1
|
Nucera A, Platas-Iglesias C, Carniato F, Botta M. Effect of hydration equilibria on the relaxometric properties of Gd(III) complexes: new insights into old systems. Dalton Trans 2023; 52:17229-17241. [PMID: 37955945 DOI: 10.1039/d3dt03413e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
We present a detailed relaxometric and computational investigation of three Gd(III) complexes that exist in solution as an equilibrium of two species with a different number of coordinated water molecules: [Gd(H2O)q]3+ (q = 8, 9), [Gd(EDTA)(H2O)q]- and [Gd(CDTA)(H2O)q]- (q = 2, 3). 1H nuclear magnetic relaxation dispersion (NMRD) data were recorded from aqueous solutions of these complexes using a wide Larmor frequency range (0.01-500 MHz). These data were complemented with 17O transverse relaxation rates and chemical shifts recorded at different temperatures. The simultaneous fit of the NMRD and 17O NMR data was guided by computational studies performed at the DFT and CASSCF/NEVPT2 levels, which provided information on Gd⋯H distances, 17O hyperfine coupling constants and the zero-field splitting (ZFS) energy, which affects electronic relaxation. The hydration equilibrium did not have a very important effect in the fits of the experimental data for [Gd(H2O)q]3+ and [Gd(CDTA)(H2O)q]-, as the hydration equilibrium is largely shifted to the species with the lowest hydration number (q = 8 and 2, respectively). The quality of the analysis improves however considerably for [Gd(EDTA)(H2O)q]- upon considering the effect of the hydration equilibrium. As a result, this study provides for the first time an analysis of the relaxation properties of this important model system, as well as accurate parameters for [Gd(H2O)q]3+ and [Gd(CDTA)(H2O)q]-.
Collapse
Affiliation(s)
- Alessandro Nucera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Carlos Platas-Iglesias
- Universidade da Coruña, Centro de Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| |
Collapse
|
2
|
Driscoll DM, Shiery RC, Balasubramanian M, Fulton JL, Cantu DC. Ionic Contraction across the Lanthanide Series Decreases the Temperature-Induced Disorder of the Water Coordination Sphere. Inorg Chem 2021; 61:287-294. [PMID: 34919399 DOI: 10.1021/acs.inorgchem.1c02837] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In liquid, temperature affects the structures of lanthanide complexes in multiple ways that depend upon complex interactions between ligands, anions, and solvent molecules. The relative simplicity of lanthanide aqua ions (Ln3+) make them well suited to determine how temperature induces structural changes in lanthanide complexes. We performed a combination of ab initio molecular dynamics (AIMD) simulations and extended X-ray absorption fine structure (EXAFS) measurements, both at 25 and 90 °C, to determine how temperature affects the first- and second-coordination spheres of three Ln3+ (Ce3+, Sm3+, and Lu3+) aqua ions. AIMD simulations show first lanthanide coordination spheres that are similar at 25 and 90 °C, more so for the Lu3+ ion that remains as eight-coordinate than for the Ce3+ and Sm3+ ions that change their preferred coordination number from nine (at 25 °C) to eight (at 90 °C). The measured EXAFS spectra are very similar at 25 and 90 °C, for the Ce3+, Sm3+, and Lu3+ ions, suggesting that the dynamical disorder of the Ln3+ ions in liquid water is sufficient such that temperature-induced changes do not clearly manifest changes in the structure of the three ions. Both AIMD simulations and EXAFS measurements show very similar structures of the first coordination sphere of the Lu3+ ion at 25 and 90 °C.
Collapse
Affiliation(s)
- Darren M Driscoll
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Richard C Shiery
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| | | | - John L Fulton
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - David C Cantu
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| |
Collapse
|
3
|
Singer PM, Parambathu AV, Pinheiro Dos Santos TJ, Liu Y, Alemany LB, Hirasaki GJ, Chapman WG, Asthagiri D. Predicting 1H NMR relaxation in Gd 3+-aqua using molecular dynamics simulations. Phys Chem Chem Phys 2021; 23:20974-20984. [PMID: 34518855 DOI: 10.1039/d1cp03356e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atomistic molecular dynamics simulations are used to predict 1H NMR T1 relaxation of water from paramagnetic Gd3+ ions in solution at 25 °C. Simulations of the T1 relaxivity dispersion function r1 computed from the Gd3+-1H dipole-dipole autocorrelation function agree within ≃8% of measurements in the range f0 ≃ 5 ↔ 500 MHz, without any adjustable parameters in the interpretation of the simulations, and without any relaxation models. The simulation results are discussed in the context of the Solomon-Bloembergen-Morgan inner-sphere relaxation model, and the Hwang-Freed outer-sphere relaxation model. Below f0 ≲ 5 MHz, the simulation overestimates r1 compared to measurements, which is used to estimate the zero-field electron-spin relaxation time. The simulations show potential for predicting r1 at high frequencies in chelated Gd3+ contrast-agents used for clinical MRI.
