1
|
Lee H, Suman K, Moglia D, Murphy RP, Wagner NJ. Thermoreversible gels of hollow silica nanorod dispersions. J Colloid Interface Sci 2024; 661:219-227. [PMID: 38301460 DOI: 10.1016/j.jcis.2024.01.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/18/2023] [Accepted: 01/21/2024] [Indexed: 02/03/2024]
Abstract
Colloidal suspensions of anisotropic particles are ubiquitous in particle-based industries. Consequently, there is a need to quantify the effects of particle shape on equilibrium phases and kinetic state transitions, particularly at lower aspect ratios (L/D ≈ 1-10). We present a new, colloidal system comprised of hollow, octadecyl-coated silica rods with 40 nm diameter with controlled aspect ratio and thermoreversible short-range attractions. Rheology and dynamic light scattering measurements on suspensions of these hollow adhesive hard rods with nominal aspect ratio ≈3 suspended in tetradecane exhibit thermoreversible gelation without complicating effects of gravitational settling. Small angle neutron scattering measurements of the microstructure are analyzed to determine the effective strength of attraction in the form of Baxter sticky parameter. Quantitative agreement is found with simulation predictions of the thermoreversible gel transition as a function of volume fraction, further validating a universal state diagram and providing guidance for the effects of aspect ratio on gelation.
Collapse
Affiliation(s)
- Haesoo Lee
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Khushboo Suman
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - David Moglia
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Ryan P Murphy
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States; NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States.
| | - Norman J Wagner
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
2
|
Mei B, Schweizer KS. Penetrant shape effects on activated dynamics and selectivity in polymer melts and networks based on self-consistent cooperative hopping theory. SOFT MATTER 2023; 19:8744-8763. [PMID: 37937332 DOI: 10.1039/d3sm01139a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
We generalize and apply the microscopic self-consistent cooperative hopping theory for activated penetrant dynamics in polymer melts and crosslinked networks to address the role of highly variable non-spherical molecular shape. The focus is on vastly different shaped penetrants that have identical space filling volume in order to isolate how non-spherical shape explicitly modifies dynamics over a wide range of temperature down to the kinetic glass transition temperature. The theory relates intramolecular and intermolecular structure and kinetic constraints, and reveals how different solvation packing of polymer monomers around variable shaped penetrants impact penetrant hopping. A highly shape-dependent penetrant activated relaxation, including alpha time decoupling and trajectory level cooperativity of the hopping process, is predicted in the deeply supercooled regime for relatively larger penetrants which is sensitive to whether the polymer matrix is a melt or heavily crosslinked network. In contrast, for smaller size penetrants or at high/medium temperatures the effect of isochoric penetrant shape is relatively weak. We propose an aspect ratio variable that organizes how penetrant shape influences the activated relaxation times, leading to a (near) collapse or master curve. The relative absolute values of the penetrant relaxation time (inverse hopping rate) in polymer melts versus in crosslinked networks are found to be opposite when compared at a common absolute temperature versus when they are compared at a fixed value of distance from the glass transition based on the variable Tg/T with Tg the glass transition temperature. Quantitative comparison with recent diffusion experiments on chemically complex molecular penetrants of variable shape but fixed volume in crosslinked networks reveals good agreement, and testable new predictions are made. Extension of the theoretical approach to more complex systems of high experimental interest are discussed, including applications to realize selective transport in membrane separation applications.
Collapse
Affiliation(s)
- Baicheng Mei
- Department of Materials Science, University of Illinois, Urbana, IL 61801, USA.
- Materials Research Laboratory, University of Illinois, Urbana, IL 61801, USA
| | - Kenneth S Schweizer
- Department of Materials Science, University of Illinois, Urbana, IL 61801, USA.
