1
|
Athanasiou T, Mei B, Schweizer KS, Petekidis G. Probing cage dynamics in concentrated hard-sphere suspensions and glasses with high frequency rheometry. SOFT MATTER 2025; 21:2607-2622. [PMID: 40071557 DOI: 10.1039/d4sm01428f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
The cage concept, a central microscopic mechanism for glassy dynamics, has been utilized in concentrated colloidal suspensions to describe a number of phenomena. Here, we probe the evolution of cage formation and shear elasticity with increasing volume fraction in hard sphere suspensions, with emphasis on the short-time dynamics. To this end, we utilize linear viscoelastic (LVE) measurements, by means of conventional rotational rheometers and a home-made HF piezo-rheometer, to probe the dynamic response over a broad range of volume fractions up to the very dense glassy regime in proximity to random close packing. We focus on the LVE spectra and times shorter than those corresponding to the dynamic shear modulus G' plateau, where the system approaches transient localization and cage confinement. At these short times (higher frequencies), a dynamic cage has not yet fully developed and particles are not (strictly) transiently localized. This corresponds to an effective solid-to-liquid transition in the LVE spectrum (dynamic moduli) marked by a high frequency (HF) crossover. On the other hand, as the volume fraction increases caging becomes tighter, particles become more localized, and the onset of the localization time scale becomes shorter. This onset of transient localization to shorter times shifts the HF crossover to higher values. Therefore, the study of the dependence of the HF crossover properties (frequency and moduli) on volume fractions provides direct insights concerning the onset of particle in-cage motion and allows direct comparison with current theoretical models. We compare the experimental data with predictions of a microscopic statistical mechanical theory where qualitative and quantitative agreements are found. Findings include the discovery of microscopic mechanisms for the crossover between the two exponential dependences of the onset of the localization time scale and the elastic shear modulus at high volume fractions as a consequence of emergent many body structural correlations and their consequences on dynamic constraints. Moreover, an analytic derivation of the relationship between the high frequency localized short-time scale and the elastic shear modulus is provided which offers new physical insights and explains why these two variables are experimentally observed to exhibit nearly-identical behaviors.
Collapse
Affiliation(s)
- Thanasis Athanasiou
- Institute of Electronic Structure & Laser, FORTH, Heraklion, 70013, Greece.
- Department of Materials Science and Engineering, University of Crete, Heraklion, 70013, Greece
| | - Baicheng Mei
- Department of Material Science and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Kenneth S Schweizer
- Department of Material Science and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
- Department of Chemistry and Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - George Petekidis
- Institute of Electronic Structure & Laser, FORTH, Heraklion, 70013, Greece.
- Department of Materials Science and Engineering, University of Crete, Heraklion, 70013, Greece
| |
Collapse
|
2
|
Lyu Y, Ji Z, Liu D, Xu X, Guo R, Shi X, Wang X. Spider-silk inspired ultrafast alkali-induced molecular aggregation for 3D printing arbitrary tubular hydrogels. MATERIALS HORIZONS 2025; 12:520-530. [PMID: 39494672 DOI: 10.1039/d4mh01291g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Fabricating tubular hydrogel models with arbitrary structural complexity and controllable diameters using an ultrafast, facile yet universal method is desirable for vascular prototypes yet still a great challenge. Herein, inspired by the denaturing ability of spider silks, a novel strategy to induce complexation via applying highly concentrated alkali into a polyvinyl alcohol/ionic liquid (PVA/IL) solution, i.e., alkali-induced molecular aggregation (AMA), is proposed to achieve such purpose. This strategy enables the rapid and facile fabrication of tubular hydrogel architectures with tunable diameters, controllable thicknesses, and excellent mechanical performance with a tensile strength of up to 1.1 MPa and stretchability exceeding 600%. Importantly, this novel strategy combined with 3D printing facilitates the rapid fabrication of a variety of precise tubular hydrogel models with connected cavity structures which are difficult to achieve using current methods. This ultrafast solidification strategy could also be extended to various alkalis, cations and anions to build different hydrogels, showcasing its versatility and universality. Hence, this strategy can be pioneering to rapidly fabricate complex three-dimensional and hollow enclosed hydrogel models for simulating endovascular interventional therapy.
Collapse
Affiliation(s)
- Yang Lyu
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
| | - Zhongying Ji
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Di Liu
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Xinqiang Xu
- School of Chemistry and Chemical Engineering, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, 832003, China
| | - Rui Guo
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Xinyan Shi
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Xiaolong Wang
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
3
|
Cuong TD, Phan AD. Superionic UO_{2} crystal: How to model its relaxation and diffusion via a microscopic theory of glass-forming liquids. Phys Rev E 2025; 111:015434. [PMID: 39972762 DOI: 10.1103/physreve.111.015434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025]
Abstract
UO_{2} is a crucial nuclear material but its behaviors are elusive due to the impact of superionic diffusion. Herein, we introduce a simple but effective theoretical model to describe the intrinsic superionicity of UO_{2} at the quantitative level. Our idea stems from a close similarity between superionic crystals and supercooled liquids. Namely, we view UO_{2} as a randomly pinned hard-sphere fluid in the framework of the elastically collective nonlinear Langevin equation theory. This treatment allows us to fully evaluate the contribution of local, collective, pinning, and screening effects to the molecular dynamics of UO_{2} without complex computational processes. Finite-temperature factors are considered via volumetric expansion during isobaric heating. On that basis, we satisfactorily explain recent large-scale atomistic simulations on UO_{2} under various thermodynamic conditions. Our calculations also reveal that UO_{2} is equivalent to an intermediate glass former. Its structural relaxation, self-diffusion, and shear deformation are strongly correlated near the onset of superionicity. These intimate correlations are reminiscent of the famed Dyre shoving model in the soft-matter community. Our results promise to facilitate the development of diverse energy applications of UO_{2}.
Collapse
Affiliation(s)
- Tran Dinh Cuong
- Phenikaa University, Phenikaa Institute for Advanced Study, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam
| | - Anh D Phan
- Phenikaa University, Phenikaa University, Faculty of Materials Science and Engineering, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam and Phenikaa Institute for Advanced Study, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam
| |
Collapse
|
4
|
Mei B, Schweizer KS. Medium-Range Structural Order as the Driver of Activated Dynamics and Complexity Reduction in Glass-Forming Liquids. J Phys Chem B 2024; 128:11293-11312. [PMID: 39481127 DOI: 10.1021/acs.jpcb.4c05488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
We analyze in depth the Elastically Collective Nonlinear Langevin Equation theory of activated dynamics in metastable liquids to establish that the predicted inter-relationships between the alpha relaxation time, local cage and collective elastic barriers, dynamic localization length, and shear modulus are causally related within the theory to the medium range order (MRO) static correlation length. The latter grows exponentially with density for metastable hard sphere fluids and as a nonuniversal inverse power law with temperature for supercooled liquids under isobaric conditions. The physical origin of predicted connections between the alpha time and other metrics of cage order and the thermodynamic inverse dimensionless compressibility is fully established. It is discovered that although kinetic constraints from the real space first coordination shell are important for the alpha time, they are of secondary importance compared to the consequences of the more universal MRO correlations in both the modestly and deeply metastable regimes. This understanding sheds new light on the theoretical basis for, and prior successes of, the predictive mapping of chemically complex thermal liquids to effective hard sphere fluids based on matching their dimensionless compressibilities, a scheme we call "complexity reduction". In essence, the latter is equivalent to the physical requirement that the thermal liquid MRO correlation equals that of its effective hard sphere analog. The mapping alone is shown to provide a remarkable level of quantitative predictive power for the glass transition temperature Tg of 21 molecular and polymer liquids. Predictions for the chemically specific absolute magnitude and growth with cooling of the MRO correlation length are obtained and lie in the window of 2-6 nm at Tg. Dynamic heterogeneity, elastic facilitation, and beyond pair structure issues are briefly discussed. Future opportunities to theoretically analyze the equilibrated deep glass regime are outlined.