Collapse
Affiliation(s)
- Philip M Singer
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA.
| | - Arjun Valiya Parambathu
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA.
| | | | - Yunke Liu
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA.
| | - Lawrence B Alemany
- Shared Equipment Authority and Department of Chemistry, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - George J Hirasaki
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA.
| | - Walter G Chapman
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA.
| | - Dilip Asthagiri
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA.
| |
Collapse
|
4
|
Radu V, Price JC, Levett SJ, Narayanasamy KK, Bateman-Price TD, Wilson PB, Mather ML. Dynamic Quantum Sensing of Paramagnetic Species Using Nitrogen-Vacancy Centers in Diamond. ACS Sens 2020; 5:703-710. [PMID: 31867948 PMCID: PMC7106109 DOI: 10.1021/acssensors.9b01903] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022]
Abstract
Naturally occurring paramagnetic species (PS), such as free radicals and paramagnetic metalloproteins, play an essential role in a multitude of critical physiological processes including metabolism, cell signaling, and immune response. These highly dynamic species can also act as intrinsic biomarkers for a variety of disease states, while synthetic paramagnetic probes targeted to specific sites on biomolecules enable the study of functional information such as tissue oxygenation and redox status in living systems. The work presented herein describes a new sensing method that exploits the spin-dependent emission of photoluminescence (PL) from an ensemble of nitrogen-vacancy centers in diamond for rapid, nondestructive detection of PS in living systems. Uniquely this approach involves simple measurement protocols that assess PL contrast with and without the application of microwaves. The method is demonstrated to detect concentrations of paramagnetic salts in solution and the widely used magnetic resonance imaging contrast agent gadobutrol with a limit of detection of less than 10 attomol over a 100 μm × 100 μm field of view. Real-time monitoring of changes in the concentration of paramagnetic salts is demonstrated with image exposure times of 20 ms. Further, dynamic tracking of chemical reactions is demonstrated via the conversion of low-spin cyanide-coordinated Fe3+ to hexaaqua Fe3+ under acidic conditions. Finally, the capability to map paramagnetic species in model cells with subcellular resolution is demonstrated using lipid membranes containing gadolinium-labeled phospholipids under ambient conditions in the order of minutes. Overall, this work introduces a new sensing approach for the realization of fast, sensitive imaging of PS in a widefield format that is readily deployable in biomedical settings. Ultimately, this new approach to nitrogen vacancy-based quantum sensing paves the way toward minimally invasive real-time mapping and observation of free radicals in in vitro cellular environments.
Collapse
Affiliation(s)
- Valentin Radu
- Optics
and Photonics Research Group, Faculty of Engineering, University Park, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Joshua Colm Price
- Optics
and Photonics Research Group, Faculty of Engineering, University Park, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Simon James Levett
- Optics
and Photonics Research Group, Faculty of Engineering, University Park, University of Nottingham, Nottingham NG7 2RD, U.K.
| | | | - Thomas David Bateman-Price
- Optics
and Photonics Research Group, Faculty of Engineering, University Park, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Philippe Barrie Wilson
- Leicester
School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, U.K.
| | - Melissa Louise Mather
- Optics
and Photonics Research Group, Faculty of Engineering, University Park, University of Nottingham, Nottingham NG7 2RD, U.K.
| |
Collapse
|
5
|
Finney AR, Lectez S, Freeman CL, Harding JH, Stackhouse S. Ion Association in Lanthanide Chloride Solutions. Chemistry 2019; 25:8725-8740. [PMID: 31017723 PMCID: PMC6619345 DOI: 10.1002/chem.201900945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Indexed: 12/24/2022]
Abstract
A better understanding of the solution chemistry of the lanthanide (Ln) salts in water would have wide ranging implications in materials processing, waste management, element tracing, medicine and many more fields. This is particularly true for minerals processing, given governmental concerns about lanthanide security of supply and the drive to identify environmentally sustainable processing routes. Despite much effort, even in simple systems, the mechanisms and thermodynamics of LnIII association with small anions remain unclear. In the present study, molecular dynamics (MD), using a newly developed force field, provide new insights into LnCl3 (aq) solutions. The force field accurately reproduces the structure and dynamics of Nd3+ , Gd3+ and Er3+ in water when compared to calculations using density functional theory (DFT). Adaptive-bias MD simulations show that the mechanisms for ion pairing change from dissociative to associative exchange depending upon cation size. Thermodynamics of association reveal that whereas ion pairing is favourable, the equilibrium distribution of species at low concentration is dominated by weakly bound solvent-shared and solvent-separated ion pairs, rather than contact ion pairs, reconciling a number of contrasting observations of LnIII -Cl association in the literature. In addition, we show that the thermodynamic stabilities of a range of inner sphere and outer sphere LnCl x ( 3 - x ) + coordination complexes are comparable and that the kinetics of anion binding to cations may control solution speciation distributions beyond ion pairs. The techniques adopted in this work provide a framework with which to investigate more complex solution chemistries of cations in water.
