1
|
Wang Z, Ikeda K, Shen H, Loipersberger M, Zech A, Aldossary A, Head-Gordon T, Head-Gordon M. Second-Generation Energy Decomposition Analysis of Intermolecular Interaction Energies from the Second-Order Mo̷ller-Plesset Theory: An Extensible, Orthogonal Formulation with Useful Basis Set Convergence for All Terms. J Chem Theory Comput 2025; 21:1163-1178. [PMID: 39835661 DOI: 10.1021/acs.jctc.4c01301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Energy decomposition analysis (EDA) based on density functional theory (DFT) and self-consistent field (SCF) calculations has become widely used for understanding intermolecular interactions. This work reports a new approach to EDA for post-SCF wave functions based on closed-shell restricted second-order Mo̷ller-Plesset (MP2) together with an efficient implementation that generalizes the successful SCF-level second-generation absolutely localized molecular orbital EDA approach, ALMO-EDA-II, and improves upon MP2 ALMO-EDA-I. The new MP2 ALMO-EDA-II provides distinct energy contributions for a frozen interaction energy containing permanent electrostatics and Pauli repulsions, polarized energy-yielding induced electrostatics, dispersion-corrected energy, and the fully relaxed energy, which describes charge transfer. All terms have useful complete basis set limits due to the design of the theory, corroborated by a range of test calculations on model systems, and the S22 and the Ionic43 data sets of weak and strong intermolecular interactions, respectively. Comparisons with the DFT-based ALMO-EDA-II suggest that the new MP2 EDA yields quite a consistent interpretation of intermolecular interactions when the total interaction energies are consistent. To begin to address the limitations of the MP2 theory itself, the MP2 ALMO-EDA-II was also implemented for κ-regularized MP2 and the size-consistent second-order Brillouin-Wigner (BW-s2) method, both of which are more accurate for dispersion-dominated interactions. The principal limitation of MP2 ALMO-EDA-II is associated with the need to obtain orthogonal fragment-localized virtual orbitals, which leads to clearly poorer results when using atomic orbital basis sets that contain diffuse functions. We therefore recommend using nonaugmented basis sets.
Collapse
Affiliation(s)
- Zhenling Wang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Kevin Ikeda
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Hengyuan Shen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Matthias Loipersberger
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Alexander Zech
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Abdulrahman Aldossary
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Chen J, Gao Q, Huang M, Yu K. Application of modern artificial intelligence techniques in the development of organic molecular force fields. Phys Chem Chem Phys 2025; 27:2294-2319. [PMID: 39820957 DOI: 10.1039/d4cp02989e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The molecular force field (FF) determines the accuracy of molecular dynamics (MD) and is one of the major bottlenecks that limits the application of MD in molecular design. Recently, artificial intelligence (AI) techniques, such as machine-learning potentials (MLPs), have been rapidly reshaping the landscape of MD. Meanwhile, organic molecular systems feature unique characteristics, and require more careful treatment in both model construction, optimization, and validation. While an accurate and generic organic molecular force field is still missing, significant progress has been made with the facilitation of AI, warranting a promising future. In this review, we provide an overview of the various types of AI techniques used in molecular FF development and discuss both the advantages and weaknesses of these methodologies. We show how AI methods provide unprecedented capabilities in many tasks such as potential fitting, atom typification, and automatic optimization. Meanwhile, it is also worth noting that more efforts are needed to improve the transferability of the model, develop a more comprehensive database, and establish more standardized validation procedures. With these discussions, we hope to inspire more efforts to solve the existing problems, eventually leading to the birth of next-generation generic organic FFs.
Collapse
Affiliation(s)
- Junmin Chen
- Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Qian Gao
- Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Miaofei Huang
- Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Kuang Yu
- Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
3
|
Krupka KM, de Lara-Castells MP. Support effects on conical intersections of Jahn-Teller fluxional metal clusters on the sub-nanoscale. Phys Chem Chem Phys 2024; 26:28349-28360. [PMID: 39470743 DOI: 10.1039/d4cp03271c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The concept of fluxionality has been invoked to explain the enhanced catalytic properties of atomically precise metal clusters of subnanometer size. Cu3 isolated in the gas phase is a classical case of a fluxional metal cluster where a conical intersection leads to a Jahn-Teller (JT) distortion resulting in a potential energy landscape with close-lying multiminima and, ultimately, fluxional behavior. In spite of the role of conical intersections in the (photo)stability and (photo)catalytic properties of surface-supported atomic metal clusters, they have been largely unexplored. In this work, by applying a high-level multi-reference ab initio method aided with dispersion corrections, we analyze support effects on the conical intersection of Cu3 considering benzene as a model support molecule of carbon-based surfaces. We verify that the region around the conical intersection and the associated Jahn-Teller (JT) distortion is very slightly perturbed by the support when the Cu3 cluster approaches it in a parallel orientation: Two electronic states remain degenerate for a structure with C3 symmetry consistent with the D3h symmetry of unsupported Cu3 at the conical intersection. It extends over a one-dimensional seam that characterizes a physisorption minimum of the Cu3-benzene complex. The fluxionality of the Cu3 cluster, reflected in large fluctuations of relaxed Cu-Cu distances as a function of the active JT mode, is kept unperturbed upon complexation with benzene as well. In stark contrast, for the energetically favored perpendicular orientation of the Cu3 plane to the benzene ring plane, the conical intersection (CI) is located 12 100 cm-1 (∼1.5 eV) above the chemisorption minimum, with the fluxionality being kept at the CI's nearby and lost at the chemisorption well. The first excited state at the perpendicular orientation has a deep well (>4000 cm-1), being energetically closer to the CI. The transition dipole moment between ground and excited states has a significant magnitude, suggesting that the excited state can be observed through direct photo-excitation from the ground state. Besides demonstrating that the identity of an isolated Jahn-Teller metal cluster can be preserved against support effects at a physisorption state and lifted out at a chemisorption state, our results indicate that a correlation exists between conical intersection topography and fluxionality in the metal cluster's Cu-Cu motifs.