Collapse
Affiliation(s)
- Baicheng Mei
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Kenneth S Schweizer
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States
- Department of Materials Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Materials Chemical & Biomolecular Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Chaki S, Mei B, Schweizer KS. Theoretical analysis of the structure, thermodynamics, and shear elasticity of deeply metastable hard sphere fluids. Phys Rev E 2024; 110:034606. [PMID: 39425383 DOI: 10.1103/physreve.110.034606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/19/2024] [Indexed: 10/21/2024]
Abstract
The structure, thermodynamics, and slow activated dynamics of the equilibrated metastable regime of glass-forming fluids remain a poorly understood problem of high theoretical and experimental interest. We apply a highly accurate microscopic equilibrium liquid state integral equation theory, in conjunction with naïve mode coupling theory of particle localization, to study in a unified manner the structural correlations, thermodynamic properties, and dynamic elastic shear modulus in deeply metastable hard sphere fluids. Distinctive behaviors are predicted including divergent inverse critical power laws for the contact value of the pair correlation function, pressure, and inverse dimensionless compressibility, and a splitting of the second peak and large suppression of interstitial configurations of the pair correlation function. The dynamic elastic modulus is predicted to exhibit two distinct exponential growth regimes with packing fraction that have strongly different slopes. These thermodynamic, structural, and elastic modulus results are consistent with simulations and experiments. Perhaps most unexpectedly, connections between the amplitude of long wavelength density fluctuations, dimensionless compressibility, local structure, and the dynamic elastic shear modulus have been theoretically elucidated. These connections are more broadly relevant to understanding the slow activated relaxation and mechanical response of colloidal suspensions in the ultradense metastable region and deeply supercooled thermal liquids in equilibrium.
Collapse
Affiliation(s)
- Subhasish Chaki
- Department of Materials Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Institut für Theoretische Physik II-Soft Matter, Heinrich-Heine-Universität, Düsseldorf-40225, Germany
| | | | - Kenneth S Schweizer
- Department of Materials Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Departments of Chemistry and Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
6
|
Phan AD, Schweizer KS. Effect of the nature of the solid substrate on spatially heterogeneous activated dynamics in glass forming supported films. J Chem Phys 2024; 160:074902. [PMID: 38364012 DOI: 10.1063/5.0188016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/10/2024] [Indexed: 02/18/2024] Open
Abstract
We extend the force-level elastically collective nonlinear Langevin equation theory to treat the spatial gradients of the alpha relaxation time and glass transition temperature, and the corresponding film-averaged quantities, to the geometrically asymmetric case of finite thickness supported films with variable fluid-substrate coupling. The latter typically nonuniversally slows down motion near the solid-liquid interface as modeled via modification of the surface dynamic free energy caging constraints that are spatially transferred into the film and which compete with the accelerated relaxation gradient induced by the vapor interface. Quantitative applications to the foundational hard sphere fluid and a polymer melt are presented. The strength of the effective fluid-substrate coupling has very large consequences for the dynamical gradients and film-averaged quantities in a film thickness and thermodynamic state dependent manner. The interference of the dynamical gradients of opposite nature emanating from the vapor and solid interfaces is determined, including the conditions for the disappearance of a bulk-like region in the film center. The relative importance of surface-induced modification of local caging vs the generic truncation of the long range collective elastic component of the activation barrier is studied. The conditions for the accuracy and failure of a simple superposition approximation for dynamical gradients in thin films are also determined. The emergence of near substrate dead layers, large gradient effects on film-averaged response functions, and a weak non-monotonic evolution of dynamic gradients in thick and cold films are briefly discussed. The connection of our theoretical results to simulations and experiments is briefly discussed, as is the extension to treat more complex glass-forming systems under nanoconfinement.
Collapse
Affiliation(s)
- Anh D Phan
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi 12116, Vietnam
- Phenikaa Institute for Advanced Study, Phenikaa University, Hanoi 12116, Vietnam
| | - Kenneth S Schweizer
- Departments of Materials Science, Chemistry, Chemical and Biomolecular Engineering and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
7
|
Phan AD. Screening and collective effects in randomly pinned fluids: a new theoretical framework. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:435101. [PMID: 35985315 DOI: 10.1088/1361-648x/ac8b51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
We propose a theoretical framework for the dynamics of bulk isotropic hard-sphere systems in the presence of randomly pinned particles and apply this theory to supercooled water to validate it. Structural relaxation is mainly governed by local and non-local activated process. As the pinned fraction grows, a local caging constraint becomes stronger and the long range collective aspect of relaxation is screened by immobile obstacles. Different responses of the local and cooperative motions results in subtle predictions for how the alpha relaxation time varies with pinning and density. Our theoretical analysis for the relaxation time of water with pinned molecules quantitatively well describe previous simulations. In addition, the thermal dependence of relaxation for unpinned bulk water is also consistent with prior computational and experimental data.
Collapse
Affiliation(s)
- Anh D Phan
- Faculty of Materials Science and Engineering, Phenikaa Institute for Advanced Study, Phenikaa University, Hanoi 12116, Vietnam
| |
Collapse
|
8
|
Suman K, Wagner NJ. Anomalous rheological aging of a model thermoreversible colloidal gel following a thermal quench. J Chem Phys 2022; 157:024901. [DOI: 10.1063/5.0094237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the aging behavior in a well-studied model system comprised of a colloidal suspension of thermoreversible adhesive hard spheres (AHS) but thermally quenched below the gel transition to much larger depths than previously studied. The aging behavior in the model AHS system is monitored by small amplitude oscillatory shear rheology measurements conducted while rapidly quenching from liquid state at 40{degree sign}C to a temperature below the gel temperature and new, anomalous aging behaviors are observed. Shallow quenches lead to monotonic development of the elastic modulus with time consistent with prior reports for the development of a homogeneous gel (Gordon et al., Journal of Rheology 2017). However, for deeper quenches, a unique and new phenomenon is reported - namely after an initial rise in the modulus, a reproducible drop in modulus is observed, followed by a plateau in modulus value. This drop can be gradual or sudden, and the extent of the drop, both depends on quench depth. After this drop in modulus, AHS gel evolves toward a quench-path independent state over the experimental timescale. These effects of the extent of quenching on aging behavior is hypothesized to be a consequence of quenching into different underlying thermodynamic states of colloidal gels and the possible influence of the adhesive glass dynamical arrest for the deepest quenches. The research connects homogeneous gelation with heterogeneous gel formation due to phase separation and shows that the extent of quench can be used as an independent parameter to govern the rheological response of the arrested gel.