Collapse
Affiliation(s)
- Aaron R. Finney
- Department of Materials Science and Engineering, Sir Robert, Hadfield BuildingUniversity of SheffieldSheffieldS1 3JDUK
| | - Sébastien Lectez
- School of Earth and EnvironmentUniversity of LeedsLeedsLS2 9JTUK
| | - Colin L. Freeman
- Department of Materials Science and Engineering, Sir Robert, Hadfield BuildingUniversity of SheffieldSheffieldS1 3JDUK
| | - John H. Harding
- Department of Materials Science and Engineering, Sir Robert, Hadfield BuildingUniversity of SheffieldSheffieldS1 3JDUK
| | | |
Collapse
|
6
|
Khan S, Peters V, Kowalewski J, Odelius M. Zero-field splitting in the isoelectronic aqueous Gd(III) and Eu(II) complexes from a first principles analysis. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Sappidi P, Namsani S, Ali SM, Singh JK. Extraction of Gd 3+ and UO 22+ Ions Using Polystyrene Grafted Dibenzo Crown Ether (DB18C6) with Octanol and Nitrobenzene: A Molecular Dynamics Study. J Phys Chem B 2018; 122:1334-1344. [PMID: 29281280 DOI: 10.1021/acs.jpcb.7b11384] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atomistic molecular dynamics (MD) simulations are performed in order to derive thermodynamic properties important to understand the extraction of gadolinium (Gd3+) and uranium dioxide (UO2) with dibenzo crown ether (DBCE) in nitrobenzene (NB) and octanol (OCT) solvents. The effect of polystyrene graft length, on DBCE, on the binding behavior of Gd3+ and UO22+ is investigated for the first time. Our simulation results demonstrate that the binding of Gd3+ and UO22+ onto the oxygens of crown ethers is favorable for polystyrene grafted crown ether in the organic solvents OCT and NB. The metal ion binding free energy (ΔGBinding) in different solvent environments is calculated using the thermodynamic integration (TI) method. ΔGBinding becomes more favorable in both solvents, NB and OCT, with an increase in the polystyrene monomer length. The metal ion transferability from an aqueous phase to an organic phase is estimated by calculating transfer free-energy calculations (ΔGTransfer). ΔGTransfer is significantly favorable for both Gd3+ and UO22+ for the transfer from the aqueous phase to the organic phase (i.e., NB and OCT) via ion-complexation to DBCE with an increase in polystyrene length. The partition coefficient (log P) values for Gd3+ and UO22+ show a 5-fold increase in separation capacity with polystyrene grafted DBCE. We corroborate the observed behavior by further analyzing the structural and dynamical properties of the ions in different phases.
Collapse
Affiliation(s)
- Praveenkumar Sappidi
- Computational Nano Science Laboratory, Department of Chemical Engineering, Indian Institute of Technology (IIT) Kanpur , Kanpur 208016, India
| | - Sadanandam Namsani
- Computational Nano Science Laboratory, Department of Chemical Engineering, Indian Institute of Technology (IIT) Kanpur , Kanpur 208016, India
| | - Sk Musharaf Ali
- Chemical Engineering Division, Bhabha Atomic Research Center , Mumbai 400085, India
| | - Jayant Kumar Singh
- Computational Nano Science Laboratory, Department of Chemical Engineering, Indian Institute of Technology (IIT) Kanpur , Kanpur 208016, India
| |
Collapse
|
8
|
Lin Z, Allen MJ. 17O-NMR spectroscopy to study the coordination of oxygen-based ligands to lanthanide ions in solution. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1180374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Zhijin Lin
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Matthew J. Allen
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| |
Collapse
|
9
|
Khan S, Kubica-Misztal A, Kruk D, Kowalewski J, Odelius M. Systematic theoretical investigation of the zero-field splitting in Gd(III) complexes: Wave function and density functional approaches. J Chem Phys 2015; 142:034304. [DOI: 10.1063/1.4905559] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Shehryar Khan
- Department of Physics, Stockholm University, AlbaNova University Center, S-106 91 Stockholm, Sweden
| | | | - Danuta Kruk
- Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, Sloneczna 54, Olsztyn PL-10710, Poland
| | - Jozef Kowalewski
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | - Michael Odelius
- Department of Physics, Stockholm University, AlbaNova University Center, S-106 91 Stockholm, Sweden
| |
Collapse
|
10
|
Luchinat C, Parigi G, Ravera E. Can metal ion complexes be used as polarizing agents for solution DNP? A theoretical discussion. JOURNAL OF BIOMOLECULAR NMR 2014; 58:239-249. [PMID: 23606273 DOI: 10.1007/s10858-013-9728-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 04/05/2013] [Indexed: 06/02/2023]
Abstract
Dynamic nuclear polarization (DNP) can be used to dramatically increase the NMR signal intensities in solutions and solids. DNP is usually performed using nitroxide radicals as polarizing agents, characterized by sharp EPR lines, fast rotation, fast diffusion, and favorable distribution of the unpaired electron. These features make the nitroxide radicals ideally suited for solution DNP. Here, we report some theoretical considerations on the different behavior of some inorganic compounds with respect to nitroxide radicals. The relaxation profiles of slow relaxing paramagnetic metal aqua ions [copper(II), manganese(II), gadolinium(III) and oxovanadium(IV)] and complexes have been re-analyzed according to the standard theory for dipolar and contact relaxation, in order to estimate the coupling factor responsible for the maximum DNP enhancement that can be achieved in solution and its dependence on field, temperature and relative importance of outer-sphere versus inner-sphere relaxation.
