Research (CERN), Switzerland
| | - M Sabaté-Gilarte
- European Organization for Nuclear Research (CERN), Switzerland
- Universidad de Sevilla, Spain
| | - A Saxena
- Bhabha Atomic Research Centre (BARC), India
| | - P Schillebeeckx
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | - D Schumann
- Paul Scherrer Institut (PSI), Villigen, Switzerland
| | - A Sekhar
- University of Manchester, United Kingdom
| | - A G Smith
- University of Manchester, United Kingdom
| | - N V Sosnin
- University of Manchester, United Kingdom
| | - P Sprung
- Paul Scherrer Institut (PSI), Villigen, Switzerland
| | | | - G Tagliente
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Italy
| | - J L Tain
- Instituto de Física Corpuscular, CSIC - Universidad de Valencia, Spain
| | | | - L Tassan-Got
- European Organization for Nuclear Research (CERN), Switzerland
- Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, F-91406 Orsay Cedex, France
- National Technical University of Athens, Greece
| | - Th Thomas
- Goethe University Frankfurt, Germany
| | | | - A Tsinganis
- European Organization for Nuclear Research (CERN), Switzerland
| | - J Ulrich
- Paul Scherrer Institut (PSI), Villigen, Switzerland
| | - S Urlass
- European Organization for Nuclear Research (CERN), Switzerland
- Helmholtz-Zentrum Dresden-Rossendorf, Germany
| | - G Vannini
- Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Italy
- Dipartimento di Fisica e Astronomia, Università di Bologna, Italy
| | - V Variale
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Italy
| | - P Vaz
- Instituto Superior Técnico, Lisbon, Portugal
| | - A Ventura
- Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Italy
| | - V Vlachoudis
- European Organization for Nuclear Research (CERN), Switzerland
| | - R Vlastou
- National Technical University of Athens, Greece
| | - A Wallner
- Australian National University, Canberra, Australia
| | - P J Woods
- School of Physics and Astronomy, University of Edinburgh, United Kingdom
| | - T Wright
- University of Manchester, United Kingdom
| | - P Žugec
- Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
4
|
The NuGrid AGB Evolution and Nucleosynthesis Data Set. UNIVERSE 2022. [DOI: 10.3390/universe8030170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Asymptotic Giant Branch (AGB) stars play a key role in the chemical evolution of galaxies. These stars are the fundamental stellar site for the production of light elements such as C, N and F, and half of the elements heavier than Fe via the slow neutron capture process (s-process). Hence, detailed computational models of AGB stars’ evolution and nucleosynthesis are essential for galactic chemical evolution. In this work, we discuss the progress in updating the NuGrid data set of AGB stellar models and abundance yields. All stellar models have been computed using the MESA stellar evolution code, coupled with the post-processing mppnp code to calculate the full nucleosynthesis. The final data set will include the initial masses Mini/M⊙ = 1, 1.65, 2, 3, 4, 5, 6 and 7 for initial metallicities Z = 0.0001, 0.001, 0.006, 0.01, 0.02 and 0.03. Observed s-process abundances on the surfaces of evolved stars as well as the typical light elements in the composition of H-deficient post-AGB stars are reproduced. A key short-term goal is to complete and expand the AGB stars data set for the full metallicity range. Chemical yield tables are provided for the available models.
Collapse
|
5
|
Heftrich T, Weigand M, Al-Khasawleh K, Brückner B, Dellmann S, Dogan OC, El Mard A, Erbacher P, Habermehl F, Heybeck B, Gail MM, Göbel K, Kisselbach T, Kurtulgil D, Reich M, Reifarth R, Sheriff S, Volknandt M. Activation measurements of neutron capture cross sections at various temperatures. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202226011012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
About 50% of the elements heavier than iron are produced during the slow neutron capture process. This process occurs in different stellar sites at various energies. To understand the ongoing nucleosynthesis, the probability of a neutron capture for different temperatures and therefore for different stellar sites is essential. Activation experiments using the 7Li(p,n) reaction as neutron source were performed. At a temperature of kBT = 25 keV the cross sections were determined for 27Al, 37Cl and 41K. A new method was developed to perform activation experiments at even lower temperatures. For a proof of principle, the cross section for 64Ni was measured at kBT = 25 keV as well as for kBT = 6 keV. To study the impact of isomeric states at higher energies, activations of 181Ta were performed using two different proton energies.