Collapse
Affiliation(s)
- Khushboo Suman
- Department of Chemical and Biomolecular Engineering, University of Delaware, United States of America
| | - Norman J Wagner
- Chemical & Bimolecular Engineering Department, University of Delaware Department of Chemical and Biomolecular Engineering, United States of America
| |
Collapse
|
9
|
Zhang W, Starr FW, Douglas JF. Activation free energy gradient controls interfacial mobility gradient in thin polymer films. J Chem Phys 2021; 155:174901. [PMID: 34742183 DOI: 10.1063/5.0064866] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We examine the mobility gradient in the interfacial region of substrate-supported polymer films using molecular dynamics simulations and interpret these gradients within the string model of glass-formation. No large gradients in the extent of collective motion exist in these simulated films, and an analysis of the mobility gradient on a layer-by-layer basis indicates that the string model provides a quantitative description of the relaxation time gradient. Consequently, the string model indicates that the interfacial mobility gradient derives mainly from a gradient in the high-temperature activation enthalpy ΔH0 and entropy ΔS0 as a function of depth z, an effect that exists even in the high-temperature Arrhenius relaxation regime far above the glass transition temperature. To gain insight into the interfacial mobility gradient, we examined various material properties suggested previously to influence ΔH0 in condensed materials, including density, potential and cohesive energy density, and a local measure of stiffness or u2(z)-3/2, where u2(z) is the average mean squared particle displacement at a caging time (on the order of a ps). We find that changes in local stiffness best correlate with changes in ΔH0(z) and that ΔS0(z) also contributes significantly to the interfacial mobility gradient, so it must not be neglected.
Collapse
Affiliation(s)
- Wengang Zhang
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Francis W Starr
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA
| | - Jack F Douglas
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
10
|
Mei B, Schweizer KS. Activated penetrant dynamics in glass forming liquids: size effects, decoupling, slaving, collective elasticity and correlation with matrix compressibility. SOFT MATTER 2021; 17:2624-2639. [PMID: 33528485 DOI: 10.1039/d0sm02215b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We employ the microscopic self-consistent cooperative hopping theory of penetrant activated dynamics in glass forming viscous liquids and colloidal suspensions to address new questions over a wide range of high matrix packing fractions and penetrant-to-matrix particle size ratios. The focus is on the mean activated relaxation time of smaller tracers in a hard sphere fluid of larger particle matrices. This quantity also determines the penetrant diffusion constant and connects directly with the structural relaxation time probed in an incoherent dynamic structure factor measurement. The timescale of the non-activated fast dissipative process is also studied and is predicted to follow power laws with the contact value of the penetrant-matrix pair correlation function and the penetrant-matrix size ratio. For long time penetrant relaxation, in the relatively lower packing fraction metastable regime the local cage barriers are dominant and matrix collective elasticity effects unimportant. As packing fraction and/or penetrant size grows, much higher barriers emerge and the collective elasticity associated with the correlated matrix dynamic displacement that facilitates penetrant hopping becomes important. This results in a non-monotonic variation with packing fraction of the degree of decoupling between the matrix and penetrant alpha relaxation times. The conditions required for penetrant hopping to become slaved to the matrix alpha process are determined, which depend mainly on the penetrant to matrix particle size ratio. By analyzing the absolute and relative importance of the cage and elastic barriers we establish a mechanistic understanding of the origin of the predicted exponential growth of the penetrant hopping time with size ratio predicted at very high packing fractions. A dynamics-thermodynamics power law connection between the penetrant activation barrier and the matrix dimensionless compressibility is established as a prediction of theory, with different scaling exponents depending on whether matrix collective elasticity effects are important. Quantitative comparisons with simulations of the penetrant relaxation time, diffusion constant, and transient localization length of tracers in dense colloidal suspensions and cold viscous liquids reveal good agreements. Multiple new predictions are made that are testable via future experiments and simulations. Extension of the theoretical approach to more complex systems of high experimental interest (nonspherical molecules, semiflexible polymers, crosslinked networks) interacting via variable hard or soft repulsions and/or short range attractions is possible, including under external deformation.
Collapse
Affiliation(s)
- Baicheng Mei
- Department of Materials Science, University of Illinois, Urbana, IL 61801, USA. and Materials Research Laboratory, University of Illinois, Urbana, IL 61801, USA
| | - Kenneth S Schweizer
- Department of Materials Science, University of Illinois, Urbana, IL 61801, USA. and Materials Research Laboratory, University of Illinois, Urbana, IL 61801, USA and Department of Chemistry, University of Illinois, Urbana, IL 61801, USA and Department of Chemical & Biomolecular Engineering, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
11
|
Chen Y, Rogers SA, Narayanan S, Harden JL, Leheny RL. Microscopic ergodicity breaking governs the emergence and evolution of elasticity in glass-forming nanoclay suspensions. Phys Rev E 2020; 102:042619. [PMID: 33212706 DOI: 10.1103/physreve.102.042619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/10/2020] [Indexed: 11/07/2022]
Abstract
We report a study combining x-ray photon correlation spectroscopy (XPCS) with in situ rheology to investigate the microscopic dynamics and mechanical properties of aqueous suspensions of the synthetic hectorite clay Laponite, which is composed of charged, nanometer-scale, disk-shaped particles. The suspensions, with particle concentrations ranging from 3.25 to 3.75 wt %, evolve over time from a fluid to a soft glass that displays aging behavior. The XPCS measurements characterize the localization of the particles during the formation and aging of the soft-glass state. The fraction of localized particles, f_{0}, increases rapidly during the early formation stage and grows more slowly during subsequent aging, while the characteristic localization length r_{loc} steadily decreases. Despite the strongly varying rates of aging at different concentrations, both f_{0} and r_{loc} scale with the elastic shear modulus G^{'} in a manner independent of concentration. During the later aging stage, the scaling between r_{loc} and G^{'} agrees quantitatively with a prediction of naive mode coupling theory. Breakdown of agreement with the theory during the early formation stage indicates the prevalence of dynamic heterogeneity, suggesting the soft solid forms through precursors of dynamically localized clusters.
Collapse
Affiliation(s)
- Yihao Chen
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Simon A Rogers
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Champaign, Illinois 61801, USA
| | - Suresh Narayanan
- X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - James L Harden
- Department of Physics & CAMaR, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Robert L Leheny
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
12
|
Mahmud G, Zhang H, Douglas JF. Localization model description of the interfacial dynamics of crystalline Cu and Cu 64Zr 36 metallic glass films. J Chem Phys 2020; 153:124508. [PMID: 33003746 DOI: 10.1063/5.0022937] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent studies of structural relaxation in Cu-Zr metallic glass materials having a range of compositions and over a wide range of temperatures and in crystalline UO2 under superionic conditions have indicated that the localization model (LM) can predict the structural relaxation time τα of these materials from the intermediate scattering function without any free parameters from the particle mean square displacement ⟨r2⟩ at a caging time on the order of ps, i.e., the "Debye-Waller factor" (DWF). In the present work, we test whether this remarkable relation between the "fast" picosecond dynamics and the rate of structural relaxation τα in these model amorphous and crystalline materials can be extended to the prediction of the local interfacial dynamics of model amorphous and crystalline films. Specifically, we simulate the free-standing amorphous Cu64Zr36 and crystalline Cu films and find that the LM provides an excellent parameter-free prediction for τα of the interfacial region. We also show that the Tammann temperature, defining the initial formation of a mobile interfacial layer, can be estimated precisely for both crystalline and glass-forming solid materials from the condition that the DWFs of the interfacial region and the material interior coincide.