Collapse
Affiliation(s)
- Claudio Luchinat
- CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy,
| | | | | |
Collapse
|
11
|
Patinec V, Rolla GA, Botta M, Tripier R, Esteban-Gómez D, Platas-Iglesias C. Hyperfine coupling constants on inner-sphere water molecules of a triazacyclononane-based Mn(II) complex and related systems relevant as MRI contrast agents. Inorg Chem 2013; 52:11173-84. [PMID: 24070368 DOI: 10.1021/ic4014366] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report the synthesis of the ligand H2MeNO2A (1,4-bis(carboxymethyl)-7-methyl-1,4,7-triazacyclononane) and a detailed experimental and computational study of the hyperfine coupling constants (HFCCs) on the inner-sphere water molecules of [Mn(MeNO2A)] and related Mn(2+) complexes relevant as potential contrast agents in magnetic resonance imaging (MRI). Nuclear magnetic relaxation dispersion (NMRD) profiles, (17)O NMR chemical shifts, and transverse relaxation rates of aqueous solutions of [Mn(MeNO2A)] were recorded to determine the parameters governing the relaxivity in this complex and the (17)O and (1)H HFCCs. DFT calculations (TPSSh model) performed in aqueous solution (PCM model) on the [Mn(MeNO2A)(H2O)]·xH2O and [Mn(EDTA)(H2O)](2-)·xH2O (x = 0-4) systems were used to determine theoretically the (17)O and (1)H HFCCs responsible for the (17)O NMR chemical shifts and the scalar contributions to (17)O and (1)H NMR relaxation rates. The use of a mixed cluster/continuum approach with the explicit inclusion of a few second-sphere water molecules is critical for an accurate calculation of HFCCs of coordinated water molecules. The impact of complex dynamics on the calculated HFCCs was evaluated with the use of molecular dynamics simulations within the atom-centered density matrix propagation (ADMP) approach. The (17)O and (1)H HFCCs calculated for these complexes and related systems show an excellent agreement with the experimental data. Both the (1)H and (17)O HFCCs (A(iso) values) are dominated by the spin delocalization mechanism. The A(iso) values are significantly affected by the distance between the oxygen atom of the coordinated water molecule and the Mn(2+) ion, as well as by the orientation of the water molecule plane with respect to the Mn-O vector.