Collapse
|
6
|
Casanovas-Hoste A, Domingo-Pardo C, Guerrero C, Tarifeño-Saldivia A, Calviño F, Lerendegui-Marco J. Analysis of the impact of the 204Tl neutron capture cross section on the s-process only isotope 204Pb. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202226002002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the study of the slow (s) process of nucleosynthesis branching nuclei become of particular interest. These nuclei have half-lives of the order of 1-100 years, and in the stellar environment their decay rate can compete with the neutron capture rate, which effectively leads to a split of the s-process path. Due to the dependence of the decay and the neutron capture rates on the the physical conditions -temperature and neutron density-of the nucleosynthesis environment, variations in these conditions lead to a change in the abundances of the immediately following nuclei. A very interesting branching point is the s-process only 204Tl, which decays to 204Pb. In this work we show how the capture cross section of 204Tl is a key nuclear input which, in addition to being crucial in fixing the ultimate 204Pb s-process abundance, makes the latter sensible to the temperature and neutron density of the stellar environment where the s-process takes place.
Collapse
|
7
|
Pritychenko B. The use of the ENDF library for nucleosynthesis studies. EPJ WEB OF CONFERENCES 2020. [DOI: 10.1051/epjconf/202023907002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Stellar nucleosynthesis modeling studies would significantly benefit from the use of fully traceable, documented and unbiased nuclear data. The nuclear industry standard Evaluated Nuclear Data File (ENDF) libraries contain extensive collections of reaction data sets relevant to astrophysics. For the first time rapid-and slow-neutron capture, r- and s-process, respectively, abundances were computed from ENDF/B-VIII.0 and TENDL-2015 libraries and compared with available data. The current results highlight mutually beneficial relations between nuclear industry and nuclear astrophysics data developments.
Collapse
|
8
|
Tessler M, Paul M, Halfon S, Meyer BS, Pardo R, Purtschert R, Rehm KE, Scott R, Weigand M, Weissman L, Almaraz-Calderon S, Avila ML, Baggenstos D, Collon P, Hazenshprung N, Kashiv Y, Kijel D, Kreisel A, Reifarth R, Santiago-Gonzalez D, Shor A, Silverman I, Talwar R, Veltum D, Vondrasek R. Stellar ^{36,38}Ar(n,γ)^{37,39}Ar Reactions and Their Effect on Light Neutron-Rich Nuclide Synthesis. PHYSICAL REVIEW LETTERS 2018; 121:112701. [PMID: 30265109 DOI: 10.1103/physrevlett.121.112701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/24/2018] [Indexed: 06/08/2023]
Abstract
The ^{36}Ar(n,γ)^{37}Ar (t_{1/2}=35 d) and ^{38}Ar(n,γ)^{39}Ar (269 yr) reactions were studied for the first time with a quasi-Maxwellian (kT∼47 keV) neutron flux for Maxwellian average cross section (MACS) measurements at stellar energies. Gas samples were irradiated at the high-intensity Soreq applied research accelerator facility-liquid-lithium target neutron source and the ^{37}Ar/^{36}Ar and ^{39}Ar/^{38}Ar ratios in the activated samples were determined by accelerator mass spectrometry at the ATLAS facility (Argonne National Laboratory). The ^{37}Ar activity was also measured by low-level counting at the University of Bern. Experimental MACS of ^{36}Ar and ^{38}Ar, corrected to the standard 30 keV thermal energy, are 1.9(3) and 1.3(2) mb, respectively, differing from the theoretical and evaluated values published to date by up to an order of magnitude. The neutron-capture cross sections of ^{36,38}Ar are relevant to the stellar nucleosynthesis of light neutron-rich nuclides; the two experimental values are shown to affect the calculated mass fraction of nuclides in the region A=36-48 during the weak s process. The new production cross sections have implications also for the use of ^{37}Ar and ^{39}Ar as environmental tracers in the atmosphere and hydrosphere.