Collapse
Affiliation(s)
- Gazi Mahmud
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jack F Douglas
- Material Measurement Laboratory, Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
13
|
Zhou Y, Schweizer KS. Theory of microstructure-dependent glassy shear elasticity and dynamic localization in melt polymer nanocomposites. J Chem Phys 2020; 153:114901. [PMID: 32962384 DOI: 10.1063/5.0021954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We present an integrated theoretical study of the structure, thermodynamic properties, dynamic localization, and glassy shear modulus of melt polymer nanocomposites (PNCs) that spans the three microstructural regimes of entropic depletion induced nanoparticle (NP) clustering, discrete adsorbed layer driven NP dispersion, and polymer-mediated bridging network. The evolution of equilibrium and dynamic properties with NP loading, total packing fraction, and strength of interfacial attraction is systematically studied based on a minimalist model. Structural predictions of polymer reference interaction site model integral equation theory are employed to establish the rich behavior of the interfacial cohesive force density, surface excess, and a measure of free volume as a function of PNC variables. The glassy dynamic shear modulus is predicted to be softened, reinforced, or hardly changed relative to the pure polymer melt depending on system parameters, as a result of the competing and qualitatively different influences of interfacial cohesion (physical bonding), free volume, and entropic depletion on dynamic localization and shear elasticity. The localization of polymer segments is the dominant factor in determining bulk PNC softening and reinforcement effects for moderate to strong interfacial attractions, respectively. While in the athermal entropy-dominated regime, the primary origin of mechanical reinforcement is the stress stored in the aggregated NP subsystem. The PNC shear modulus is often qualitatively correlated with the segment localization length but with notable exceptions. The present work provides the foundation for developing a theory of segmental relaxation, Tg changes, and collective NP dynamics in PNCs based on a self-consistent treatment of the cooperative activated motions of segments and NPs.
Collapse
Affiliation(s)
- Yuxing Zhou
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA
| | - Kenneth S Schweizer
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
14
|
Mei B, Zhou Y, Schweizer KS. Thermodynamics-Structure-Dynamics Correlations and Nonuniversal Effects in the Elastically Collective Activated Hopping Theory of Glass-Forming Liquids. J Phys Chem B 2020; 124:6121-6131. [PMID: 32633526 DOI: 10.1021/acs.jpcb.0c03613] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We employ the microscopic Elastically Collective Nonlinear Langevin Equation (ECNLE) theory of activated dynamics in combination with crystal-avoiding simulations to study four inter-related questions for metastable monodisperse hard sphere fluids. The first is how significantly improved integral equation theory structural input (Modified-Verlet (MV) closure) changes the dynamical predictions of ECNLE theory. The main consequence is a modest enhancement of the importance of the collective elastic barrier relative to its local cage contribution, which increases the alpha relaxation time and fragility relative to prior results based on the Percus-Yevick closure. Second, ECNLE-MV theory predictions for the alpha time and self-diffusion constant in the metastable regime are quantitatively compared to our new simulations. The small adjustment of a numerical prefactor that enters the collective elastic barrier leads to quantitative agreement over three decades. Third, using the more accurate MV structural input, ECNLE theory is shown to predict thermodynamics-structure-dynamics "correlations" based on various long and short wavelength scalar properties all related to static two-point collective density fluctuations. The logarithm of the alpha relaxation time scales as a power law with these scalar metrics with an exponent that is significantly lower in the less dense noncooperative activated regime compared to the very dense highly cooperative regime. However, the discovered correlation of activated relaxation with a thermodynamic property (dimensionless compressibility) is not causal in ECNLE theory, but rather reflects a strong connection between the local structural quantities that quantify kinetic constraints in the theory with the amplitude of long wavelength density fluctuations. Fourth, the consequences of chemically specific nonuniversalities associated with the onset condition and relative importance of collective elasticity are studied. The predicted thermodynamics-structure-dynamics correlations are found to be robust, albeit with nontrivial shifts of the onset condition.
Collapse
|
15
|
Phan AD, Jedrzejowska A, Paluch M, Wakabayashi K. Theoretical and Experimental Study of Compression Effects on Structural Relaxation of Glass-Forming Liquids. ACS OMEGA 2020; 5:11035-11042. [PMID: 32455224 PMCID: PMC7241026 DOI: 10.1021/acsomega.0c00860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
We develop the elastically collective nonlinear Langevin equation theory of bulk relaxation of glass-forming liquids to investigate molecular mobility under compression conditions. The applied pressure restricts more molecular motion and therefore significantly slows down the molecular dynamics when increasing the pressure. We quantitatively determine the temperature and pressure dependence of the structural relaxation time. To validate our model, dielectric spectroscopy experiments for three rigid and nonpolymeric supramolecules are carried out at ambient and elevated pressures. The numerical results quantitatively agree with experimental data.
Collapse
Affiliation(s)
- Anh D. Phan
- Faculty
of Materials Science and Engineering, Phenikaa Institute for Advanced Study, Phenikaa University, Hanoi 12116, Vietnam
- Faculty
of Computer Science, Artificial Intelligence Laboratory, Phenikaa University, Hanoi 12116, Vietnam
| | - Agnieszka Jedrzejowska
- Institute
of Physics, University of Silesia, SMCEBI, 75 Puku Piechoty 1a, 41-500 Chorzów, Poland
| | - Marian Paluch
- Institute
of Physics, University of Silesia, SMCEBI, 75 Puku Piechoty 1a, 41-500 Chorzów, Poland
| | - Katsunori Wakabayashi
- Department
of Nanotechnology for Sustainable Energy, School of Science and Technology, Kwansei Gakuin University, Sanda 669-1337, Hyogo, Japan
| |
Collapse
|
16
|
Zhou Y, Mei B, Schweizer KS. Integral equation theory of thermodynamics, pair structure, and growing static length scale in metastable hard sphere and Weeks-Chandler-Andersen fluids. Phys Rev E 2020; 101:042121. [PMID: 32422713 DOI: 10.1103/physreve.101.042121] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
We employ the Ornstein-Zernike integral equation theory with the Percus-Yevick (PY) and modified-Verlet (MV) closures to study the equilibrium structural and thermodynamic properties of metastable monodisperse hard sphere and continuous repulsion Weeks-Chandler-Andersen (WCA) fluids under density and temperature conditions where the system is strongly overcompressed or supercooled, respectively. The theoretical results are compared to crystal-avoiding simulations of these dense monodisperse model one-component fluids. The equation of state (EOS) and dimensionless compressibility are computed using both the virial and compressibility routes. For hard spheres, the MV-based virial route EOS and dimensionless compressibility are in very good agreement with simulation for all packing fractions, much better than the PY analogs. The corresponding MV-based predictions for the static structure factor are also very good. The amplitude of density fluctuations on the local cage scale and in the long wavelength limit, and three technically different measures of the density correlation length, are studied with both closures. All five properties grow in a roughly exponential manner with density in the metastable regime up to packing fractions of 58% with no sign of saturation. The MV-based results are in good agreement with our crystal-avoiding simulations. Interestingly, the density dependences of long and short wavelength quantities are closely related. The MV-based theory is also quite accurate for the thermodynamics and structure of supercooled monodisperse WCA fluids. Overall our findings are also relevant as critical input to microscopic theories that relate the equilibrium pair correlation function or static structure factor to dynamical constraints, barriers, and activated relaxation in glass-forming liquids.