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801, USA
- Materials Research Laboratory, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
3
|
Mei B, Lin TW, Sheridan GS, Evans CM, Sing CE, Schweizer KS. Structural Relaxation and Vitrification in Dense Cross-Linked Polymer Networks: Simulation, Theory, and Experiment. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Baicheng Mei
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Tsai-Wei Lin
- Department of Chemical & Biomolecular Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Grant S. Sheridan
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Christopher M. Evans
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States
- Department of Chemical & Biomolecular Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Charles E. Sing
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States
- Department of Chemical & Biomolecular Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Kenneth S. Schweizer
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Chemical & Biomolecular Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Zhou Y, Mei B, Schweizer KS. Activated Relaxation in Supercooled Monodisperse Atomic and Polymeric WCA Fluids: Simulation and ECNLE Theory . J Chem Phys 2022; 156:114901. [DOI: 10.1063/5.0079221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We combine simulation and Elastically Collective Nonlinear Langevin Equation (ECNLE) theory to study the activated relaxation in monodisperse atomic and polymeric WCA liquids over a wide range of temperatures and densities in the supercooled regime under isochoric conditions. By employing novel crystal-avoiding simulations, metastable equilibrium dynamics is probed in the absence of complications associated with size polydispersity. Based on highly accurate structural input from integral equation theory, ECNLE theory is found to describe well the simulated density and temperature dependences of the alpha relaxation time of atomic fluids using a single system-specific parameter, ac, that reflects the nonuniversal relative importance of the local cage and collective elastic barriers. For polymer fluids, the explicit dynamical effect of local chain connectivity is modeled at the fundamental dynamic free energy level based on a different parameter, Nc, that quantifies the degree of intramolecular correlation of bonded segment activated barrier hopping. For the flexible chain model studied, a physically intuitive value of Nc≈2 results in good agreement between simulation and theory. A direct comparison between atomic and polymeric systems reveals chain connectivity can speed up activated segmental relaxation due to weakening of equilibrium packing correlations, but can slow down relaxation due to local bonding constraints. The empirical thermodynamic scaling idea for the alpha time is found to work well at high densities or temperatures, but fails when both density and temperature are low. The rich and subtle behaviors revealed from simulation for atomic and polymeric WCA fluids are all well captured by ECNLE theory.
Collapse
Affiliation(s)
- Yuxing Zhou
- UIUC, University of Illinois at Urbana-Champaign Department of Materials Science and Engineering, United States of America
| | - Baicheng Mei
- University of Illinois at Urbana-Champaign Department of Materials Science and Engineering, United States of America
| | - Kenneth S. Schweizer
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, United States of America
| |
Collapse
|
5
|
Murphy RP, Hatch HW, Mahynski NA, Shen VK, Wagner NJ. Dynamic arrest of adhesive hard rod dispersions. SOFT MATTER 2020; 16:1279-1286. [PMID: 31913393 DOI: 10.1039/c9sm01877h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The phenomenon of dynamic arrest, more commonly referred to as gel and glass formation, originates as particle motion slows significantly. Current understanding of gels and glasses stems primarily from dispersions of spherical particles, but much less is known about how particle shape affects dynamic arrest transitions. To better understand the effects of particle shape anisotropy on gel and glass formation, we systematically measure the rheology, particle dynamics, and static microstructure of thermoreversible colloidal dispersions of adhesive hard rods (AHR). First, the dynamic arrest transitions are mapped as a function of temperature T, aspect ratio L/D≈ 3 to 7, and volume fraction φ≈ 0.1 to 0.5. The critical gel temperature Tgel and glass volume fraction φg are determined from the particle dynamics and rheology. Second, an effective orientation-averaged, short-range attraction between rods is quantified from small-angle scattering measurements and characterized by a reduced temperature τ. Similar τ is found at low rod concentrations, indicating that rod gelation occurs at similar effective attraction strength independent of L/D. Monte Carlo simulations reveal a similar convergence in τ when rods cluster and percolate with an average bond coordination number 〈nc〉≈ 2.4, supporting the link between physical gelation and rigidity percolation. Lastly, AHR results are mapped onto a dimensionless state diagram to compare with previous predictions of attraction-driven gels, repulsion-driven glasses, and liquid crystal phases.