Collapse
Affiliation(s)
- M Tessler
- Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
| | - M Paul
- Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
| | | | - B S Meyer
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, USA
| | - R Pardo
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - R Purtschert
- Physics Institute, University of Bern, 3012 Bern, Switzerland
| | - K E Rehm
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - R Scott
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - M Weigand
- Goethe University Frankfurt, Frankfurt 60438, Germany
| | | | | | - M L Avila
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - D Baggenstos
- Physics Institute, University of Bern, 3012 Bern, Switzerland
| | - P Collon
- Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | - Y Kashiv
- Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - D Kijel
- Soreq NRC, Yavne 81800, Israel
| | | | - R Reifarth
- Goethe University Frankfurt, Frankfurt 60438, Germany
| | - D Santiago-Gonzalez
- Argonne National Laboratory, Argonne, Illinois 60439, USA
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - A Shor
- Soreq NRC, Yavne 81800, Israel
| | | | - R Talwar
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - D Veltum
- Goethe University Frankfurt, Frankfurt 60438, Germany
| | - R Vondrasek
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| |
Collapse
|
9
|
Presupernova Evolution and Explosive Nucleosynthesis of Rotating Massive Stars in the Metallicity Range −3 ≤ [Fe/H] ≤ 0. ACTA ACUST UNITED AC 2018. [DOI: 10.3847/1538-4365/aacb24] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Dietz M, Lederer-Woods C, Aberle O, Andrzejewski J, Audouin L, Bacak M, Balibrea J, Barbagallo M, Bečvář F, Berthoumieux E, Billowes J, Bosnar D, Brown A, Caamaño M, Calviño F, Calviani M, Cano-Ott D, Cardella R, Casanovas A, Cerutti F, Chen YH, Chiaveri E, Colonna N, Cortés G, Cortés-Giraldo MA, Cosentino L, Damone LA, Diakaki M, Domingo-Pardo C, Dressler R, Dupont E, Durán I, Fernández-Dominguez B, Ferrari A, Ferreira P, Finocchiaro P, Furman V, Göbel K, García AR, Garg R, Gawlik A, Gilardoni S, Glodariu T, Goncalves IF, González-Romero E, Griesmayer E, Guerrero C, Gunsing F, Harada H, Heinitz S, Heyse J, Jenkins DG, Jericha E, Käppeler F, Kadi Y, Kahl D, Kalamara A, Kavrigin P, Kimura A, Kivel N, Kokkoris M, Krtička M, Kurtulgil D, Leal-Cidoncha E, Leeb H, Lerendegui-Marco J, Lo Meo S, Lonsdale SJ, Macina D, Marganiec J, Martínez T, Masi A, Massimi C, Mastinu P, Mastromarco M, Maugeri EA, Mazzone A, Mendoza E, Mengoni A, Milazzo PM, Mingrone F, Musumarra A, Negret A, Nolte R, Oprea A, Patronis N, Pavlik A, Perkowski J, Porras I, Praena J, Quesada JM, Radeck D, Rauscher T, Reifarth R, Rubbia C, Ryan JA, Sabateé-Gilarte M, Saxena A, Schillebeeckx P, Schumann D, et alDietz M, Lederer-Woods C, Aberle O, Andrzejewski J, Audouin L, Bacak M, Balibrea J, Barbagallo M, Bečvář F, Berthoumieux E, Billowes J, Bosnar D, Brown A, Caamaño M, Calviño F, Calviani M, Cano-Ott D, Cardella R, Casanovas A, Cerutti F, Chen YH, Chiaveri E, Colonna N, Cortés G, Cortés-Giraldo MA, Cosentino L, Damone LA, Diakaki M, Domingo-Pardo C, Dressler R, Dupont E, Durán I, Fernández-Dominguez B, Ferrari A, Ferreira P, Finocchiaro P, Furman V, Göbel K, García AR, Garg R, Gawlik A, Gilardoni S, Glodariu T, Goncalves IF, González-Romero