Collapse
Affiliation(s)
- Yuxing Zhou
- Department of Material Science and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Baicheng Mei
- Department of Material Science and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Kenneth S Schweizer
- Department of Material Science and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Chemistry and Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
17
|
Xie SJ, Schweizer KS. A collective elastic fluctuation mechanism for decoupling and stretched relaxation in glassy colloidal and molecular liquids. J Chem Phys 2020; 152:034502. [DOI: 10.1063/1.5129550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Shi-Jie Xie
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, USA
- Material Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
- Center for Membrane Separation and Water Science and Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Kenneth S. Schweizer
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, USA
- Material Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
18
|
Ghosh A, Schweizer KS. Microscopic theory of the influence of strong attractive forces on the activated dynamics of dense glass and gel forming fluids. J Chem Phys 2019; 151:244502. [DOI: 10.1063/1.5129941] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Ashesh Ghosh
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois 61801, USA
| | - Kenneth S. Schweizer
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois 61801, USA
- Department of Material Science, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois 61801, USA
| |
Collapse
|
19
|
Phan AD, Schweizer KS. Theory of the spatial transfer of interface-nucleated changes of dynamical constraints and its consequences in glass-forming films. J Chem Phys 2019; 150:044508. [PMID: 30709240 DOI: 10.1063/1.5079250] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We formulate a new theory for how caging constraints in glass-forming liquids at a surface or interface are modified and then spatially transferred, in a layer-by-layer bootstrapped manner, into the film interior in the context of the dynamic free energy concept of the Nonlinear Langevin Equation (NLE) theory approach. The dynamic free energy at any mean location (cage center) involves contributions from two adjacent layers where confining forces are not the same. At the most fundamental level of the theory, the caging component of the dynamic free energy varies essentially exponentially with distance from the interface, saturating deep enough into the film with a correlation length of modest size and weak sensitivity to the thermodynamic state. This imparts a roughly exponential spatial variation of all the key features of the dynamic free energy required to compute gradients of dynamical quantities including the localization length, jump distance, cage barrier, collective elastic barrier, and alpha relaxation time. The spatial gradients are entirely of dynamical, not structural or thermodynamic, origin. The theory is implemented for the hard sphere fluid and diverse interfaces which can be a vapor, a rough pinned particle solid, a vibrating (softened) pinned particle solid, or a smooth hard wall. Their basic description at the level of the spatially heterogeneous dynamic free energy is identical, with the crucial difference arising from the first layer where dynamical constraints can be weakened, softened, or hardly changed depending on the specific interface. Numerical calculations establish the spatial dependence and fluid volume fraction sensitivity of the key dynamical property gradients for five different model interfaces. A comparison of the theoretical predictions for the dynamic localization length and glassy modulus with simulations and experiments for systems with a vapor interface reveals good agreement. The present advance sets the stage for using the Elastically Collective NLE theory to make quantitative predictions for the alpha relaxation time gradient, decoupling phenomena, Tg gradient, and many film-averaged properties of both model and experimental (colloids, molecules, and polymers) systems with diverse interfaces and chemical makeup.
Collapse
Affiliation(s)
- Anh D Phan
- Department of Physics, University of Illinois, Urbana, Illinois 61801, USA
| | - Kenneth S Schweizer
- Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
20
|
Phan AD, Schweizer KS. Elastically Collective Nonlinear Langevin Equation Theory of Glass-Forming Liquids: Transient Localization, Thermodynamic Mapping, and Cooperativity. J Phys Chem B 2018; 122:8451-8461. [DOI: 10.1021/acs.jpcb.8b04975] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Phan AD, Schweizer KS. Theory of activated glassy dynamics in randomly pinned fluids. J Chem Phys 2018; 148:054502. [DOI: 10.1063/1.5011247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Anh D. Phan
- Department of Physics, University of Illinois, Urbana, Illinois 61801, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
- Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Hanoi, Vietnam
| | - Kenneth S. Schweizer
- Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
22
|
Zhang R, Schweizer KS. Microscopic Theory of Coupled Slow Activated Dynamics in Glass-Forming Binary Mixtures. J Phys Chem B 2018; 122:3465-3479. [DOI: 10.1021/acs.jpcb.7b10568] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Mahmoudi N, Stradner A. Structural arrest and dynamic localization in biocolloidal gels. SOFT MATTER 2017; 13:4629-4635. [PMID: 28613330 DOI: 10.1039/c7sm00496f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Casein micelles interacting via an entropic intermediate-ranged depletion attraction exhibit a fluid-to-gel transition due to arrested spinodal decomposition. The bicontinuous networked structure of the gel freezes shortly after formation. We determine the timescales of structural arrest from the build-up of network rigidity after pre-shear rejuvenation, and find that the arrest time as well as the plateau elastic modulus of the gel diverge as a function of the volume fraction and interaction potential. Moreover, we show using scaling from naïve mode coupling theory that their mechanical properties are dictated by their microscopic dynamics rather than their heterogeneous large scale structure.
Collapse
Affiliation(s)
- N Mahmoudi
- Adolphe Merkle Institute, University of Fribourg, Route de l'ancienne Papeterie 1, Marly, Switzerland. and Physical Chemistry, Lund University, Getingevägen 60, Lund, Sweden.
| | - A Stradner
- Physical Chemistry, Lund University, Getingevägen 60, Lund, Sweden.
| |
Collapse
|
24
|
Zhang R, Schweizer KS. Correlated matrix-fluctuation-mediated activated transport of dilute penetrants in glass-forming liquids and suspensions. J Chem Phys 2017; 146:194906. [PMID: 28527449 DOI: 10.1063/1.4983224] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We formulate a microscopic, force-level statistical mechanical theory for the activated diffusion of dilute penetrants in dense liquids, colloidal suspensions, and glasses. The approach explicitly and self-consistently accounts for coupling between penetrant hopping and matrix dynamic displacements that actively facilitate the hopping event. The key new ideas involve two mechanistically (at a stochastic trajectory level) coupled dynamic free energy functions for the matrix and spherical penetrant particles. A single dynamic coupling parameter quantifies how much the matrix displaces relative to the penetrant when the latter reaches its transition state which is determined via the enforcement of a temporal causality or coincidence condition. The theory is implemented for dilute penetrants smaller than the matrix particles, with or without penetrant-matrix attractive forces. Model calculations reveal a rich dependence of the penetrant diffusion constant and degree of dynamic coupling on size ratio, volume fraction, and attraction strength. In the absence of attractions, a near exponential decrease of penetrant diffusivity with size ratio over an intermediate range is predicted, in contrast to the much steeper, non-exponential variation if one assumes local matrix dynamical fluctuations are not correlated with penetrant motion. For sticky penetrants, the relative and absolute influence of caging versus physical bond formation is studied. The conditions for a dynamic crossover from the case where a time scale separation between penetrant and matrix activated hopping exists to a "slaved" or "constraint release" fully coupled regime are determined. The particle mixture model is mapped to treat experimental thermal systems and applied to make predictions for the diffusivity of water, toluene, methanol, and oxygen in polyvinylacetate liquids and glasses. The theory agrees well with experiment with values of the penetrant-matrix size ratio close to their chemically intuitive values.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, USA
| | - Kenneth S Schweizer
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
25
|
Kumar MA, Ewoldt RH, Zukoski CF. Intrinsic nonlinearities in the mechanics of hard sphere suspensions. SOFT MATTER 2016; 12:7655-7662. [PMID: 27530863 DOI: 10.1039/c6sm01310d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The onset of nonlinear responses in near hard sphere suspensions is characterized as a function of oscillatory frequency and strain amplitude. At low frequencies where the viscous behavior dominates, the onset of nonlinearities is driven by increases in rate of strain. At high deformation frequency, where suspension mechanics is dominated by an elastic response, the nonlinear responses occur when deformation exceeds a characteristic strain. This strain is associated with the transient confinement of particles by nearest neighbors and its volume fraction dependence is through cage parameters derived from the high frequency elastic modulus. The onset of nonlinear responses takes on a universal behavior when deformation frequency is normalized by the characteristic time governing the shift from viscous to elastic behavior indicating that this transition is associated with transient particle localization and is expected to be observed for all volume fractions where pair interactions are important.
