1
|
Mainas E, Stratt RM. Exceptionally large fluctuations in orientational order: The lessons of large-deviation theory for liquid crystalline systems. J Chem Phys 2025; 162:024501. [PMID: 39774882 DOI: 10.1063/5.0238056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
How condensed-matter simulations depend on the number of molecules being simulated (N) is sometimes itself a valuable piece of information. Liquid crystals provide a case in point. Light scattering and 2d-IR experiments on isotropic-phase samples display increasingly large orientational fluctuations ("pseudo-nematic domains") as the samples approach their nematic phase. The growing length scale of those locally ordered domains is readily seen in simulation as an ever-slower convergence of the distribution of orientational order parameters with N. But the rare-event character and exceptionally slow time scales of the largest fluctuations make them difficult to sample accurately. We show in this paper how taking a large-deviation-theory perspective enables us to leverage simulation-derived information more effectively. A key insight of the theory is that finding quantities such as orientational order parameters (extensive variables) is completely equivalent to deducing the conjugate (intensive) thermodynamic field required to equilibrate that amount of order-and that knowing the relationship between the two (the "equation of state") can easily be turned into knowing the relative free energy of that degree of order. A variety of well-known thermodynamic integration strategies are already founded on this idea, but instead of applying an artificially imposed external field, we use a priori statistical mechanical insights into the small and large-field limits to construct a simulation-guided, interpolated, equation of state. The free energies that result mostly need information from the most probable configurations, making the simulation process far more efficient than waiting for (or artificially generating) large fluctuations.
Collapse
Affiliation(s)
- Eleftherios Mainas
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Richard M Stratt
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
2
|
Kumar S, Sarkar S, Bagchi B. Glassy dynamics in a liquid of anisotropic molecules: Bifurcation of relaxation spectrum. J Chem Phys 2024; 160:224501. [PMID: 38856065 DOI: 10.1063/5.0210699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
In experimental and theoretical studies of glass transition phenomena, one often finds a sharp crossover in dynamical properties at a temperature Tcr. A bifurcation of a relaxation spectrum is also observed at a temperature TB≈Tcr; both lie significantly above the glass transition temperature. In order to better understand these phenomena, we introduce a new model of glass-forming liquids, a binary mixture of prolate and oblate ellipsoids. This model system exhibits sharp thermodynamic and dynamic anomalies, such as the specific heat jump during heating and a sharp variation in the thermal expansion coefficient around a temperature identified as the glass transition temperature, Tg. The same temperature is obtained from the fit of the calculated relaxation times to the Vogel-Fulcher-Tammann (VFT) form. As the temperature is lowered, the calculated single peak rotational relaxation spectrum splits into two peaks at TB above the estimated Tg. Similar bifurcation is also observed in the distribution of short-to-intermediate time translational diffusion. Interrogation of the two peaks reveals a lower extent of dynamic heterogeneity in the population of the faster mode. We observe an unexpected appearance of a sharp peak in the product of rotational relaxation time τ2 and diffusion constant D at a temperature Tcr, close to TB, but above the glass transition temperature. Additionally, we coarse-grain the system into cubic boxes, each containing, on average, ∼62 particles, to study the average dynamical properties. Clear evidence of large-scale sudden changes in the diffusion coefficient and rotational correlation time signals first-order transitions between low and high-mobility domains.
Collapse
Affiliation(s)
- Shubham Kumar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Sarmistha Sarkar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
3
|
Sarkar S, Samanta T, Bagchi B. Dynamics of a binary mixture of non-spherical molecules: Test of hydrodynamic predictions. J Chem Phys 2018; 149:124508. [PMID: 30278651 DOI: 10.1063/1.5045784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We consider a new class of model systems to study systematically the role of molecular shape in the transport properties of dense liquids. Our model is a liquid binary mixture where both the molecules are non-spherical and characterized by a collection of parameters. Although in the real world most of the molecules are non-spherical, only a limited number of theoretical studies exist on the effects of molecular shapes and hardly any have addressed the validity of the hydrodynamic predictions of rotational and translational diffusion of these shapes in liquids. In this work, we study a model liquid consisting of a mixture of prolate and oblate (80:20 mixture) ellipsoids with interactions governed by a modified Gay-Berne potential for a particular aspect ratio (ratio of the length and diameter of the ellipsoids), at various temperature and pressure conditions. We report calculations of transport properties of this binary mixture by varying temperature over a wide range at a fixed pressure. We find that for the pressure-density conditions studied, there is no signature of any phase separation, except transitions to the crystalline phase at low temperatures and relatively low pressure (the reason we largely confined our studies to high pressure). We find that for our model binary mixture, both stick and slip hydrodynamic predictions break down in a major fashion, for both prolates and oblates and particularly so for rotation. Moreover, prolates and oblates themselves display different dynamical features in the mean square displacement and in orientational time correlation functions.
