Haber R, Hoffmann KH. Extending the parQ transition matrix method to grand canonical ensembles.
Phys Rev E 2016;
93:063314. [PMID:
27415394 DOI:
10.1103/physreve.93.063314]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Indexed: 11/07/2022]
Abstract
Phase coexistence properties as well as other thermodynamic features of fluids can be effectively determined from the grand canonical density of states (DOS). We present an extension of the parQ transition matrix method in combination with the efasTM method as a very fast approach for determining the grand canonical DOS from the transition matrix. The efasTM method minimizes the deviation from detailed balance in the transition matrix using a fast Krylov-based equation solver. The method allows a very effective use of state space transition data obtained by different exploration schemes. An application to a Lennard-Jones system produces phase coexistence properties of the same quality as reference data.
Collapse