Collapse
Affiliation(s)
- Katarzyna M Krupka
- Institute of Fundamental Physics (AbinitSim Unit, ABINITFOT Group), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| | - María Pilar de Lara-Castells
- Institute of Fundamental Physics (AbinitSim Unit, ABINITFOT Group), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
4
|
Krupka KM, Krzemińska A, de Lara-Castells MP. A practical post-Hartree-Fock approach describing open-shell metal cluster-support interactions. Application to Cu 3 adsorption on benzene/coronene. RSC Adv 2024; 14:31348-31359. [PMID: 39359335 PMCID: PMC11446239 DOI: 10.1039/d4ra05401f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
Current advances in synthesizing and characterizing atomically precise monodisperse metal clusters (AMCs) at the subnanometer scale have opened up fascinating possibilities in designing new heterogeneous (photo)catalysts as well as functional interfaces between AMCs and biologically relevant molecules. Understanding the nature of AMC-support interactions at molecular-level is essential for optimizing (photo)catalysts performance and designing novel ones with improved properties. Møller-Plesset second-order perturbation theory (MP2) is one of the most cost-efficient single-reference post-Hartree-Fock wave-function-based theories that can be applied to AMC-support interactions considering adequate molecular models of the support, and thus complementing state-of-the-art dispersion-corrected density functional theory. However, the resulting AMC-support interaction is typically overestimated with the MP2 method and must be corrected. The coupled MP2 (MP2C) scheme replacing the uncoupled Hartree-Fock dispersion energy by a coupled dispersion contribution, has been proven to describe accurately van-der-Waals (vdW)-dominated interactions between closed-shell AMCs and carbon-based supports. In this work, the accuracy of a MP2C-based scheme is evaluated in modelling open-shell AMC-cluster interactions that imply charge transfer or other strong attractive energy contributions beyond vdW forces. For this purpose, we consider the interaction of Cu3 with molecular models of graphene of increasing size (benzene and coronene). In this way, it is shown that subchemical precision (within 0.1 kcal mol-1) is achieved with the modified MP2C scheme, using the explicitly correlated coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)-F12] as a benchmark method. It is also revealed that the energy difference between uncoupled and coupled dispersion terms closely follows benchmark values of the repulsive intramonomer correlation contribution. The proposed open-shell MP2C-based approach is expected to be of general applicability to open-shell atomic or molecular species interacting with coronene for regions of the potential landscape where single-reference electronic structure descriptions suffice.
Collapse
Affiliation(s)
- Katarzyna M Krupka
- Institute of Fundamental Physics (AbinitSim Unit ABINITFOT Group), Consejo Superior de Investigaciones Científicas (CSIC) Madrid Spain
| | - Agnieszka Krzemińska
- Institute of Physics, Lodz University of Technology ul. Wolczanska 219 90-924 Lodz Poland
| | - María Pilar de Lara-Castells
- Institute of Fundamental Physics (AbinitSim Unit ABINITFOT Group), Consejo Superior de Investigaciones Científicas (CSIC) Madrid Spain
| |
Collapse
|
5
|
Petrov K, Csóka J, Kállay M. Analytic Gradients for Density Fitting MP2 Using Natural Auxiliary Functions. J Phys Chem A 2024; 128:6566-6580. [PMID: 39074307 PMCID: PMC11317987 DOI: 10.1021/acs.jpca.4c02822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
The natural auxiliary function (NAF) approach is an approximation to decrease the size of the auxiliary basis set required for quantum chemical calculations utilizing the density fitting technique. It has been proven efficient to speed up various correlation models, such as second-order Møller-Plesset (MP2) theory and coupled-cluster methods. Here, for the first time, we discuss the theory of analytic derivatives for correlation methods employing the NAF approximation on the example of MP2. A detailed algorithm for the gradient calculation with the NAF approximation is proposed in the framework of the method of Lagrange multipliers. To assess the effect of the NAF approximation on gradients and optimized geometric parameters, a series of benchmark calculations on small and medium-sized systems was performed. Our results demonstrate that, for MP2, sufficiently accurate gradients and geometries can be achieved with a moderate time reduction of 15-20% for both small and medium-sized molecules.