Collapse
Affiliation(s)
- Mansi A Kumar
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | | | | |
Collapse
|
26
|
Affiliation(s)
- Vivek Narsimhan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - C. Benjamin Renner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Patrick S. Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
27
|
Dell ZE, Schweizer KS. Microscopic Theory for the Role of Attractive Forces in the Dynamics of Supercooled Liquids. PHYSICAL REVIEW LETTERS 2015; 115:205702. [PMID: 26613453 DOI: 10.1103/physrevlett.115.205702] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Indexed: 06/05/2023]
Abstract
We formulate a microscopic, no adjustable parameter, theory of activated relaxation in supercooled liquids directly in terms of the repulsive and attractive forces within the framework of pair correlations. Under isochoric conditions, attractive forces can nonperturbatively modify slow dynamics, but at high enough density their influence vanishes. Under isobaric conditions, attractive forces play a minor role. High temperature apparent Arrhenius behavior and density-temperature scaling are predicted. Our results are consistent with recent isochoric simulations and isobaric experiments on a deeply supercooled molecular liquid. The approach can be generalized to treat colloidal gelation and glass melting, and other soft matter slow dynamics problems.
Collapse
Affiliation(s)
- Zachary E Dell
- Department of Physics, University of Illinois, Urbana, Illinois 61801, USA
| | - Kenneth S Schweizer
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
28
|
Zhang R, Schweizer KS. Theory of activated penetrant diffusion in viscous fluids and colloidal suspensions. J Chem Phys 2015; 143:144906. [PMID: 26472397 DOI: 10.1063/1.4932679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We heuristically formulate a microscopic, force level, self-consistent nonlinear Langevin equation theory for activated barrier hopping and non-hydrodynamic diffusion of a hard sphere penetrant in very dense hard sphere fluid matrices. Penetrant dynamics is controlled by a rich competition between force relaxation due to penetrant self-motion and collective matrix structural (alpha) relaxation. In the absence of penetrant-matrix attraction, three activated dynamical regimes are predicted as a function of penetrant-matrix size ratio which are physically distinguished by penetrant jump distance and the nature of matrix motion required to facilitate its hopping. The penetrant diffusion constant decreases the fastest with size ratio for relatively small penetrants where the matrix effectively acts as a vibrating amorphous solid. Increasing penetrant-matrix attraction strength reduces penetrant diffusivity due to physical bonding. For size ratios approaching unity, a distinct dynamical regime emerges associated with strong slaving of penetrant hopping to matrix structural relaxation. A crossover regime at intermediate penetrant-matrix size ratio connects the two limiting behaviors for hard penetrants, but essentially disappears if there are strong attractions with the matrix. Activated penetrant diffusivity decreases strongly with matrix volume fraction in a manner that intensifies as the size ratio increases. We propose and implement a quasi-universal approach for activated diffusion of a rigid atomic/molecular penetrant in a supercooled liquid based on a mapping between the hard sphere system and thermal liquids. Calculations for specific systems agree reasonably well with experiments over a wide range of temperature, covering more than 10 orders of magnitude of variation of the penetrant diffusion constant.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Materials Science and Frederick Seitz Materials Research Laboratory, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801, USA
| | - Kenneth S Schweizer
- Department of Materials Science and Frederick Seitz Materials Research Laboratory, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801, USA
| |
Collapse
|
29
|
Malkin AY, Kulichikhin VG. Structure and rheology of highly concentrated emulsions: a modern look. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4499] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Bhattacharjee T, Zehnder SM, Rowe KG, Jain S, Nixon RM, Sawyer WG, Angelini TE. Writing in the granular gel medium. SCIENCE ADVANCES 2015; 1:e1500655. [PMID: 26601274 PMCID: PMC4643780 DOI: 10.1126/sciadv.1500655] [Citation(s) in RCA: 336] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 06/04/2015] [Indexed: 05/17/2023]
Abstract
Gels made from soft microscale particles smoothly transition between the fluid and solid states, making them an ideal medium in which to create macroscopic structures with microscopic precision. While tracing out spatial paths with an injection tip, the granular gel fluidizes at the point of injection and then rapidly solidifies, trapping injected material in place. This physical approach to creating three-dimensional (3D) structures negates the effects of surface tension, gravity, and particle diffusion, allowing a limitless breadth of materials to be written. With this method, we used silicones, hydrogels, colloids, and living cells to create complex large aspect ratio 3D objects, thin closed shells, and hierarchically branched tubular networks. We crosslinked polymeric materials and removed them from the granular gel, whereas uncrosslinked particulate systems were left supported within the medium for long times. This approach can be immediately used in diverse areas, contributing to tissue engineering, flexible electronics, particle engineering, smart materials, and encapsulation technologies.
Collapse
Affiliation(s)
- Tapomoy Bhattacharjee
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Steven M. Zehnder
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Kyle G. Rowe
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Suhani Jain
- Stanton College Preparatory, Jacksonville, FL 32209, USA
| | - Ryan M. Nixon
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
| | - W. Gregory Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Thomas E. Angelini
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
- Institute for Cell and Regenerative Medicine, University of Florida, Gainesville, FL 32611, USA
- Corresponding author. E-mail:
| |
Collapse
|
31
|
Puosi F, Leporini D. The kinetic fragility of liquids as manifestation of the elastic softening. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2015; 38:87. [PMID: 26261070 DOI: 10.1140/epje/i2015-15087-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/22/2015] [Accepted: 07/07/2015] [Indexed: 06/04/2023]
Abstract
We show that the fragility m , the steepness of the viscosity and relaxation time close to the vitrification, increases with the degree of elastic softening, i.e. the decrease of the elastic modulus with increasing temperature, in a universal way. This provides a novel connection between the thermodynamics, via the modulus, and the kinetics. The finding is evidenced by numerical simulations and comparison with the experimental data of glassformers with widely different fragilities (33 ≤ m ≤ 115), leading to a fragility-independent elastic master curve extending over eighteen decades in viscosity and relaxation time. The master curve is accounted for by a cavity model pointing out the roles of both the available free volume and the cage softness. A major implication of our findings is that ultraslow relaxations, hardly characterised experimentally, become predictable by linear elasticity. As an example, the viscosity of supercooled silica is derived over about fifteen decades with no adjustable parameters.