Collapse
Affiliation(s)
- Ryan P Murphy
- Center for Neutron Science and Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA.
| | | | | | | | | |
Collapse
|
6
|
Parisi D, Ruan Y, Ochbaum G, Silmore KS, Cullari LL, Liu CY, Bitton R, Regev O, Swan JW, Loppinet B, Vlassopoulos D. Short and Soft: Multidomain Organization, Tunable Dynamics, and Jamming in Suspensions of Grafted Colloidal Cylinders with a Small Aspect Ratio. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:17103-17113. [PMID: 31793788 DOI: 10.1021/acs.langmuir.9b03025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The yet virtually unexplored class of soft colloidal rods with a small aspect ratio is investigated and shown to exhibit a very rich phase and dynamic behavior, spanning from liquid to nearly melt state. Instead of the nematic order, these short and soft nanocylinders alter their organization with increasing concentration from isotropic liquid with random orientation to small domains with preferred local orientation and eventually a multidomain arrangement with a local orientational order. The latter gives rise to a kinetically suppressed state akin to structural glass with detectable terminal relaxation, which, on further increasing concentration, reveals features of hexagonally packed order as in ordered block copolymers. The respective dynamic response comprises four regimes, all above the overlapping concentration of 0.02 g/mL:(I) from 0.03 to 0.1 g/mol, the system undergoes a liquid-to-solidlike transition with a structural relaxation time that grows by 4 orders of magnitude. (II) From 0.1 to 0.2 g/mL, a dramatic slowing-down is observed and is accompanied by an evolution from isotropic to a multidomain structure. (III) Between 0.2 and 0.6 g/mol, the suspensions exhibit signatures of shell interpenetration and jamming, with the colloidal plateau modulus depending linearly on concentration. (IV) At 0.74 g/mL, in the densely jammed state, the viscoelastic signature of hexagonally packed cylinders from microphase-separated block copolymers is detected. These properties set short and soft nanocylinders apart from long colloidal rods (with a large aspect ratio) and provide insights for fundamentally understanding the physics in this intermediate soft colloidal regime and for tailoring the flow properties of nonspherical soft colloids.
Collapse
Affiliation(s)
- Daniele Parisi
- Institute of Electronic Structure & Laser, FORTH , Heraklion 71110 , Crete , Greece
- Department of Materials Science & Technology , University of Crete , Heraklion 71003 , Crete , Greece
| | - Yingbo Ruan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry , The Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guy Ochbaum
- Department of Chemical Engineering and the Ilze Katz Institute for Nanoscale Science & Technology , Ben-Gurion University of the Negev , Beer-Sheva 84105 , Israel
| | - Kevin S Silmore
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge 02139 , Massachusetts , United States
| | - Lucas L Cullari
- Department of Chemical Engineering and the Ilze Katz Institute for Nanoscale Science & Technology , Ben-Gurion University of the Negev , Beer-Sheva 84105 , Israel
| | - Chen-Yang Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry , The Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ronit Bitton
- Department of Chemical Engineering and the Ilze Katz Institute for Nanoscale Science & Technology , Ben-Gurion University of the Negev , Beer-Sheva 84105 , Israel
| | - Oren Regev
- Department of Chemical Engineering and the Ilze Katz Institute for Nanoscale Science & Technology , Ben-Gurion University of the Negev , Beer-Sheva 84105 , Israel
| | - James W Swan
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge 02139 , Massachusetts , United States
| | - Benoit Loppinet
- Institute of Electronic Structure & Laser, FORTH , Heraklion 71110 , Crete , Greece
| | - Dimitris Vlassopoulos
- Institute of Electronic Structure & Laser, FORTH , Heraklion 71110 , Crete , Greece
- Department of Materials Science & Technology , University of Crete , Heraklion 71003 , Crete , Greece
| |
Collapse
|
7
|
Abstract
Diffusional motion within the crowded environment of the cell is known to be crucial to cellular function as it drives the interactions of proteins. However, the relationships between protein diffusion, shape and interaction, and the evolutionary selection mechanisms that arise as a consequence, have not been investigated. Here, we study the dynamics of triaxial ellipsoids of equivalent steric volume to proteins at different aspect ratios and volume fractions using a combination of Brownian molecular dynamics and geometric packing. In general, proteins are found to have a shape, approximately Golden in aspect ratio, that give rise to the highest critical volume fraction resisting gelation, corresponding to the fastest long-time self-diffusion in the cell. The ellipsoidal shape also directs random collisions between proteins away from sites that would promote aggregation and loss of function to more rapidly evolving nonsticky regions on the surface, and further provides a greater tolerance to mutation.