Collapse
Affiliation(s)
- Klára Petrov
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- HUN-REN−BME
Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- MTA−BME
Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - József Csóka
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- HUN-REN−BME
Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- MTA−BME
Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Mihály Kállay
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- HUN-REN−BME
Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- MTA−BME
Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| |
Collapse
|
6
|
Beran GJO, Greenwell C, Cook C, Řezáč J. Improved Description of Intra- and Intermolecular Interactions through Dispersion-Corrected Second-Order Møller-Plesset Perturbation Theory. Acc Chem Res 2023; 56:3525-3534. [PMID: 37963266 DOI: 10.1021/acs.accounts.3c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
ConspectusThe quantum chemical modeling of organic crystals and other molecular condensed-phase problems requires computationally affordable electronic structure methods which can simultaneously describe intramolecular conformational energies and intermolecular interactions accurately. To achieve this, we have developed a spin-component-scaled, dispersion-corrected second-order Møller-Plesset perturbation theory (SCS-MP2D) model. SCS-MP2D augments canonical MP2 with a dispersion correction which removes the uncoupled Hartree-Fock dispersion energy present in canonical MP2 and replaces it with a more reliable coupled Kohn-Sham treatment, all evaluated within the framework of Grimme's D3 dispersion model. The spin-component scaling is then used to improve the description of the residual (nondispersion) portion of the correlation energy.The SCS-MP2D model improves upon earlier corrected MP2 models in a few ways. Compared to the highly successful dispersion-corrected MP2C model, which is based solely on intermolecular perturbation theory, the SCS-MP2D dispersion correction improves the description of both inter- and intramolecular interactions. The dispersion correction can also be evaluated with trivial computational cost, and nuclear analytic gradients are computed readily to enable geometry optimizations. In contrast to earlier spin-component scaling MP2 models, the optimal spin-component scaling coefficients are only mildly sensitive to the choice of training data, and a single global parametrization of the model can describe both thermochemistry and noncovalent interactions.The resulting dispersion-corrected, spin-component-scaled MP2 (SCS-MP2D) model predicts conformational energies and intermolecular interactions with accuracy comparable to or better than those of many range-separated and double-hybrid density functionals, as is demonstrated on a variety of benchmark tests. Among the functionals considered here, only the revDSD-PBEP86-D3(BJ) functional gives consistently smaller errors in benchmark tests. The results presented also hint that further improvements of SCS-MP2D may be possible through a more robust fitting procedure for the seven empirical parameters.To demonstrate the performance of SCS-MP2D further, several applications to molecular crystal problems are presented. The three chosen examples all represent cases where density-driven delocalization error causes GGA or hybrid density functionals to artificially stabilize crystals exhibiting more extended π-conjugation. Our pragmatic strategy addresses the delocalization error by combining a periodic density functional theory (DFT) treatment of the infinite lattice with intramolecular/conformational energy corrections computed with SCS-MP2D. For the anticancer drug axitinib, applying the SCS-MP2D conformational energy correction produces crystal polymorph stabilities that are consistent with experiment, in contrast to earlier studies. For the crystal structure prediction of the ROY molecule, so named for its colorful red, orange, and yellow crystals, this approach leads to the first plausible crystal energy landscape, and it reveals that the lowest-energy polymorphs have already been found experimentally. Finally, in the context of photomechanical crystals, which transform light into mechanical work, these techniques are used to predict the structural transformations and extract design principles for maximizing the work performed.
Collapse
Affiliation(s)
- Gregory J O Beran
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Chandler Greenwell
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Cameron Cook
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Jan Řezáč
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| |
Collapse
|
7
|
Fernández B, Pi M, de Lara-Castells MP. Superfluid helium droplet-mediated surface-deposition of neutral and charged silver atomic species. Phys Chem Chem Phys 2023. [PMID: 37317779 DOI: 10.1039/d3cp01303k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Experimental and theoretical work has delivered evidence of the helium nanodroplet-mediated synthesis and soft-landing of metal nanoparticles, nanowires, clusters, and single atoms on solid supports. Recent experimental advances have allowed the formation of charged metal clusters into multiply charged helium nanodroplets. The impact of the charge of immersed metal species in helium nanodroplet-mediated surface deposition is proved by considering silver atoms and cations at zero-temperature graphene as the support. By combining high-level ab initio intermolecular interaction theory with a full quantum description of the superfluid helium nanodroplet motion, evidence is presented that the fundamental mechanism of soft-deposition is preserved in spite of the much stronger interaction of charged species with surfaces, with high-density fluctuations in the helium droplet playing an essential role in braking them. Corroboration is also presented that the soft-landing becomes favored as the helium nanodroplet size increases.