Collapse
Affiliation(s)
- Véronique Patinec
- Departamento de Química Fundamental, Facultade de Ciencias, Universidade da Coruña , Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Smirnov PR, Grechin OV, Trostin VN. Effect of concentration on the structure of aqueous solutions of gadolinium chloride and gadolinium nitrate as probed by X-ray diffraction. RUSS J INORG CHEM+ 2013. [DOI: 10.1134/s0036023613080226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Rolla GA, Platas-Iglesias C, Botta M, Tei L, Helm L. 1H and 17O NMR relaxometric and computational study on macrocyclic Mn(II) complexes. Inorg Chem 2013; 52:3268-79. [PMID: 23437979 DOI: 10.1021/ic302785m] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Herein we report a detailed 1H and 17O relaxometric investigation of Mn(II) complexes with cyclen-based ligands such as 2-(1,4,7,10-tetraazacyclododecan-1-yl)acetic acid (DO1A), 2,2'-(1,4,7,10-tetraazacyclododecane-1,4-diyl)diacetic acid (1,4-DO2A), 2,2'-(1,4,7,10-tetraazacyclododecane-1,7-diyl)diacetic acid (1,7-DO2A), and 2,2',2"-(1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (DO3A). The Mn(II) complex with the heptadentate ligand DO3A does not have inner sphere water molecules (q = 0), and therefore, the metal ion is most likely seven-coordinate. The hexadentate DO2A ligand has two isomeric forms: 1,7-DO2A and 1,4-DO2A. The Mn(II) complex with 1,7-DO2A is predominantly six-coordinate (q = 0). In aqueous solutions of [Mn(1,4-DO2A)], a species with one coordinated water molecule (q = 1) prevails largely, whereas a q = 0 form represents only about 10% of the overall population. The Mn(II) complex of the pentadentate ligand DO1A also contains a coordinated water molecule. DFT calculations (B3LYP model) are used to obtain information about the structure of this family of closely related complexes in solution, as well as to determine theoretically the 17O and 1H hyperfine coupling constants responsible for the scalar contribution to 17O and 1H NMR relaxation rates and 17O NMR chemical shifts. These calculations provide 17O A/ħ values of ca. 40 × 10(6) rad s(-1), in good agreement with experimental data. The [Mn(1,4-DO2A)(H2O)] complex is endowed with a relatively fast water exchange rate (k(ex)298 = 11.3 × 10(8) s(-1)) in comparison to the [Mn(EDTA)(H2O)]2- analogue (k(ex)298 = 4.7 × 10(8) s(-1)), but about 5 times lower than that of the [Mn(DO1A)(H2O)]+ complex (k(ex)298 = 60 × 10(8) s(-1)). The water exchange rate measured for the latter complex represents the highest water exchange rate ever measured for a Mn(II) complex.
Collapse
Affiliation(s)
- Gabriele A Rolla
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale Amedeo Avogadro, Viale T. Michel 11, 15121, Alessandria, Italy
| | | | | | | | | |
Collapse
|
14
|
Bühl M, Sieffert N, Partouche A, Chaumont A, Wipff G. Speciation of La(III) Chloride Complexes in Water and Acetonitrile: A Density Functional Study. Inorg Chem 2012. [DOI: 10.1021/ic302255a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael Bühl
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews,
Fife KY16 9ST, U.K
| | - Nicolas Sieffert
- UMR-5250
CNRS, Département de Chimie Moléculaire, Université Joseph Fourier Grenoble I, BP 53,
38041 Grenoble Cedex 9, France
| | - Aurélie Partouche
- UMR-5250
CNRS, Département de Chimie Moléculaire, Université Joseph Fourier Grenoble I, BP 53,
38041 Grenoble Cedex 9, France
| | - Alain Chaumont
- UMR 7177 CNRS, Laboratoire MSM, Institut
de Chimie, 1 rue Blaise Pascal, 67000 Strasbourg, France
| | - Georges Wipff
- UMR 7177 CNRS, Laboratoire MSM, Institut
de Chimie, 1 rue Blaise Pascal, 67000 Strasbourg, France
| |
Collapse
|
15
|
Esteban-Gómez D, de Blas A, Rodríguez-Blas T, Helm L, Platas-Iglesias C. Hyperfine Coupling Constants on Inner-Sphere Water Molecules of GdIII-Based MRI Contrast Agents. Chemphyschem 2012; 13:3640-50. [DOI: 10.1002/cphc.201200417] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Indexed: 01/02/2023]
|
16
|
D'Angelo P, Spezia R. Hydration of Lanthanoids(III) and Actinoids(III): An Experimental/Theoretical Saga. Chemistry 2012; 18:11162-78. [DOI: 10.1002/chem.201200572] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Indexed: 11/06/2022]
|
17
|
Lanthanoids(III) and actinoids(III) in water: Diffusion coefficients and hydration enthalpies from polarizable molecular dynamics simulations. PURE APPL CHEM 2012. [DOI: 10.1351/pac-con-12-02-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
By using polarizable molecular dynamics (MD) simulations of lanthanoid(III) and actinoid(III) ions in water, we obtained ionic diffusion coefficients and hydration enthalpies for both series. These values are in good agreement with experiments. Simulations thus allow us to relate them to microscopic structure. In particular, across the series the diffusion coefficients decrease, reflecting the increase of ion–water interaction. Hydration enthalpies also show that interactions increase from light to heavy ions in agreement with experiment. The apparent contradictory result of the decrease of the diffusion coefficient with decreasing ionic radius is tentatively explained in terms of dielectric friction predominance on Stokes’ diffusive regime.