Collapse
|
8
|
Zhang R, Schweizer KS. Microscopic Theory of Coupled Slow Activated Dynamics in Glass-Forming Binary Mixtures. J Phys Chem B 2018; 122:3465-3479. [DOI: 10.1021/acs.jpcb.7b10568] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Iijima T, Shimizu T. Deuterium off-magic-angle spinning NMR spectroscopy for pure-quadrupole spectra of paramagnetic solids. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 84:234-241. [PMID: 28676276 DOI: 10.1016/j.ssnmr.2017.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 06/07/2023]
Abstract
We examined a simple two-dimensional 2H nuclear magnetic resonance spectroscopy for paramagnetic solids utilizing off-magic-angle spinning (OMAS). By adding a rotor-synchronized 180° pulse to rotational echo (RE) measurement, the effect of the shift interaction was removed from the indirect dimension. The obtained pure-quadrupole spectrum could be simulated by calculating a quasi-one-dimensional NMR signal without considering the shift interaction. The sensitivity of the proposed method was compared with that of previous static NMR methods.
Collapse
Affiliation(s)
- Takahiro Iijima
- Institute of Arts and Sciences, Yamagata University, Yamagata 990-8560, Japan.
| | - Tadashi Shimizu
- National Institute for Materials Science, Tsukuba 305-0003, Japan
| |
Collapse
|
10
|
Xu WS, Duan X, Sun ZY, An LJ. Glass formation in a mixture of hard disks and hard ellipses. J Chem Phys 2015; 142:224506. [DOI: 10.1063/1.4922379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wen-Sheng Xu
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Li-Jia An
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| |
Collapse
|
11
|
Mirigian S, Schweizer KS. Elastically cooperative activated barrier hopping theory of relaxation in viscous fluids. II. Thermal liquids. J Chem Phys 2014; 140:194507. [DOI: 10.1063/1.4874843] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
12
|
Mirigian S, Schweizer KS. Elastically cooperative activated barrier hopping theory of relaxation in viscous fluids. I. General formulation and application to hard sphere fluids. J Chem Phys 2014; 140:194506. [DOI: 10.1063/1.4874842] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
13
|
Abstract
It has recently been shown that suspensions of long and thin charged fibrous viruses (fd) form a glass at low ionic strengths. The corresponding thick electric double layers give rise to long-ranged repulsive electrostatic interactions, which lead to caging and structural arrest at concentrations far above the isotropic-nematic coexistence region. Structural arrest and freezing of the orientational texture are found to occur at the same concentration. In addition, various types of orientational textures are equilibrated below the glass transition concentration, ranging from a chiral-nematic texture with a large pitch (of about 100 μm), an X-pattern, and a tightly packed domain texture, consisting of helical domains with a relatively small pitch (of about 10 μm) and twisted boundaries. The dynamics of both particles as well as the texture are discussed, below and above the glass transition. Dynamic light scattering correlation functions exhibit two dynamical modes, where the slow mode is attributed to the elasticity of helical domains. On approach of the glass-transition concentration, the slow mode increases in amplitude, while as the amplitudes of the fast and slow mode become equal at the glass transition. Finally, interesting features of the "transient" behaviors of charged fd-rod glass are shown as the initial caging due to structural arrest, the propagation of flow originating from stress release, and the transition to the final metastable glass state. In addition to the intensity correlation function, power spectra are presented as a function of the waiting time, at the zero-frequency limit that may access to the thermal anomalities in a charged system.
Collapse
Affiliation(s)
- Kyongok Kang
- Forschungszentrum Jülich, Institute of Complex Systems (ICS-3), D-52425 Jülich, Germany.
| |
Collapse
|
14
|
Kang K, Dhont JKG. Glass transition in suspensions of charged rods: structural arrest and texture dynamics. PHYSICAL REVIEW LETTERS 2013; 110:015901. [PMID: 23383809 DOI: 10.1103/physrevlett.110.015901] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Indexed: 05/20/2023]
Abstract
We report on the observation of a glass transition in suspensions of very long and thin, highly charged colloidal rods (fd-virus particles). Structural particle arrest is found to occur at a low ionic strength due to caging of the charged rods in the potential setup by their neighbors through long-ranged electrostatic interactions. The relaxation time of density fluctuations as probed by dynamic light scattering is found to diverge within a small concentration range. The rod concentration where structural particle arrest occurs is well within the full chiral-nematic state, far beyond the two-phase isotropic-nematic coexistence region. The morphology of the suspensions thus consists of nematic domains with various orientations. We quantify the dynamics of the resulting texture with image-time correlation spectroscopy. Interestingly, the decay times of image correlation functions are found to diverge in a discontinuous fashion at the same concentration of charged rods where structural particle arrest is observed. At the glass-transition concentration, we thus find both structural arrest and freezing of the texture dynamics.