Collapse
Affiliation(s)
- Berta Fernández
- Department of Physical Chemistry, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Martí Pi
- Departament FQA, Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | | |
Collapse
|
8
|
Rana B, Beran GJO, Herbert JM. Correcting π-delocalisation errors in conformational energies using density-corrected DFT, with application to crystal polymorphs. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2138789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Bhaskar Rana
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | | | - John M. Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
9
|
Bintrim SJ, Berkelbach TC, Ye HZ. Integral-Direct Hartree-Fock and Møller-Plesset Perturbation Theory for Periodic Systems with Density Fitting: Application to the Benzene Crystal. J Chem Theory Comput 2022; 18:5374-5381. [PMID: 35969856 DOI: 10.1021/acs.jctc.2c00640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present an algorithm and implementation of integral-direct, density-fitted Hartree-Fock (HF) and second-order Møller-Plesset perturbation theory (MP2) for periodic systems. The new code eliminates the formerly prohibitive storage requirements and allows us to study systems 1 order of magnitude larger than before at the periodic MP2 level. We demonstrate the significance of the development by studying the benzene crystal in both the thermodynamic limit and the complete basis set limit, for which we predict an MP2 cohesive energy of -72.8 kJ/mol, which is about 10-15 kJ/mol larger in magnitude than all previously reported MP2 calculations. Compared to the best theoretical estimate from literature, several modified MP2 models approach chemical accuracy in the predicted cohesive energy of the benzene crystal and hence may be promising cost-effective choices for future applications on molecular crystals.
Collapse
Affiliation(s)
- Sylvia J Bintrim
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Timothy C Berkelbach
- Department of Chemistry, Columbia University, New York, New York 10027, United States.,Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States
| | - Hong-Zhou Ye
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
10
|
Carter-Fenk K, Herbert JM. Appraisal of dispersion damping functions for the effective fragment potential method. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2055504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kevin Carter-Fenk
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - John M. Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
11
|
Gray M, Herbert JM. Comprehensive Basis-Set Testing of Extended Symmetry-Adapted Perturbation Theory and Assessment of Mixed-Basis Combinations to Reduce Cost. J Chem Theory Comput 2022; 18:2308-2330. [PMID: 35289608 DOI: 10.1021/acs.jctc.1c01302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hybrid or "extended" symmetry-adapted perturbation theory (XSAPT) replaces traditional SAPT's treatment of dispersion with better performing alternatives while at the same time extending two-body (dimer) SAPT to a many-body treatment of polarization using a self-consistent charge embedding procedure. The present work presents a systematic study of how XSAPT interaction energies and energy components converge with respect to the choice of Gaussian basis set. Errors can be reduced in a systematic way using correlation-consistent basis sets, with aug-cc-pVTZ results converged within <0.1 kcal/mol. Similar (if slightly less systematic) behavior is obtained using Karlsruhe basis sets at much lower cost, and we introduce new versions with limited augmentation that are even more efficient. Pople-style basis sets, which are more efficient still, often afford good results if a large number of polarization functions are included. The dispersion models used in XSAPT afford much faster basis-set convergence as compared to the perturbative description of dispersion in conventional SAPT, meaning that "compromise" basis sets (such as jun-cc-pVDZ) are no longer required and benchmark-quality results can be obtained using triple-ζ basis sets. The use of diffuse functions proves to be essential, especially for the description of hydrogen bonds. The "δ(Hartree-Fock)" correction for high-order induction can be performed in double-ζ basis sets without significant loss of accuracy, leading to a mixed-basis approach that offers 4× speedup over the existing (cubic scaling) XSAPT approach.
Collapse
Affiliation(s)
- Montgomery Gray
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
12
|
Beran GJO, Greenwell C, Rezac J. Spin-component-scaled and dispersion-corrected second-order Møller-Plesset perturbation theory: A path toward chemical accuracy. Phys Chem Chem Phys 2022; 24:3695-3712. [DOI: 10.1039/d1cp04922d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Second-order Moller-Plesset perturbation theory (MP2) provides a valuable alternative to density functional theory for modeing problems in organic and biological chemistry. However, MP2 suffers from known limitations in the description...
Collapse
|
13
|
Řezáč J. Non-Covalent Interactions Atlas Benchmark Data Sets 5: London Dispersion in an Extended Chemical Space. Phys Chem Chem Phys 2022; 24:14780-14793. [DOI: 10.1039/d2cp01602h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Non-Covalent Interactions Atlas (www.nciatlas.org) has been extended with two data sets of benchmark interaction energies in complexes dominated by London dispersion. The D1200 data set of equilibrium geometries provides...