Collapse
|
18
|
Spezia R, Beuchat C, Vuilleumier R, D’Angelo P, Gagliardi L. Unravelling the Hydration Structure of ThX4 (X = Br, Cl) Water Solutions by Molecular Dynamics Simulations and X-ray Absorption Spectroscopy. J Phys Chem B 2012; 116:6465-75. [DOI: 10.1021/jp210350b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Riccardo Spezia
- CNRS, Laboratoire Analyse et
Modélisation pour la Biologie et l’Environnement, UMR 8587 Université d’Evry Val d’Essonne, 91025 Evry Cedex, France
| | - Cesar Beuchat
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest Ansermet, CH-1211
Geneva, Switzerland
| | - Rodolphe Vuilleumier
- Ecole Normale Supérieure, Département
de Chimie, 24, rue Lhomond, 75005 Paris, France,
and UPMC Univ Paris 06, 4, Place Jussieu,
75005 Paris, UMR 8640 CNRS-ENS-UPMC, France
| | - Paola D’Angelo
- Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro 5,
00185 Roma, Italy
| | - Laura Gagliardi
- Department
of Chemistry and
Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United
States
| |
Collapse
|
19
|
Smirnov PR, Trostin VN. Structural parameters of the nearest surrounding of lanthanide ions in aqueous solutions of their salts. RUSS J GEN CHEM+ 2012. [DOI: 10.1134/s1070363212030036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Camellone MF, Marx D. Solvation of Au+versusAu0in aqueous solution: electronic structure governs solvation shell patterns. Phys Chem Chem Phys 2012; 14:937-44. [DOI: 10.1039/c1cp22961c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Jeanvoine Y, Miró P, Martelli F, Cramer CJ, Spezia R. Electronic structure and bonding of lanthanoid(iii) carbonates. Phys Chem Chem Phys 2012; 14:14822-31. [DOI: 10.1039/c2cp41996c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Platas-Iglesias C. The Solution Structure and Dynamics of MRI Probes Based on Lanthanide(III) DOTA as Investigated by DFT and NMR Spectroscopy. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201101164] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
MRI stem cell tracking for therapy in experimental cerebral ischemia. Transl Stroke Res 2011; 3:22-35. [PMID: 24323753 DOI: 10.1007/s12975-011-0111-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/20/2011] [Accepted: 09/28/2011] [Indexed: 12/22/2022]
Abstract
Magnetic resonance has an established role in investigations on the evolution of stroke and the assessment of therapeutic strategies in experimental animals. Here we show that the technique has also an important place for the study of stem cell-mediated regenerative therapies after stroke. We review the literature by bridging from the methodological aspects of stem cell labeling via grafting and monitoring of cell dynamics after implantation into the brain all the way to MRI's role in analyzing the stem cell-mediated functional improvement. Thus, we have aimed at a view combining the focus on the monitoring of the cell activities with the aspect of lesion evolution while including also the essence of a potential functional improvement by the implantation of stem cells following stroke.
Collapse
|
24
|
Mareš J, Liimatainen H, Pennanen TO, Vaara J. Magnetic Properties of Ni2+(aq) from First Principles. J Chem Theory Comput 2011; 7:3248-60. [DOI: 10.1021/ct200336c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jiří Mareš
- NMR Research Group, Department of Physics, University of Oulu, P.O. Box 3000, FIN-90014, Oulu, Finland
| | - Helmi Liimatainen
- Laboratory of Physical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55 (A. I. Virtasen aukio 1), FIN-00014, Helsinki, Finland
| | - Teemu O. Pennanen
- Laboratory of Physical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55 (A. I. Virtasen aukio 1), FIN-00014, Helsinki, Finland
| | - Juha Vaara
- NMR Research Group, Department of Physics, University of Oulu, P.O. Box 3000, FIN-90014, Oulu, Finland
| |
Collapse
|
25
|
Mareš J, Liimatainen H, Laasonen K, Vaara J. Solvation Structure and Dynamics of Ni2+(aq) from First Principles. J Chem Theory Comput 2011; 7:2937-46. [DOI: 10.1021/ct200320z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jiří Mareš
- NMR Research Group, Department of Physics, University of Oulu, P.O. Box 3000, FIN-90014, Oulu, Finland
| | - Helmi Liimatainen
- Laboratory of Physical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55 (A. I. Virtasen aukio 1), FIN-00014, Helsinki, Finland