Collapse
Affiliation(s)
- K Kang
- Forschungszentrum Jülich, Institute of Complex Systems, ICS-3, D-52425 Jülich, Germany
| | | |
Collapse
|
15
|
Jiang T, Zukoski CF. Rheology of dense suspensions of shape anisotropic particles designed to show pH-sensitive anisotropic pair potentials. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:375109. [PMID: 22913885 DOI: 10.1088/0953-8984/24/37/375109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Here we investigate the flow properties of suspensions of dicolloidal particles composed of interpenetrating spheres where one sphere is rich in polystyrene and the second is rich in poly 2-vinyl pyridine. The synthesis method is designed to create both anisotropic shape and anisotropic interaction potentials that should lead to head to tail clustering. These particles are referred to as copolymer dicolloids (CDCs). The viscoelastic properties of stable and gelled suspensions of CDC particles are compared with analogs composed of homopolymer dicolloids (HDCs), having the same shape but not displaying the anisotropic attractions. After coating the particles with a nonionic surfactant to minimize van der Waals attractions, the flow properties of glassy and gelled suspensions of CDCs and HDCs are studied as a function of volume fraction, ionic strength and pH. Suspensions of HDC particles display a high kinetic arrest volume fraction (φ(g) > 0.5) over a wide range of pH and ionic strength up to [I]=0.5 M, demonstrating that the particles experience repulsive or weakly attractive pair potentials. Suspensions of CDC particles behave in a similar manner at high or low pH when [I]=0.001 M, but gel at a volume fraction of φ(g) < 0.3 and display anomalously large elastic moduli at and above the gel transition point for intermediate pH or for pH=9 when [I]=0.5 M. The gelation processes for the CDC particles are reversible by adjusting the solution pH. Interaction potential anisotropy is evident in the processes, during which the CDC particles yield on increasing oscillatory strain.
Collapse
Affiliation(s)
- Tianying Jiang
- Departments of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 60801, USA
| | | |
Collapse
|
16
|
Jadrich R, Schweizer KS. Percolation, phase separation, and gelation in fluids and mixtures of spheres and rods. J Chem Phys 2012; 135:234902. [PMID: 22191900 DOI: 10.1063/1.3669649] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The relationship between kinetic arrest, connectivity percolation, structure and phase separation in protein, nanoparticle, and colloidal suspensions is a rich and complex problem. Using a combination of integral equation theory, connectivity percolation methods, naïve mode coupling theory, and the activated dynamics nonlinear Langevin equation approach, we study this problem for isotropic one-component fluids of spheres and variable aspect ratio rigid rods, and also percolation in rod-sphere mixtures. The key control parameters are interparticle attraction strength and its (short) spatial range, total packing fraction, and mixture composition. For spherical particles, formation of a homogeneous one-phase kinetically stable and percolated physical gel is predicted to be possible, but depends on non-universal factors. On the other hand, the dynamic crossover to activated dynamics and physical bond formation, which signals discrete cluster formation below the percolation threshold, almost always occurs in the one phase region. Rods more easily gel in the homogeneous isotropic regime, but whether a percolation or kinetic arrest boundary is reached first upon increasing interparticle attraction depends sensitively on packing fraction, rod aspect ratio and attraction range. Overall, the connectivity percolation threshold is much more sensitive to attraction range than either the kinetic arrest or phase separation boundaries. Our results appear to be qualitatively consistent with recent experiments on polymer-colloid depletion systems and brush mediated attractive nanoparticle suspensions.