Collapse
|
14
|
Ahirwar MB, Gurav ND, Gadre SR, Deshmukh MM. Molecular Tailoring Approach for Estimating Individual Intermolecular Interaction Energies in Benzene Clusters. J Phys Chem A 2021; 125:6131-6140. [PMID: 34251827 DOI: 10.1021/acs.jpca.1c03907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is no general method available for the estimation of individual intermolecular interaction energies in weakly bound molecular clusters, and such studies are limited only to the dimer. Recently, we proposed a molecular tailoring approach-based method for the estimation of individual O-H···O hydrogen bond energies in water clusters. In the present work, we extend the applicability of this method for estimating the individual intermolecular interaction energies in benzene clusters, which are expected to be small. The basis set superposition error (BSSE)-corrected individual intermolecular interaction energies in linear (LN) benzene clusters, LN-(Bz)n n = 3-7, were calculated to be in the range from -1.75 to -2.33 kcal/mol with the cooperativity contribution falling between 0.05 and 0.20 kcal/mol, calculated at the MP2.5/aug-cc-pVDZ level of theory. In the case of non-linear (NLN) benzene clusters, NLN-(Bz)n n = 3-5, the BSSE-corrected individual intermolecular interaction energies exhibit a wider range from -1.16 to -2.55 kcal/mol with cooperativity contribution in the range from 0.02 to -0.61 kcal/mol. The accuracy of these estimated values was validated by adding the sum of interaction energies to the sum of monomer energies. These estimated molecular energies of clusters were compared with their actual calculated values. The small difference (<0.3 kcal/mol) in these two values suggests that our estimated individual intermolecular interaction energies in benzene clusters are quite reliable.
Collapse
Affiliation(s)
- Mini Bharati Ahirwar
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, India
| | - Nalini D Gurav
- Department of Scientific Computing, Modelling and Simulation, Savitribai Phule Pune University, Pune 411 007, India
| | - Shridhar R Gadre
- Department of Scientific Computing, Modelling and Simulation, Savitribai Phule Pune University, Pune 411 007, India
| | - Milind M Deshmukh
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, India
| |
Collapse
|
15
|
Yao Y, Kanai Y. Nuclear Quantum Effect and Its Temperature Dependence in Liquid Water from Random Phase Approximation via Artificial Neural Network. J Phys Chem Lett 2021; 12:6354-6362. [PMID: 34231366 DOI: 10.1021/acs.jpclett.1c01566] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report structural and dynamical properties of liquid water described by the random phase approximation (RPA) correlation together with the exact exchange energy (EXX) within density functional theory. By utilizing thermostated ring polymer molecular dynamics, we examine the nuclear quantum effects and their temperature dependence. We circumvent the computational limitation of performing direct first-principles molecular dynamics simulation at this high level of electronic structure theory by adapting an artificial neural network model. We show that the EXX+RPA level of theory accurately describes liquid water in terms of both dynamical and structural properties.
Collapse
Affiliation(s)
- Yi Yao
- Department of Chemistry, University of North Carolina at Chapel Hill, Durham, North Carolina 27599, United States
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Yosuke Kanai
- Department of Chemistry, University of North Carolina at Chapel Hill, Durham, North Carolina 27599, United States
| |
Collapse
|
16
|
Spicher S, Caldeweyher E, Hansen A, Grimme S. Benchmarking London dispersion corrected density functional theory for noncovalent ion-π interactions. Phys Chem Chem Phys 2021; 23:11635-11648. [PMID: 33978015 DOI: 10.1039/d1cp01333e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The strongly attractive noncovalent interactions of charged atoms or molecules with π-systems are important binding motifs in many chemical and biological systems. These so-called ion-π interactions play a major role in enzymes, molecular recognition, and for the structure of proteins. In this work, a molecular test set termed IONPI19 is compiled for inter- and intramolecular ion-π interactions, which is well balanced between anionic and cationic systems. The IONPI19 set includes interaction energies of significantly larger molecules (up to 133 atoms) than in other ion-π test sets and covers a broad range of binding motifs. Accurate (local) coupled cluster values are provided as reference. Overall, 19 density functional approximations, including seven (meta-)GGAs, eight hybrid functionals, and four double-hybrid functionals combined with three different London dispersion corrections, are benchmarked for interaction energies. DFT results are further compared to wave function based methods such as MP2 and dispersion corrected Hartree-Fock. Also, the performance of semiempirical QM methods such as the GFNn-xTB and PMx family of methods is tested. It is shown that dispersion-uncorrected DFT underestimates ion-π interactions significantly, even though electrostatic interactions dominate the overall binding. Accordingly, the new charge dependent D4 dispersion model is found to be consistently better than the standard D3 correction. Furthermore, the functional performance trend along Jacob's ladder is generally obeyed and the reduction of the self-interaction error leads to an improvement of (double) hybrid functionals over (meta-)GGAs, even though the effect of the SIE is smaller than expected. Overall, the double-hybrids PWPB95-D4/QZ and revDSD-PBEP86-D4/QZ turned out to be the most reliable among all assessed methods for the description of ion-π interactions, which opens up new perspectives for systems where coupled cluster calculations are no longer computationally feasible.