Collapse
Affiliation(s)
- Sarmistha Sarkar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Tuhin Samanta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
4
|
Zhao Y, Stratt RM. Measuring order in disordered systems and disorder in ordered systems: Random matrix theory for isotropic and nematic liquid crystals and its perspective on pseudo-nematic domains. J Chem Phys 2018; 148:204501. [PMID: 29865812 DOI: 10.1063/1.5024678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Surprisingly long-ranged intermolecular correlations begin to appear in isotropic (orientationally disordered) phases of liquid crystal forming molecules when the temperature or density starts to close in on the boundary with the nematic (ordered) phase. Indeed, the presence of slowly relaxing, strongly orientationally correlated, sets of molecules under putatively disordered conditions ("pseudo-nematic domains") has been apparent for some time from light-scattering and optical-Kerr experiments. Still, a fully microscopic characterization of these domains has been lacking. We illustrate in this paper how pseudo-nematic domains can be studied in even relatively small computer simulations by looking for order-parameter tensor fluctuations much larger than one would expect from random matrix theory. To develop this idea, we show that random matrix theory offers an exact description of how the probability distribution for liquid-crystal order parameter tensors converges to its macroscopic-system limit. We then illustrate how domain properties can be inferred from finite-size-induced deviations from these random matrix predictions. A straightforward generalization of time-independent random matrix theory also allows us to prove that the analogous random matrix predictions for the time dependence of the order-parameter tensor are similarly exact in the macroscopic limit, and that relaxation behavior of the domains can be seen in the breakdown of the finite-size scaling required by that random-matrix theory.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Richard M Stratt
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
5
|
Frechette L, Stratt RM. The inherent dynamics of isotropic- and nematic-phase liquid crystals. J Chem Phys 2017; 144:234505. [PMID: 27334177 DOI: 10.1063/1.4953618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The geodesic (shortest) pathways through the potential energy landscape of a liquid can be thought of as defining what its dynamics would be if thermal noise were removed, revealing what we have called the "inherent dynamics" of the liquid. We show how these inherent paths can be located for a model liquid crystal former, showing, in the process, how the molecular mechanisms of translation and reorientation compare in the isotropic and nematic phases of these systems. These mechanisms turn out to favor the preservation of local orientational order even under macroscopically isotropic conditions (a finding consistent with the experimental observation of pseudonematic domains in these cases), but disfavor the maintenance of macroscopic orientational order, even in the nematic phase. While the most efficient nematic pathways that maintain nematic order are indeed shorter than those that do not, it is apparently difficult for the system to locate these paths, suggesting that molecular motion in liquid-crystal formers is dynamically frustrated, and reinforcing the sense that there are strong analogies between liquid crystals and supercooled liquids.
Collapse
Affiliation(s)
- Layne Frechette
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Richard M Stratt
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
6
|
|
7
|
Rzoska SJ, Pawlus S, Czupryński K. Glassy dynamics in the isotropic phase of a smectogenic liquid crystalline compound. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:031710. [PMID: 22060393 DOI: 10.1103/physreve.84.031710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/29/2011] [Indexed: 05/31/2023]
Abstract
The temperature evolution of the primary relaxation time in the isotropic phase of 4-cyano-4'-tetradecylbiphenyl (14CB) above the isotropic-smectic A (I-SmA) transition is discussed. Based on the enthalpy space and distortion-sensitive analysis, the prevalence of the mode coupling theory (MCT) "critical" and "glassy" dynamics is shown. The obtained singular dependence is related to the MCT critical temperature located approximately 48 K below the clearing (I-SmA) temperature. However, a weak but detectable distortion in the immediate vicinity of the transition occurs. It is also shown that the value of the fragile strength coefficient D(T) is characteristic of a very fragile glassy liquid whereas the steepness index m is typical of a strong one. Both magnitudes anomalously change on approaching the I-SmA phase transition. The static permittivity shows the pretransitional effect linked to the temperature of the hypothetical continuous phase transition located approximately 10.2 K below the I-SmA transition.