Collapse
Affiliation(s)
- Ryan Jadrich
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
17
|
Zhang R, Schweizer KS. Theory of nonlinear elasticity, stress-induced relaxation, and dynamic yielding in dense fluids of hard nonspherical colloids. J Chem Phys 2012; 136:154902. [DOI: 10.1063/1.3701661] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Tripathy M, Schweizer KS. Activated dynamics in dense fluids of attractive nonspherical particles. I. Kinetic crossover, dynamic free energies, and the physical nature of glasses and gels. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:041406. [PMID: 21599157 DOI: 10.1103/physreve.83.041406] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Indexed: 05/28/2023]
Abstract
We apply the center-of-mass versions of naïve mode coupling theory and nonlinear Langevin equation theory to study how short-range attractive interactions modify the onset of localization, activated single-particle dynamics, and the physical nature of the transiently arrested state of a variety of dense nonspherical particle fluids (and the spherical analog) as a function of volume fraction and attraction strength. The form of the dynamic crossover boundary depends on particle shape, but the reentrant glass-fluid-gel phenomenon and the repulsive glass-to-attractive glass crossover always occur. Diverse functional forms of the dynamic free energy are found for all shapes including glasslike, gel-like, a glass-gel form defined by the coexistence of two localization minima and two activation barriers, and a "mixed" attractive glass characterized by a single, very short localization length but an activation barrier located at a large displacement as in repulsive-force caged glasses. For the latter state, particle trajectories are expected to be of a two-step activated form and can be accessed at high attraction strength by increasing volume fraction, or by increasing attraction strength at fixed high enough volume fraction. A new classification scheme for slow dynamics of fluids of dense attractive particles is proposed based on specification of both the nature of the localized state and the particle displacements required to restore ergodicity via activated barrier hopping. The proposed physical picture appears to be in qualitative agreement with recent computer simulations and colloid experiments.
Collapse
Affiliation(s)
- Mukta Tripathy
- Department of Chemical and Biomolecular Engineering, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801, USA.
| | | |
Collapse
|
19
|
Kramb RC, Zhang R, Schweizer KS, Zukoski CF. Re-entrant kinetic arrest and elasticity of concentrated suspensions of spherical and nonspherical repulsive and attractive colloids. J Chem Phys 2011; 134:014503. [DOI: 10.1063/1.3509393] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Zhang R, Schweizer KS. Dynamic free energies, cage escape trajectories, and glassy relaxation in dense fluids of uniaxial hard particles. J Chem Phys 2010; 133:104902. [DOI: 10.1063/1.3483601] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Kramb RC, Zhang R, Schweizer KS, Zukoski CF. Glass formation and shear elasticity in dense suspensions of repulsive anisotropic particles. PHYSICAL REVIEW LETTERS 2010; 105:055702. [PMID: 20867934 DOI: 10.1103/physrevlett.105.055702] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Indexed: 05/29/2023]
Abstract
Kinetic vitrification, shear elasticity, and the approach to jamming are investigated for repulsive nonspherical colloids and contrasted with their spherical analog. Particle anisotropy dramatically increases the volume fraction for kinetic arrest. The shear modulus of all systems increases roughly exponentially with volume fraction, and a universal collapse is achieved based on either the dynamic crossover or random close packing volume fraction as the key nondimensionalizing quantity. Quantitative comparisons with recent microscopic theories are performed and good agreement demonstrated.