Collapse
Affiliation(s)
- Sebastian Spicher
- Mulliken Center for Theoretical Chemistry, Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Eike Caldeweyher
- Mulliken Center for Theoretical Chemistry, Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany.
| |
Collapse
|
17
|
Costa AM, Bosch L, Petit E, Vilarrasa J. Computational Study of the Addition of Methanethiol to 40+ Michael Acceptors as a Model for the Bioconjugation of Cysteines. J Org Chem 2021; 86:7107-7118. [PMID: 33914532 PMCID: PMC8631706 DOI: 10.1021/acs.joc.1c00349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 12/17/2022]
Abstract
A long series of Michael acceptors are studied computationally as potential alternatives to the maleimides that are used in most antibody-drug conjugates to link Cys of mAbs with cytotoxic drugs. The products of the reaction of methanethiol (CH3SH/MeSH, as a simple model of Cys) with N-methylated ethynesulfonamide, 2-ethynylpyridinium ion, propynamide, and methyl ethynephosphonamidate (that is, with HC≡C-EWG) are predicted by the M06-2X/6-311+G(d,p) method to be thermodynamically more stable, in relation to their precursors, than that of MeSH with N-methylmaleimide and, in general, with H2C═CH-EWG; calculations with AcCysOMe and tBuSH are also included. However, for the addition of the anion (MeS-), which is the reactive species, the order changes and N-methylated 2-vinylpyridinium ion, 2,3-butadienamide, and maleimide may give more easily the anionic adducts than several activated triple bonds; moreover, the calculated ΔG⧧ values increase following the order HC≡C-SO2NHMe, N-methylmaleimide, HC≡C-PO(OMe)NHMe, and HC≡C-CONHMe. In other words, MeS- is predicted to react more rapidly with maleimides than with ethynephosphonamidates and with propynamides, in agreement with the experimental results. New mechanistic details are disclosed regarding the advantageous use of some amides, especially of ethynesulfonamides, which, however, are more prone to double additions and exchange reactions.
Collapse
Affiliation(s)
- Anna M. Costa
- Organic
Chemistry Section,
Facultat de Química, Universitat
de Barcelona, Diagonal 645, Barcelona 08028, Catalonia, Spain
| | - Lluís Bosch
- Organic
Chemistry Section,
Facultat de Química, Universitat
de Barcelona, Diagonal 645, Barcelona 08028, Catalonia, Spain
| | - Elena Petit
- Organic
Chemistry Section,
Facultat de Química, Universitat
de Barcelona, Diagonal 645, Barcelona 08028, Catalonia, Spain
| | - Jaume Vilarrasa
- Organic
Chemistry Section,
Facultat de Química, Universitat
de Barcelona, Diagonal 645, Barcelona 08028, Catalonia, Spain
| |
Collapse
|
18
|
Madajczyk K, Żuchowski PS, Brzȩk F, Rajchel Ł, Kȩdziera D, Modrzejewski M, Hapka M. Dataset of noncovalent intermolecular interaction energy curves for 24 small high-spin open-shell dimers. J Chem Phys 2021; 154:134106. [PMID: 33832261 DOI: 10.1063/5.0043793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We introduce a dataset of 24 interaction energy curves of open-shell noncovalent dimers, referred to as the O24 × 5 dataset. The dataset consists of high-spin dimers up to 11 atoms selected to assure diversity with respect to interaction types: dispersion, electrostatics, and induction. The benchmark interaction energies are obtained at the restricted open-shell CCSD(T) level of theory with complete basis set extrapolation (from aug-cc-pVQZ to aug-cc-pV5Z). We have analyzed the performance of selected wave function methods MP2, CCSD, and CCSD(T) as well as the F12a and F12b variants of coupled-cluster theory. In addition, we have tested dispersion-corrected density functional theory methods based on the PBE exchange-correlation model. The O24 × 5 dataset is a challenge to approximate methods due to the wide range of interaction energy strengths it spans. For the dispersion-dominated and mixed-type subsets, any tested method that does not include the triples contribution yields errors on the order of tens of percent. The electrostatic subset is less demanding with errors that are typically an order of magnitude smaller than the mixed and dispersion-dominated subsets.
Collapse
Affiliation(s)
- Katarzyna Madajczyk
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland
| | - Piotr S Żuchowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland
| | - Filip Brzȩk
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland
| | - Łukasz Rajchel
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland
| | - Dariusz Kȩdziera
- Faculty of Chemistry, Nicolaus Copernicus University, ul. Gagarina 7, Toruń, Poland
| | - Marcin Modrzejewski
- Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| | - Michał Hapka
- Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
19
|
Donchev AG, Taube AG, Decolvenaere E, Hargus C, McGibbon RT, Law KH, Gregersen BA, Li JL, Palmo K, Siva K, Bergdorf M, Klepeis JL, Shaw DE. Quantum chemical benchmark databases of gold-standard dimer interaction energies. Sci Data 2021; 8:55. [PMID: 33568655 PMCID: PMC7876112 DOI: 10.1038/s41597-021-00833-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Advances in computational chemistry create an ongoing need for larger and higher-quality datasets that characterize noncovalent molecular interactions. We present three benchmark collections of quantum mechanical data, covering approximately 3,700 distinct types of interacting molecule pairs. The first collection, which we refer to as DES370K, contains interaction energies for more than 370,000 dimer geometries. These were computed using the coupled-cluster method with single, double, and perturbative triple excitations [CCSD(T)], which is widely regarded as the gold-standard method in electronic structure theory. Our second benchmark collection, a core representative subset of DES370K called DES15K, is intended for more computationally demanding applications of the data. Finally, DES5M, our third collection, comprises interaction energies for nearly 5,000,000 dimer geometries; these were calculated using SNS-MP2, a machine learning approach that provides results with accuracy comparable to that of our coupled-cluster training data. These datasets may prove useful in the development of density functionals, empirically corrected wavefunction-based approaches, semi-empirical methods, force fields, and models trained using machine learning methods.