E, Griesmayer E, Guerrero C, Gunsing F, Harada H, Heinitz S, Heyse J, Jenkins DG, Jericha E, Käppeler F, Kadi Y, Kahl D, Kalamara A, Kavrigin P, Kimura A, Kivel N, Kokkoris M, Krtička M, Kurtulgil D, Leal-Cidoncha E, Leeb H, Lerendegui-Marco J, Lo Meo S, Lonsdale SJ, Macina D, Marganiec J, Martínez T, Masi A, Massimi C, Mastinu P, Mastromarco M, Maugeri EA, Mazzone A, Mendoza E, Mengoni A, Milazzo PM, Mingrone F, Musumarra A, Negret A, Nolte R, Oprea A, Patronis N, Pavlik A, Perkowski J, Porras I, Praena J, Quesada JM, Radeck D, Rauscher T, Reifarth R, Rubbia C, Ryan JA, Sabateé-Gilarte M, Saxena A, Schillebeeckx P, Schumann D, Sedyshev P, Smith AG, Sosnin NV, Stamatopoulos A, Tagliente G, Tain JL, Tarifeño-Saldivia A, Tassan-Got L, Valenta S, Vannini G, Variale V, Vaz P, Ventura A, Vlachoudis V, Vlastou R, Wallner A, Warren S, Weiss C, Woods PJ, Wright T, Žugec P. First Measurement of 72Ge( n, γ) at n_TOF. EPJ WEB OF CONFERENCES 2018. [DOI: 10.1051/epjconf/201718402005] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The slow neutron capture process (s-process) is responsible for producing about half of the elemental abundances heavier than iron in the universe. Neutron capture cross sections on stable isotopes are a key nuclear physics input for s-process studies. The 72Ge(n, γ) cross section has an important influence on production of isotopes between Ge and Zr during s-process in massive stars and therefore experimental data are urgently required. 72Ge(n, γ) was measured at the neutron time-of-flight facility n_TOF (CERN) for the first time at stellar energies. The measurement was performed using an enriched 72GeO2 sample at a flight path of 185m with a set of liquid scintillation detectors (C6D6). The motivation, experiment and current status of the data analysis are reported.
Collapse
|
11
|
Kajino T, Mathews GJ. Impact of new data for neutron-rich heavy nuclei on theoretical models for r-process nucleosynthesis. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:084901. [PMID: 28357989 DOI: 10.1088/1361-6633/aa6a25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Current models for the r process are summarized with an emphasis on the key constraints from both nuclear physics measurements and astronomical observations. In particular, we analyze the importance of nuclear physics input such as beta-decay rates; nuclear masses; neutron-capture cross sections; beta-delayed neutron emission; probability of spontaneous fission, beta- and neutron-induced fission, fission fragment mass distributions; neutrino-induced reaction cross sections, etc. We highlight the effects on models for r-process nucleosynthesis of newly measured β-decay half-lives, masses, and spectroscopy of neutron-rich nuclei near the r-process path. We overview r-process nucleosynthesis in the neutrino driven wind above the proto-neutron star in core collapse supernovae along with the possibility of magneto-hydrodynamic jets from rotating supernova explosion models. We also consider the possibility of neutron star mergers as an r-process environment. A key outcome of newly measured nuclear properties far from stability is the degree of shell quenching for neutron rich isotopes near the closed neutron shells. This leads to important constraints on the sites for r-process nucleosynthesis in which freezeout occurs on a rapid timescale.