Collapse
Affiliation(s)
- R C Kramb
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
22
|
Pikin SA, Gorkunov MV, Kondratov AV. On the role of fluctuations at the boundary of Earth’s solid core. CRYSTALLOGR REP+ 2010. [DOI: 10.1134/s1063774510040176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Zhang R, Schweizer KS. Theory of coupled translational-rotational glassy dynamics in dense fluids of uniaxial particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:011502. [PMID: 19658708 DOI: 10.1103/physreve.80.011502] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Indexed: 05/28/2023]
Abstract
The naïve mode coupling theory (NMCT) for ideal kinetic arrest and the nonlinear Langevin equation theory of activated single-particle barrier hopping dynamics are generalized to treat the coupled center-of-mass (CM) translational and rotational motions of uniaxial hard objects in the glassy fluid regime. The key dynamical variables are the time-dependent displacements of the particle center-of-mass and orientational angle. The NMCT predicts a kinetic arrest diagram with three dynamical states: ergodic fluid, plastic glass, and fully nonergodic double glass, the boundaries of which meet at a "triple point" corresponding to a most difficult to vitrify diatomic of aspect ratio approximately 1.43. The relative roles of rotation and translation in determining ideal kinetic arrest are explored by examining three limits of the theory corresponding to nonrotating, pure rotation, and rotationally ergodic models. The ideal kinetic arrest boundaries represent a crossover to activated dynamics described by two coupled stochastic nonlinear Langevin equations for translational and rotational motions. The fundamental quantity is a dynamic free-energy surface, which for small aspect ratios in the high-volume fraction regime exhibits two saddle points reflecting a two-step activated dynamics where relatively rapid rotational dynamics coexists with slower CM translational motions. For large-enough aspect ratios, the dynamic free-energy surface has one saddle point which corresponds to a system-specific coordinated translation-rotation motion. The entropic barriers as a function of the relative amount of rotation versus translation are determined.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Materials Science and Frederick Seitz Materials Research Laboratory, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801, USA
| | | |
Collapse
|
24
|
Tripathy M, Schweizer KS. The influence of shape on the glassy dynamics of hard nonspherical particle fluids. I. Dynamic crossover and elasticity. J Chem Phys 2009; 130:244906. [DOI: 10.1063/1.3157279] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Tripathy M, Schweizer KS. The influence of shape on the glassy dynamics of hard nonspherical particle fluids. II. Barriers, relaxation, fragility, kinetic vitrification, and universality. J Chem Phys 2009; 130:244907. [DOI: 10.1063/1.3157280] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Viehman DC, Schweizer KS. Dynamics of Tracer Particles in Gel-like Media. J Phys Chem B 2008; 112:16110-4. [DOI: 10.1021/jp8060784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Douglas C. Viehman
- Department of Chemical and Biomolecular Engineering, Department of Materials Science, and Frederick Seitz Materials Research Laboratory, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801
| | - Kenneth S. Schweizer
- Department of Chemical and Biomolecular Engineering, Department of Materials Science, and Frederick Seitz Materials Research Laboratory, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801
| |
Collapse
|
27
|
Yatsenko G, Schweizer KS. Glassy dynamics and kinetic vitrification of isotropic suspensions of hard rods. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:7474-7484. [PMID: 18547074 DOI: 10.1021/la8002492] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A nonlinear Langevin equation (NLE) theory for the translational center-of-mass dynamics of hard nonspherical objects has been applied to isotropic fluids of rigid rods. The ideal kinetic glass transition volume fraction is predicted to be a monotonically decreasing function beyond an aspect ratio of two. The functional form of the decrease is weaker than the inverse aspect ratio. Vitrification occurs at lower volume fractions for corrugated tangent bead rods compared to their smooth spherocylinder analogs. The ideal glass transition signals a crossover to activated dynamics, which is estimated to be observable before the nematic phase boundary is encountered if the aspect ratio is less than roughly 25. Calculations of the glassy elastic shear modulus and absolute yield stress reveal a roughly exponential growth with volume fraction. The dependence of entropic barriers and mean barrier hopping times on concentration for rods of variable aspect ratios can be collapsed quite well based on a difference volume fraction variable that quantifies the distance from the ideal glass boundary. Full numerical solution of the NLE theory via stochastic trajectory simulation was performed for tangent bead rods, and the results were compared to their hard sphere analogs. With increasing shape anisotropy the characteristic length scales of the nonequilibrium free energy increase and the magnitude of the localization well and entropic barrier curvatures decreases. These changes result in a significant aspect ratio dependence of dynamical properties and time correlation functions including weaker intermediate time subdiffusive transport, stronger two-step decay of the incoherent dynamic structure factor, longer mean alpha relaxation time, and stronger wavevector-dependent decoupling of relaxation times and the self-diffusion constant. The theoretical results are potentially testable via computer simulation, confocal microscopy, and dynamic light scattering.