Collapse
Affiliation(s)
- F Puosi
- Dipartimento di Fisica "Enrico Fermi", Università di Pisa, Largo B. Pontecorvo 3, I-56127, Pisa, Italy
| | | |
Collapse
|
32
|
Mirigian S, Schweizer KS. Dynamical Theory of Segmental Relaxation and Emergent Elasticity in Supercooled Polymer Melts. Macromolecules 2015. [DOI: 10.1021/ma5022083] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stephen Mirigian
- Departments of Materials
Science, Chemical and Biomolecular Engineering, Chemistry and Frederick
Seitz Materials Research Laboratory, University of Illinois, 1304 West
Green Street, Urbana, Illinois 61801, United States
| | - Kenneth S. Schweizer
- Departments of Materials
Science, Chemical and Biomolecular Engineering, Chemistry and Frederick
Seitz Materials Research Laboratory, University of Illinois, 1304 West
Green Street, Urbana, Illinois 61801, United States
| |
Collapse
|
33
|
Angelini R, Madsen A, Fluerasu A, Ruocco G, Ruzicka B. Aging behavior of the localization length in a colloidal glass. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.03.087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Cristofolini L. Synchrotron X-ray techniques for the investigation of structures and dynamics in interfacial systems. Curr Opin Colloid Interface Sci 2014. [DOI: 10.1016/j.cocis.2014.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Mirigian S, Schweizer KS. Elastically cooperative activated barrier hopping theory of relaxation in viscous fluids. I. General formulation and application to hard sphere fluids. J Chem Phys 2014; 140:194506. [DOI: 10.1063/1.4874842] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
36
|
Dudukovic NA, Zukoski CF. Mechanical properties of self-assembled Fmoc-diphenylalanine molecular gels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4493-4500. [PMID: 24684510 DOI: 10.1021/la500589f] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We explore the phase diagram and mechanical properties of molecular gels produced from mixing water with a dimethyl sulfoxide (DMSO) solution of the aromatic dipeptide derivative fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF). Highly soluble in DMSO, Fmoc-FF assembles into fibrous networks that form gels upon addition of water. At high water concentrations, rigid gels can be formed at Fmoc-FF concentrations as low as 0.01 wt %. The conditions are established defining the Fmoc-FF and water concentrations at which gels are formed. Below the gel boundary, the solutions are clear and colorless and have long-term stability. Above the gel boundary, gels are formed with increasing rapidity with increasing water or Fmoc-FF concentrations. A systematic characterization of the effect of Fmoc-FF and water concentrations on the mechanical properties of the gels is presented, demonstrating that the elastic behavior of the gels follows a specific, robust scaling with Fmoc-FF volume fraction. Furthermore, we characterize the kinetics of gelation and demonstrate that these gels are reversible in the sense that they can be disrupted mechanically and rebuild strength over time.
Collapse
Affiliation(s)
- Nikola A Dudukovic
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, 191 Roger Adams Lab, Urbana, Illinois 61801, United States
| | | |
Collapse
|
37
|
Orsi D, Ruta B, Chushkin Y, Pucci A, Ruggeri G, Baldi G, Rimoldi T, Cristofolini L. Controlling the dynamics of a bidimensional gel above and below its percolation transition. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:042308. [PMID: 24827252 DOI: 10.1103/physreve.89.042308] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Indexed: 06/03/2023]
Abstract
The morphology and the microscopic internal dynamics of a bidimensional gel formed by spontaneous aggregation of gold nanoparticles confined at the water surface are investigated by a suite of techniques, including grazing-incidence x-ray photon correlation spectroscopy (GI-XPCS). The range of concentrations studied spans across the percolation transition for the formation of the gel. The dynamical features observed by GI-XPCS are interpreted in view of the results of microscopic imaging; an intrinsic link between the mechanical modulus and internal dynamics is demonstrated for all the concentrations. Our work presents an example of a transition from a stretched to a compressed correlation function actively controlled by quasistatically varying the relevant thermodynamic variable. Moreover, by applying a model proposed some time ago by Duri and Cipelletti [Europhys. Lett. 76, 972 (2006)] we are able to build a master curve for the shape parameter, whose scaling factor allows us to quantify a "long-time displacement length." This characteristic length is shown to converge, as the concentration is increased, to the "short-time localization length" determined by pseudo-Debye-Waller analysis of the initial contrast. Finally, the intrinsic dynamics of the system is then compared with that induced by means of a delicate mechanical perturbation applied to the interface.
Collapse
Affiliation(s)
- D Orsi
- Department of Physics and Earth Sciences, University of Parma, Viale Usberti 7/A, I-43124 Parma, Italy
| | - B Ruta
- European Synchrotron Radiation Facility, Boîte Postale 220, F-38043 Grenoble, France
| | - Y Chushkin
- European Synchrotron Radiation Facility, Boîte Postale 220, F-38043 Grenoble, France
| | - A Pucci
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Risorgimento 35, I-56126 Pisa, Italy
| | - G Ruggeri
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Risorgimento 35, I-56126 Pisa, Italy
| | - G Baldi
- IMEM-CNR Institute, Parma Science Park, I-43124 Parma, Italy
| | - T Rimoldi
- Department of Physics and Earth Sciences, University of Parma, Viale Usberti 7/A, I-43124 Parma, Italy
| | - L Cristofolini
- Department of Physics and Earth Sciences, University of Parma, Viale Usberti 7/A, I-43124 Parma, Italy
| |
Collapse
|
38
|
Sussman DM, Schweizer KS. Entangled polymer chain melts: Orientation and deformation dependent tube confinement and interchain entanglement elasticity. J Chem Phys 2013; 139:234904. [DOI: 10.1063/1.4847895] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
39
|
Ikeda A, Berthier L. Yield stress in amorphous solids: a mode-coupling-theory analysis. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:052305. [PMID: 24329262 DOI: 10.1103/physreve.88.052305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/02/2013] [Indexed: 06/03/2023]
Abstract
The yield stress is a defining feature of amorphous materials which is difficult to analyze theoretically, because it stems from the strongly nonlinear response of an arrested solid to an applied deformation. Mode-coupling theory predicts the flow curves of materials undergoing a glass transition and thus offers predictions for the yield stress of amorphous solids. We use this approach to analyze several classes of disordered solids, using simple models of hard-sphere glasses, soft glasses, and metallic glasses for which the mode-coupling predictions can be directly compared to the outcome of numerical measurements. The theory correctly describes the emergence of a yield stress of entropic nature in hard-sphere glasses, and its rapid growth as density approaches random close packing at qualitative level. By contrast, the emergence of solid behavior in soft and metallic glasses, which originates from direct particle interactions is not well described by the theory. We show that similar shortcomings arise in the description of the caging dynamics of the glass phase at rest. We discuss the range of applicability of mode-coupling theory to understand the yield stress and nonlinear rheology of amorphous materials.