Collapse
Affiliation(s)
- Toshitaka Kajino
- International Research Center for Big-Bang Cosmology and Element Genesis, and School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, People's Republic of China. Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588, Japan. Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-033, Japan
| | | |
Collapse
|
12
|
Busso M, Vescovi D, Trippella O, Palmerini S, Cristallo S, Piersanti L. Neutron-captures in Low Mass Stars and the Early Solar System Record of Short-lived Radioactivities. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201716502003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
|
14
|
Capture cross section measurement analysis in the Californium-252 spectrum with the Monte Carlo method. Appl Radiat Isot 2015; 101:101-106. [PMID: 25880611 DOI: 10.1016/j.apradiso.2015.03.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 11/22/2022]
Abstract
Absolute average capture cross sections of gold, thorium, tantalum, molybdenum, copper and strontium in (252)Cf spontaneous fission neutron spectrum were simulated for two types of experiment setups preformed by Z. Dezso and J. Csikai and by L. Green. The experiments were simulated with MCNP5 using cross section data from the ENDF/B-VII.0 library. The determination of neutron backscattering was calculated with the use of neutron flagging. Correction factors to experimentally measured values were determined to obtain average cross sections in a pure (252)Cf spontaneous fission spectrum. Influence of concrete wall thickness, air moisture and room size on the average cross section was analyzed. Correction factors amounted to about 30%. Corrected values corresponding to average cross sections in a pure (252)Cf spectrum were calculated for (197)Au, (232)Th, (181)Ta, (98)Mo, (65)Cu and (84)Sr. Average cross sections were also calculated with the RR_UNC software using IRDFF-v.1.05 and ENDF/B-VII.0 libraries. The revised average radiative capture cross sections are 75.5±0.1 mb for (197)Au, 87.0±1.6 mb for (232)Th , 98.0±4.5 mb for (181)Ta, 21.2±0.5 mb for (98)Mo, 10.3±0.3 mb for (63)Cu, and 34.9±6.5 mb for (84)Sr.
Collapse
|
15
|
Liu N, Savina MR, Gallino R, Davis AM, Bisterzo S, Gyngard F, Käppeler F, Cristallo S, Dauphas N, Pellin MJ, Dillmann I. CORRELATED STRONTIUM AND BARIUM ISOTOPIC COMPOSITIONS OF ACID-CLEANED SINGLE MAINSTREAM SILICON CARBIDES FROM MURCHISON. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/0004-637x/803/1/12] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Žugec P, Barbagallo M, Colonna N, Bosnar D, Altstadt S, Andrzejewski J, Audouin L, Bécares V, Bečvář F, Belloni F, Berthoumieux E, Billowes J, Boccone V, Brugger M, Calviani M, Calviño F, Cano-Ott D, Carrapiço C, Cerutti F, Chiaveri E, Chin M, Cortés G, Cortés-Giraldo M, Diakaki M, Domingo-Pardo C, Dressler R, Duran I, Dzysiuk N, Eleftheriadis C, Ferrari A, Fraval K, Ganesan S, García A, Giubrone G, Gómez-Hornillos M, Gonçalves I, González-Romero E, Griesmayer E, Guerrero C, Gunsing F, Gurusamy P, Heinitz S, Jenkins D, Jericha E, Kadi Y, Käppeler F, Karadimos D, Kivel N, Koehler P, Kokkoris M, Krtička M, Kroll J, Langer C, Lederer C, Leeb H, Leong L, Lo Meo S, Losito R, Manousos A, Marganiec J, Martínez T, Massimi C, Mastinu P, Mastromarco M, Meaze M, Mendoza E, Mengoni A, Milazzo P, Mingrone F, Mirea M, Mondalaers W, Paradela C, Pavlik A, Perkowski J, Pignatari M, Plompen A, Praena J, Quesada J, Rauscher T, Reifarth R, Riegov A, Roman F, Rubbia C, Sarmento R, Saxena A, Schillebeeckx P, Schmidt S, Schumann D, Tagliente G, Tain J, Tarrío D, Tassan-Got L, Tsinganis A, Valenta S, Vannini G, Variale V, Vaz P, Ventura A, Versaci