| | - Kari Laasonen
- Laboratory of Physical Chemistry and Electrochemistry, Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FIN-00076, Espoo, Finland
| | - Juha Vaara
- NMR Research Group, Department of Physics, University of Oulu, P.O. Box 3000, FIN-90014, Oulu, Finland
| |
Collapse
|
26
|
Duvail M, Martelli F, Vitorge P, Spezia R. Polarizable interaction potential for molecular dynamics simulations of actinoids(III) in liquid water. J Chem Phys 2011; 135:044503. [DOI: 10.1063/1.3613699] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
27
|
Fujiwara T, Mori H, Mochizuki Y, Osanai Y, Miyoshi E. 4f-in-core model core potentials for trivalent lanthanides. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.05.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Miéville P, Jaccard H, Reviriego F, Tripier R, Helm L. Synthesis, complexation and NMR relaxation properties of Gd3+ complexes of Mes(DO3A)3. Dalton Trans 2011; 40:4260-7. [DOI: 10.1039/c0dt01597k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Bonnet CS, Fries PH. Paramagnetic Relaxation Enhancements in Acetate and Its Fluorine Derivatives Interacting with Gd3+: Complex Formation, Structure, and Transmetallation. Chemphyschem 2010; 11:3474-84. [DOI: 10.1002/cphc.201000448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Kuta J, Clark AE. Trends in Aqueous Hydration Across the 4f Period Assessed by Reliable Computational Methods. Inorg Chem 2010; 49:7808-17. [DOI: 10.1021/ic100623y] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jadwiga Kuta
- Department of Chemistry, Washington State University, Pullman, Washington 99164
| | - Aurora E. Clark
- Department of Chemistry, Washington State University, Pullman, Washington 99164
| |
Collapse
|
31
|
Terrier C, Vitorge P, Gaigeot MP, Spezia R, Vuilleumier R. Density functional theory based molecular dynamics study of hydration and electronic properties of aqueous La3+. J Chem Phys 2010; 133:044509. [DOI: 10.1063/1.3460813] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Fujiwara T, Mori H, Mochizuki Y, Tatewaki H, Miyoshi E. Theoretical study of hydration models of trivalent rare-earth ions using model core potentials. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.theochem.2010.02.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Duvail M, Ruas A, Venault L, Moisy P, Guilbaud P. Molecular Dynamics Studies of Concentrated Binary Aqueous Solutions of Lanthanide Salts: Structures and Exchange Dynamics. Inorg Chem 2009; 49:519-30. [DOI: 10.1021/ic9017085] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Magali Duvail
- CEA, Nuclear Energy Division, RadioChemistry & Processes Department, F-30207 Bagnols sur Cèze, France
| | - Alexandre Ruas
- CEA, Nuclear Energy Division, RadioChemistry & Processes Department, F-30207 Bagnols sur Cèze, France
| | - Laurent Venault
- CEA, Nuclear Energy Division, RadioChemistry & Processes Department, F-30207 Bagnols sur Cèze, France
| | - Philippe Moisy
- CEA, Nuclear Energy Division, RadioChemistry & Processes Department, F-30207 Bagnols sur Cèze, France
| | - Philippe Guilbaud
- CEA, Nuclear Energy Division, RadioChemistry & Processes Department, F-30207 Bagnols sur Cèze, France
| |
Collapse
|
34
|
Spezia R, Duvail M, Vitorge P, D'Angelo P. Molecular dynamics to rationalize EXAFS experiments: A dynamical model explaining hydration behaviour across the lanthanoid(III) series. ACTA ACUST UNITED AC 2009. [DOI: 10.1088/1742-6596/190/1/012056] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
What first principles molecular dynamics can tell us about EXAFS spectroscopy of radioactive heavy metal cations in water. RADIOCHIM ACTA 2009. [DOI: 10.1524/ract.2009.1616] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
In this paper we show how molecular dynamics simulation can improve comprehension of structure and dynamics of water solvent around heavy cations. In particular, metal-water radial distribution function obtained from molecular dynamics can be used into EXAFS equation to improve the experimental signal fitting. Here we show results on structure and dynamics of Co2+, that is a radiocontaminant cation in its isotopic form 60Co, and lanthanoids(III) that are the chemical analogues of actinides(III) in aqueous solution.