Collapse
Affiliation(s)
- Atsushi Ikeda
- Laboratoire Charles Coulomb, UMR 5221, CNRS and Université Montpellier 2, Montpellier, France
| | - Ludovic Berthier
- Laboratoire Charles Coulomb, UMR 5221, CNRS and Université Montpellier 2, Montpellier, France
| |
Collapse
|
40
|
Jadrich R, Schweizer KS. Equilibrium theory of the hard sphere fluid and glasses in the metastable regime up to jamming. II. Structure and application to hopping dynamics. J Chem Phys 2013; 139:054502. [DOI: 10.1063/1.4816276] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
41
|
A theoretical framework for calculations of the structural relaxation time on the basis of the free energy landscape theory. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.05.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Anderson D, Schaar D, Hentschel HGE, Hay J, Habdas P, Weeks ER. Local elastic response measured near the colloidal glass transition. J Chem Phys 2013; 138:12A520. [DOI: 10.1063/1.4773220] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
43
|
Shin H, Schweizer KS. Self-consistent phonon theory of the crystallization and elasticity of attractive hard spheres. J Chem Phys 2013; 138:084510. [DOI: 10.1063/1.4792440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
Jiang T, Zukoski CF. Role of Particle Size and Polymer Length in Rheology of Colloid–Polymer Composites. Macromolecules 2012. [DOI: 10.1021/ma301184t] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tianying Jiang
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana,
Illinois 61801, United States
| | - Charles F. Zukoski
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana,
Illinois 61801, United States
| |
Collapse
|
45
|
Jadrich R, Schweizer KS. Theory of kinetic arrest, elasticity, and yielding in dense binary mixtures of rods and spheres. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:061503. [PMID: 23367954 DOI: 10.1103/physreve.86.061503] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Indexed: 06/01/2023]
Abstract
We extend the quiescent and stressed versions of naïve mode coupling theory to treat the dynamical arrest, shear modulus, and absolute yielding of particle mixtures where one or more species is a nonrotating nonspherical object. The theory is applied in detail to dense isotropic "chemically matched" mixtures of variable aspect ratio rods and spheres that interact via repulsive and short range attractive site-site pair potentials. A remarkably rich ideal kinetic arrest behavior is predicted with up to eight "dynamical phases" emerging: an ergodic fluid, partially localized states where the spheres remain fluid but the rods can be a gel, repulsive glass or attractive glass, doubly localized glasses and gels, a porous rod gel plus sphere glass, and a narrow window where a type of rod glass and gel localization coexist. Dynamical complexity increases with rod length and the introduction of attractive forces between all species which both enhance gel network formation. Multiple dynamic reentrant features and triple points are predicted, and each dynamic phase has unique particle localization characteristics and mechanical properties. Orders of magnitude variation of the linear shear modulus and absolute yield stress are found as rod length, mixture composition and the detailed nature of interparticle attractions are varied. The interplay of total (high) mixture packing fraction and composition at fixed temperature is also briefly studied. The present work provides a foundation to study more complex rod-sphere mixtures of both biological and synthetic interest that include physical features such as interaction site size asymmetry, rod-sphere specific attractions, and/or Coulomb repulsion.
Collapse
Affiliation(s)
- Ryan Jadrich
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
46
|
Jiang T, Zukoski CF. Rheology of dense suspensions of shape anisotropic particles designed to show pH-sensitive anisotropic pair potentials. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:375109. [PMID: 22913885 DOI: 10.1088/0953-8984/24/37/375109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Here we investigate the flow properties of suspensions of dicolloidal particles composed of interpenetrating spheres where one sphere is rich in polystyrene and the second is rich in poly 2-vinyl pyridine. The synthesis method is designed to create both anisotropic shape and anisotropic interaction potentials that should lead to head to tail clustering. These particles are referred to as copolymer dicolloids (CDCs). The viscoelastic properties of stable and gelled suspensions of CDC particles are compared with analogs composed of homopolymer dicolloids (HDCs), having the same shape but not displaying the anisotropic attractions. After coating the particles with a nonionic surfactant to minimize van der Waals attractions, the flow properties of glassy and gelled suspensions of CDCs and HDCs are studied as a function of volume fraction, ionic strength and pH. Suspensions of HDC particles display a high kinetic arrest volume fraction (φ(g) > 0.5) over a wide range of pH and ionic strength up to [I]=0.5 M, demonstrating that the particles experience repulsive or weakly attractive pair potentials. Suspensions of CDC particles behave in a similar manner at high or low pH when [I]=0.001 M, but gel at a volume fraction of φ(g) < 0.3 and display anomalously large elastic moduli at and above the gel transition point for intermediate pH or for pH=9 when [I]=0.5 M. The gelation processes for the CDC particles are reversible by adjusting the solution pH. Interaction potential anisotropy is evident in the processes, during which the CDC particles yield on increasing oscillatory strain.
Collapse
Affiliation(s)
- Tianying Jiang
- Departments of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 60801, USA
| | | |
Collapse
|
47
|
Hunter GL, Weeks ER. The physics of the colloidal glass transition. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:066501. [PMID: 22790649 DOI: 10.1088/0034-4885/75/6/066501] [Citation(s) in RCA: 345] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
As one increases the concentration of a colloidal suspension, the system exhibits a dramatic increase in viscosity. Beyond a certain concentration, the system is said to be a colloidal glass; structurally, the system resembles a liquid, yet motions within the suspension are slow enough that it can be considered essentially frozen. For several decades, colloids have served as a valuable model system for understanding the glass transition in molecular systems. The spatial and temporal scales involved allow these systems to be studied by a wide variety of experimental techniques. The focus of this review is the current state of understanding of the colloidal glass transition, with an emphasis on experimental observations. A brief introduction is given to important experimental techniques used to study the glass transition in colloids. We describe features of colloidal systems near and in glassy states, including increases in viscosity and relaxation times, dynamical heterogeneity and ageing, among others. We also compare and contrast the glass transition in colloids to that in molecular liquids. Other glassy systems are briefly discussed, as well as recently developed synthesis techniques that will keep these systems rich with interesting physics for years to come.
Collapse
Affiliation(s)
- Gary L Hunter
- Department of Physics, Emory University, Math and Science Center 400 Dowman Dr., N201 Atlanta, GA 30322, USA
| | | |
Collapse
|
48
|
Sussman DM, Schweizer KS. Space-time correlated two-particle hopping in glassy fluids: structural relaxation, irreversibility, decoupling, and facilitation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:061504. [PMID: 23005101 DOI: 10.1103/physreve.85.061504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Indexed: 06/01/2023]
Abstract
The microscopic nonlinear Langevin equation (NLE) theory of correlated two-particle dynamics in dense fluids of spherical particles is extended to construct a predictive model of multiple correlated hopping and recaging events of a pair of tagged particles as a function of their initial separation. Modest coarse graining over the liquid structural disorder allows contact to be made with various definitions of irreversible particle motion within the context of a multistate Markov model. The correlated space-time hopping process that underlies structural relaxation can also be analyzed in the context of kinetically constrained models. The dependence of microscopically defined mean persistence and exchange times, their distributions, and relaxation-diffusion decoupling on hard-sphere fluid volume fraction is derived from a model in which irreversible jumps serve as the nucleating persistence event. For a subset of questions, the predictions of the two-particle theory are compared with results from the earlier single-particle NLE approach.
Collapse
Affiliation(s)
- Daniel M Sussman
- Department of Physics, University of Illinois, 1304 W. Green Street, Urbana, Illinois 61801, USA
| | | |
Collapse
|
49
|
|
50
|
Yamamoto U, Schweizer KS. Theory of nanoparticle diffusion in unentangled and entangled polymer melts. J Chem Phys 2011; 135:224902. [DOI: 10.1063/1.3664863] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|