Collapse
Affiliation(s)
- Sylwester J Rzoska
- Institute of High Pressure Physics, Polish Academy of Sciences, ulica Sokołowska 27/39, PL-00-143 Warsaw, Poland.
| | | | | |
Collapse
|
8
|
Drozd-Rzoska A. Glassy dynamics of liquid crystalline 4′-n-pentyl-4-cyanobiphenyl in the isotropic and supercooled nematic phases. J Chem Phys 2009; 130:234910. [DOI: 10.1063/1.3153349] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
9
|
Dynamics of Thermotropic Liquid Crystals Across the Isotropic-Nematic Transition and Their Similarity with Glassy Relaxation in Supercooled Liquids. ADVANCES IN CHEMICAL PHYSICS 2009. [DOI: 10.1002/9780470431917.ch6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
10
|
Drozd-Rzoska A, Rzoska SJ, Paluch M. Universal critical-like scaling of dynamic properties in symmetry-selected glass formers. J Chem Phys 2008; 129:184509. [PMID: 19045416 DOI: 10.1063/1.3000626] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Evidence for a possible general validity of the critical-like behavior of dielectric relaxation time or viscosity tau,eta proportional to (T-T(C))(-phi) with phi-->9 and T(C)<T(g) on approaching glass temperature (T(g)) is shown. This universal behavior is found in various systems where the vitrification is dominated by a selected element of symmetry. The supporting evidence was obtained on the basis of the distortion-sensitive, derivative-based analysis of tau(T) data for a rodlike liquid crystalline compound (E7), orientationally disordered crystals (plastic crystals), a colloidal nanofluid system, polymer melt (polystyrene), oligomeric liquid (EPON 828), and low molecular weight glass formers (glycerol, threitol, sorbitol, and 1-propanol). Results presented explain the puzzling experimental artifacts supporting the dynamical scaling model [R. H. Colby, Phys. Rev. E 61, 1783 (2000); B. M. Erwin, R. H. Colby, J. Non-Cryst. Solids 307-310, 225 (2002)]. It is suggested that spin-glass-like systems may be linked to the discussed pattern.
Collapse
|
11
|
Jana B, Bagchi B. Orientational dynamics and energy landscape features of thermotropic liquid crystals: An analogy with supercooled liquids. J CHEM SCI 2008. [DOI: 10.1007/s12039-007-0045-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Chakrabarti D, Bagchi B. Glassiness of Thermotropic Liquid Crystals across the Isotropic−Nematic Transition. J Phys Chem B 2007; 111:11646-57. [PMID: 17880203 DOI: 10.1021/jp079516w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The orientational dynamics of thermotropic liquid crystals across the isotropic-nematic phase transition have traditionally been investigated at long times or low frequencies using frequency domain measurements. The situation has now changed significantly with the recent report of a series of interesting transient optical Kerr effect (OKE) experiments that probed orientational relaxation of a number of calamitic liquid crystals (which consist of rod-like molecules) directly in the time domain, over a wide time window ranging from subpicoseconds to tens of microseconds. The most intriguing revelation is that the decay of the OKE signal at short to intermediate times (from a few tens of picoseconds to several hundred nanoseconds) follows multiple temporal power laws. Another remarkable feature that has emerged from these OKE measurements is the similarity in the orientational relaxation behavior between the isotropic phase of calamitic liquid crystals near the isotropic-nematic transition and supercooled molecular liquids, notwithstanding their largely different macroscopic states. In this article, we present an overview of the understanding that has emerged from recent computational and theoretical studies of calamitic liquid crystals across the isotropic-nematic transition. Topics discussed include (a) single-particle as well as collective orientational dynamics at a short-to-intermediate time window, (b) heterogeneous dynamics in orientational degrees of freedom diagnosed by a non-Gaussian parameter, (c) fragility, and (d) temperature-dependent exploration of underlying energy landscapes as calamitic liquid crystals settle into increasingly ordered mesophases upon cooling from the high-temperature isotropic phase. A comparison of our results with those of supercooled molecular liquids reveals an array of analogous features in these two important classes of soft matter systems. We further find that the onset of growth of the orientational order in the parent nematic phase induces translational order, resulting in smectic-like layers in the potential energy minima of calamitic systems if the parent nematic phase is sandwiched between the high-temperature isotropic phase and the low-temperature smectic phase. We discuss implications of this startling observation. We also discuss recent results on the orientational dynamics of discotic liquid crystals that are found to be rather similar to those of calamitic liquid crystals.
Collapse
Affiliation(s)
- Dwaipayan Chakrabarti
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, India.
| | | |
Collapse
|