Collapse
Affiliation(s)
- Galina Yatsenko
- Department of Materials Science and Frederick Seitz Materials Research Laboratory, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801, USA
| | | |
Collapse
|
28
|
Viehman DC, Schweizer KS. Theory of gelation, vitrification, and activated barrier hopping in mixtures of hard and sticky spheres. J Chem Phys 2008; 128:084509. [PMID: 18315063 DOI: 10.1063/1.2837295] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Naive mode coupling theory (NMCT) and the nonlinear stochastic Langevin equation theory of activated dynamics have been generalized to mixtures of spherical particles. Two types of ideal nonergodicity transitions are predicted corresponding to localization of both, or only one, species. The NMCT transition signals a dynamical crossover to activated barrier hopping dynamics. For binary mixtures of equal diameter hard and attractive spheres, a mixture composition sensitive "glass-melting" type of phenomenon is predicted at high total packing fractions and weak attractions. As the total packing fraction decreases, a transition to partial localization occurs corresponding to the coexistence of a tightly localized sticky species in a gel-like state with a fluid of hard spheres. Complex behavior of the localization lengths and shear moduli exist because of the competition between excluded volume caging forces and attraction-induced physical bond formation between sticky particles. Beyond the NMCT transition, a two-dimensional nonequilibrium free energy surface emerges, which quantifies cooperative activated motions. The barrier locations and heights are sensitive to the relative amplitude of the cooperative displacements of the different species.
Collapse
Affiliation(s)
- Douglas C Viehman
- Department of Chemical and Biomolecular Engineering, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801, USA
| | | |
Collapse
|
29
|
Schweizer KS, Yatsenko G. Collisions, caging, thermodynamics, and jamming in the barrier hopping theory of glassy hard sphere fluids. J Chem Phys 2008; 127:164505. [PMID: 17979358 DOI: 10.1063/1.2780861] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
An ultralocal limit of the microscopic single particle barrier hopping theory of glassy dynamics is proposed which allows explicit analytic expressions for the characteristic length scales, energy scales, and nonequilibrium free energy to be derived. All properties are shown to be controlled by a single coupling constant determined by the fluid density and contact value of the radial distribution function. This parameter quantifies an effective mean square force exerted on a tagged particle due to collisions with its surroundings. The analysis suggests a conceptual basis for previous surprising findings of multiple inter-relationships between characteristics of the transient localized state, the early stages of cage escape, non-Gaussian or dynamic heterogeneity effects, and the barrier hopping process that defines the alpha relaxation event. The underlying physical picture is also relevant to fluids of nonspherical molecules and sticky colloidal suspensions. The possibility of a unified view of liquid dynamics is suggested spanning the range from dense gases to the zero mobility jammed state.
Collapse
Affiliation(s)
- Kenneth S Schweizer
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, USA.
| | | |
Collapse
|
30
|
Schweizer KS. Relationships between the single particle barrier hopping theory and thermodynamic, disordered media, elastic, and jamming models of glassy systems. J Chem Phys 2007; 127:164506. [DOI: 10.1063/1.2780863] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Yatsenko G, Schweizer KS. Ideal vitrification, barrier hopping, and jamming in fluids of modestly anisotropic hard objects. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:041506. [PMID: 17994993 DOI: 10.1103/physreve.76.041506] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2007] [Indexed: 05/25/2023]
Abstract
Our recent theory for the glassy dynamics of fluids and suspensions of hard nonspherical objects is applied to several modestly anisotropic shapes. The role of bond length and aspect ratio is studied for diatomics, triatomics, and spherocylinders. As spherical symmetry is broken the ideal kinetic glass transition volume fraction of all objects increases linearly with aspect ratio with the same slope, in surprising agreement with the jamming phase diagram of hard granular ellipsoids. The ideal glass boundary of all shapes is a nonmonotonic function of aspect ratio which is also in qualitative accord with the jamming behavior of spherocylinders and ellipsoids. The maximum glass volume fraction shifts to higher values, and larger aspect ratios, as the object becomes smoother. Suggestions for why the nonequilibrium jamming and kinetic ideal glass formation (dynamical crossover) boundaries are similar are advanced. Beyond the ideal glass volume fraction the nonequilibrium free energy acquires a localization well and entropic barrier. Although its form is highly nonuniversal, if different shapes are compared at constant barrier height then a good collapse is found. Collapse of the volume fraction dependence of the barrier height for different shapes is also predicted for modest shape anisotropy, but increasingly fails as the aspect ratio exceeds 2. For a given volume fraction the mean barrier hopping times are nonmonotonic functions of aspect ratio. The functional form of this dependence, and order of magnitude variation with aspect ratio, is distinct for each object.
Collapse
Affiliation(s)
- Galina Yatsenko
- Department of Materials Science and Frederick Seitz Materials Research Laboratory, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801, USA
| | | |
Collapse
|