R, Vermeulen M, et alŽugec P, Barbagallo M, Colonna N, Bosnar D, Altstadt S, Andrzejewski J, Audouin L, Bécares V, Bečvář F, Belloni F, Berthoumieux E, Billowes J, Boccone V, Brugger M, Calviani M, Calviño F, Cano-Ott D, Carrapiço C, Cerutti F, Chiaveri E, Chin M, Cortés G, Cortés-Giraldo M, Diakaki M, Domingo-Pardo C, Dressler R, Duran I, Dzysiuk N, Eleftheriadis C, Ferrari A, Fraval K, Ganesan S, García A, Giubrone G, Gómez-Hornillos M, Gonçalves I, González-Romero E, Griesmayer E, Guerrero C, Gunsing F, Gurusamy P, Heinitz S, Jenkins D, Jericha E, Kadi Y, Käppeler F, Karadimos D, Kivel N, Koehler P, Kokkoris M, Krtička M, Kroll J, Langer C, Lederer C, Leeb H, Leong L, Lo Meo S, Losito R, Manousos A, Marganiec J, Martínez T, Massimi C, Mastinu P, Mastromarco M, Meaze M, Mendoza E, Mengoni A, Milazzo P, Mingrone F, Mirea M, Mondalaers W, Paradela C, Pavlik A, Perkowski J, Pignatari M, Plompen A, Praena J, Quesada J, Rauscher T, Reifarth R, Riegov A, Roman F, Rubbia C, Sarmento R, Saxena A, Schillebeeckx P, Schmidt S, Schumann D, Tagliente G, Tain J, Tarrío D, Tassan-Got L, Tsinganis A, Valenta S, Vannini G, Variale V, Vaz P, Ventura A, Versaci R, Vermeulen M, Vlachoudis V, Vlastou R, Wallner A, Ware T, Weigand M, Weiß C, Wright T. Experimental neutron capture data of 58Ni from the CERN n_TOF facility. EPJ WEB OF CONFERENCES 2015. [DOI: 10.1051/epjconf/20159302009] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Rauscher T, Dauphas N, Dillmann I, Fröhlich C, Fülöp Z, Gyürky G. Constraining the astrophysical origin of the p-nuclei through nuclear physics and meteoritic data. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2013; 76:066201. [PMID: 23660558 DOI: 10.1088/0034-4885/76/6/066201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A small number of naturally occurring, proton-rich nuclides (the p-nuclei) cannot be made in the s- and r-processes. Their origin is not well understood. Massive stars can produce p-nuclei through photodisintegration of pre-existing intermediate and heavy nuclei. This so-called γ-process requires high stellar plasma temperatures and occurs mainly in explosive O/Ne burning during a core-collapse supernova. Although the γ-process in massive stars has been successful in producing a large range of p-nuclei, significant deficiencies remain. An increasing number of processes and sites has been studied in recent years in search of viable alternatives replacing or supplementing the massive star models. A large number of unstable nuclei, however, with only theoretically predicted reaction rates are included in the reaction network and thus the nuclear input may also bear considerable uncertainties. The current status of astrophysical models, nuclear input and observational constraints is reviewed. After an overview of currently discussed models, the focus is on the possibility to better constrain those models through different means. Meteoritic data not only provide the actual isotopic abundances of the p-nuclei but can also put constraints on the possible contribution of proton-rich nucleosynthesis. The main part of the review focuses on the nuclear uncertainties involved in the determination of the astrophysical reaction rates required for the extended reaction networks used in nucleosynthesis studies. Experimental approaches are discussed together with their necessary connection to theory, which is especially pronounced for reactions with intermediate and heavy nuclei in explosive nuclear burning, even close to stability.
Collapse
Affiliation(s)
- T Rauscher
- Department of Physics, University of Basel, 4056 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
18
|
|