Collapse
|
36
|
Xiao W, Xia QQ, Zhang YF, Ning LX, Cui ZF. Density Functional Study on Structures and Relative Stability of Gd(H2O)n3+(n= 8,9). CHINESE J CHEM PHYS 2009. [DOI: 10.1088/1674-0068/22/04/395-400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
Villa A, Hess B, Saint-Martin H. Dynamics and Structure of Ln(III)−Aqua Ions: A Comparative Molecular Dynamics Study Using ab Initio Based Flexible and Polarizable Model Potentials. J Phys Chem B 2009; 113:7270-81. [DOI: 10.1021/jp8097445] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alessandra Villa
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany, and Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62251 Cuernavaca, Morelos, México
| | - Berk Hess
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany, and Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62251 Cuernavaca, Morelos, México
| | - Humberto Saint-Martin
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany, and Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62251 Cuernavaca, Morelos, México
| |
Collapse
|
38
|
Duvail M, Vitorge P, Spezia R. Building a polarizable pair interaction potential for lanthanoids(III) in liquid water: A molecular dynamics study of structure and dynamics of the whole series. J Chem Phys 2009; 130:104501. [DOI: 10.1063/1.3081143] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Chaumont A, Wipff G. Solvation of Ln(III) Lanthanide Cations in the [BMI][SCN], [MeBu3N][SCN], and [BMI]5[Ln(NCS)8] Ionic Liquids: A Molecular Dynamics Study. Inorg Chem 2009; 48:4277-89. [DOI: 10.1021/ic802227p] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A. Chaumont
- Institut de Chimie, Université Louis Pasteur, 4 rue B. Pascal, Strasbourg 67 000, France
| | - G. Wipff
- Institut de Chimie, Université Louis Pasteur, 4 rue B. Pascal, Strasbourg 67 000, France
| |
Collapse
|
40
|
Lindgren M, Laaksonen A, Westlund PO. A theoretical spin relaxation and molecular dynamics simulation study of the Gd(H2O)93+ complex. Phys Chem Chem Phys 2009; 11:10368-76. [DOI: 10.1039/b907099k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Petit L, Vuilleumier R, Maldivi P, Adamo C. Molecular Dynamics Study of the Coordination Sphere of Trivalent Lanthanum in a Highly Concentrated LiCl Aqueous Solution: a Combined Classical and Ab Initio Approach. J Phys Chem B 2008; 112:10603-7. [DOI: 10.1021/jp8017106] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- L. Petit
- Laboratoire de Reconnaissance Ionique et de Chimie de Coordination, CEA-INAC/LCIB (UMRE 3 CEA-UJF), 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France, Laboratoire de Physique Théorique de la Matiere Condensée, UMR7600, Université Pierre et Marie Curie, Paris, Tour 24 Boite 121, 4 place Jussieu, F-75252 Paris CEDEX 05, France, and Laboratoire d’Electrochimie et de Chimie Analytique, CNRS UMR-7575, Ecole Nationale Supérieure de Chimie de Paris, 11 rue P. et M. Curie, F-75231 Paris Cedex 05, France
| | - R. Vuilleumier
- Laboratoire de Reconnaissance Ionique et de Chimie de Coordination, CEA-INAC/LCIB (UMRE 3 CEA-UJF), 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France, Laboratoire de Physique Théorique de la Matiere Condensée, UMR7600, Université Pierre et Marie Curie, Paris, Tour 24 Boite 121, 4 place Jussieu, F-75252 Paris CEDEX 05, France, and Laboratoire d’Electrochimie et de Chimie Analytique, CNRS UMR-7575, Ecole Nationale Supérieure de Chimie de Paris, 11 rue P. et M. Curie, F-75231 Paris Cedex 05, France
| | - P. Maldivi
- Laboratoire de Reconnaissance Ionique et de Chimie de Coordination, CEA-INAC/LCIB (UMRE 3 CEA-UJF), 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France, Laboratoire de Physique Théorique de la Matiere Condensée, UMR7600, Université Pierre et Marie Curie, Paris, Tour 24 Boite 121, 4 place Jussieu, F-75252 Paris CEDEX 05, France, and Laboratoire d’Electrochimie et de Chimie Analytique, CNRS UMR-7575, Ecole Nationale Supérieure de Chimie de Paris, 11 rue P. et M. Curie, F-75231 Paris Cedex 05, France
| | - C. Adamo
- Laboratoire de Reconnaissance Ionique et de Chimie de Coordination, CEA-INAC/LCIB (UMRE 3 CEA-UJF), 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France, Laboratoire de Physique Théorique de la Matiere Condensée, UMR7600, Université Pierre et Marie Curie, Paris, Tour 24 Boite 121, 4 place Jussieu, F-75252 Paris CEDEX 05, France, and Laboratoire d’Electrochimie et de Chimie Analytique, CNRS UMR-7575, Ecole Nationale Supérieure de Chimie de Paris, 11 rue P. et M. Curie, F-75231 Paris Cedex 05, France
| |
Collapse
|
42
|
Duvail M, Spezia R, Vitorge P. A Dynamic Model to Explain Hydration Behaviour along the Lanthanide Series. Chemphyschem 2008; 9:693-6. [DOI: 10.1002/cphc.200700803] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Yazyev OV, Helm L. Nuclear Spin Relaxation Parameters of MRI Contrast Agents – Insight from Quantum Mechanical Calculations. Eur J Inorg Chem 2007. [DOI: 10.1002/ejic.200701013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Oleg V. Yazyev
- Institut de Théorie des Phénomènes Physiques, Ecole Polytechnique Fédérale de Lausanne, and Institut Romand de Recherche Numérique en Physique des Matériaux (IRRMA), EPFL‐PPH, 1015 Lausanne, Switzerland, Fax: +41‐21‐693‐9875
| | - Lothar Helm
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, EPFL‐BCH, 1015 Lausanne, Switzerland, Fax: +41‐21‐693‐9875
| |
Collapse
|