Collapse
Affiliation(s)
| | | | | | - Cory Hargus
- D. E. Shaw Research, New York, NY, 10036, USA
| | | | - Ka-Hei Law
- D. E. Shaw Research, New York, NY, 10036, USA
| | | | - Je-Luen Li
- D. E. Shaw Research, New York, NY, 10036, USA
| | - Kim Palmo
- D. E. Shaw Research, New York, NY, 10036, USA
| | | | | | | | - David E Shaw
- D. E. Shaw Research, New York, NY, 10036, USA. .,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
20
|
Abstract
Squaraine dyes are known for their particular optical properties. They exhibit intense photochemically stable fluorescence in usually (near) infra red region that can be quenched by intermolecular interactions. Moreover, even the centrosymmetric dyes feature non-zero second harmonic generation upon aggregation. Therefore, the detailed knowledge of the squaraine dye interaction nature both in homogenic aggregates and with other species present in the environment can be of importance for the design of new materials of desired properties. In the present study, interaction in squaraine dimers is investigated with quantum chemistry tools. Four structures: two stacked and two hydrogen-bonded are analyzed in terms of supermolecular approach and symmetry-adapted perturbation theory. MP2C/aug-cc-pVTZ supermolecular calculations confirm the particular stability of the stacked dimers and the favoured dispersion attraction for the long-displaced system.
Collapse
|
21
|
Kaczmarek-Kędziera A. Gas Phase Computational Study of Diclofenac Adsorption on Chitosan Materials. Molecules 2020; 25:molecules25112549. [PMID: 32486148 PMCID: PMC7321203 DOI: 10.3390/molecules25112549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
Environmental pollution with non-steroidal anti-inflammatory drugs and their metabolites exposes living organisms on their long-lasting, damaging influence. Hence, the ways of non-steroidal anti-inflammatory drugs (NSAIDs) removal from soils and wastewater is sought for. Among the potential adsorbents, biopolymers are employed for their good availability, biodegradability and low costs. The first available theoretical modeling study of the interactions of diclofenac with models of pristine chitosan and its modified chains is presented here. Supermolecular interaction energy in chitosan:drug complexes is compared with the the mutual attraction of the chitosan dimers. Supermolecular interaction energy for the chitosan-diclofenac complexes is significantly lower than the mutual interaction between two chitosan chains, suggesting that the diclofenac molecule will encounter problems when penetrating into the chitosan material. However, its surface adsorption is feasible due to a large number of hydrogen bond donors and acceptors both in biopolymer and in diclofenac. Modification of chitosan material introducing long-distanced amino groups significantly influences the intramolecular interactions within a single polymer chain, thus blocking the access of diclofenac to the biopolymer backbone. The strongest attraction between two chitosan chains with two long-distanced amino groups can exceed 120 kcal/mol, while the modified chitosan:diclofenac interaction remains of the order of 20 to 40 kcal/mol.
Collapse
Affiliation(s)
- Anna Kaczmarek-Kędziera
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| |
Collapse
|
22
|
Werner HJ, Knowles PJ, Manby FR, Black JA, Doll K, Heßelmann A, Kats D, Köhn A, Korona T, Kreplin DA, Ma Q, Miller TF, Mitrushchenkov A, Peterson KA, Polyak I, Rauhut G, Sibaev M. The Molpro quantum chemistry package. J Chem Phys 2020; 152:144107. [PMID: 32295355 DOI: 10.1063/5.0005081] [Citation(s) in RCA: 601] [Impact Index Per Article: 120.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Molpro is a general purpose quantum chemistry software package with a long development history. It was originally focused on accurate wavefunction calculations for small molecules but now has many additional distinctive capabilities that include, inter alia, local correlation approximations combined with explicit correlation, highly efficient implementations of single-reference correlation methods, robust and efficient multireference methods for large molecules, projection embedding, and anharmonic vibrational spectra. In addition to conventional input-file specification of calculations, Molpro calculations can now be specified and analyzed via a new graphical user interface and through a Python framework.
Collapse
Affiliation(s)
- Hans-Joachim Werner
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Peter J Knowles
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Frederick R Manby
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Joshua A Black
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Klaus Doll
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Andreas Heßelmann
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Daniel Kats
- Max-Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Andreas Köhn
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Tatiana Korona
- Faculty of Chemistry, University of Warsaw, L. Pasteura 1 St., 02-093 Warsaw, Poland
| | - David A Kreplin
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Qianli Ma
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Thomas F Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, USA
| | - Iakov Polyak
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Guntram Rauhut
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Marat Sibaev
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
23
|
Greenwell C, McKinley JL, Zhang P, Zeng Q, Sun G, Li B, Wen S, Beran GJO. Overcoming the difficulties of predicting conformational polymorph energetics in molecular crystals via correlated wavefunction methods. Chem Sci 2020; 11:2200-2214. [PMID: 32190277 PMCID: PMC7059316 DOI: 10.1039/c9sc05689k] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/13/2020] [Indexed: 11/21/2022] Open
Abstract
Molecular crystal structure prediction is increasingly being applied to study the solid form landscapes of larger, more flexible pharmaceutical molecules. Despite many successes in crystal structure prediction, van der Waals-inclusive density functional theory (DFT) methods exhibit serious failures predicting the polymorph stabilities for a number of systems exhibiting conformational polymorphism, where changes in intramolecular conformation lead to different intermolecular crystal packings. Here, the stabilities of the conformational polymorphs of o-acetamidobenzamide, ROY, and oxalyl dihydrazide are examined in detail. DFT functionals that have previously been very successful in crystal structure prediction perform poorly in all three systems, due primarily to the poor intramolecular conformational energies, but also due to the intermolecular description in oxalyl dihydrazide. In all three cases, a fragment-based dispersion-corrected second-order Møller-Plesset perturbation theory (MP2D) treatment of the crystals overcomes these difficulties and predicts conformational polymorph stabilities in good agreement with experiment. These results highlight the need for methods which go beyond current-generation DFT functionals to make crystal polymorph stability predictions truly reliable.
Collapse
Affiliation(s)
- Chandler Greenwell
- Department of Chemistry , University of California , Riverside , California 92521 , USA . ; Tel: +1-951-827-7869
| | - Jessica L McKinley
- Department of Chemistry , University of California , Riverside , California 92521 , USA . ; Tel: +1-951-827-7869
| | - Peiyu Zhang
- Xtalpi, Inc. , 245 Main St, 12th Floor , Cambridge , MA 02142 , USA
| | - Qun Zeng
- Xtalpi, Inc. , 245 Main St, 12th Floor , Cambridge , MA 02142 , USA
| | - Guangxu Sun
- Xtalpi, Inc. , 245 Main St, 12th Floor , Cambridge , MA 02142 , USA
| | - Bochen Li
- Xtalpi, Inc. , 245 Main St, 12th Floor , Cambridge , MA 02142 , USA
| | - Shuhao Wen
- Xtalpi, Inc. , 245 Main St, 12th Floor , Cambridge , MA 02142 , USA
| | - Gregory J O Beran
- Department of Chemistry , University of California , Riverside , California 92521 , USA . ; Tel: +1-951-827-7869
| |
Collapse
|
24
|
Nguyen BD, Chen GP, Agee MM, Burow AM, Tang MP, Furche F. Divergence of Many-Body Perturbation Theory for Noncovalent Interactions of Large Molecules. J Chem Theory Comput 2020; 16:2258-2273. [DOI: 10.1021/acs.jctc.9b01176] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Brian D. Nguyen
- University of California, Irvine, Department of Chemistry, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Guo P. Chen
- University of California, Irvine, Department of Chemistry, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Matthew M. Agee
- University of California, Irvine, Department of Chemistry, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Asbjörn M. Burow
- University of California, Irvine, Department of Chemistry, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Matthew P. Tang
- University of California, Irvine, Department of Chemistry, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Filipp Furche
- University of California, Irvine, Department of Chemistry, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| |
Collapse
|
25
|
Garcia J, Szalewicz K. Ab Initio Extended Hartree-Fock plus Dispersion Method Applied to Dimers with Hundreds of Atoms. J Phys Chem A 2020; 124:1196-1203. [PMID: 31961678 DOI: 10.1021/acs.jpca.9b11900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Hartree-Fock plus dispersion plus first-order correlation (HFDc(1)) method consists in augmenting the HF interaction energy by the correlation part of the first-order interaction energy and the second-order dispersion and exchange-dispersion energies. All of the augmentation terms are computed using the symmetry-adapted perturbation theory based on density functional theory description of monomers [SAPT(DFT)]; thus, HFDc(1) is a fully ab initio method. A partly empirical version of this method, HFDasc(1), uses a damped asymptotic expansion for the dispersion plus exchange-dispersion term fitted to SAPT(DFT) ab initio values. The HFDc(1) interaction energies for dimers in the S22, S66, S66x8, NCCE31, IonHB, and UD-ARL benchmark data sets are more accurate than those given by most ab initio methods with comparable costs. HFDc(1) can be used routinely for dimers with nearly 200 atoms, such as included in the S12L benchmark set, giving results comparable to those obtained by the most expensive methods applicable.
Collapse
Affiliation(s)
- Javier Garcia
- Department of Physics and Astronomy , University of Delaware , Newark , Delaware 19716 , United States
| | - Krzysztof Szalewicz
- Department of Physics and Astronomy , University of Delaware , Newark , Delaware 19716 , United States
| |
Collapse
|
26
|
Patkowski K. Recent developments in symmetry‐adapted perturbation theory. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1452] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Konrad Patkowski
- Department of Chemistry and Biochemistry Auburn University Auburn Alabama
| |
Collapse
|
27
|
Heßelmann A. Intermolecular interaction energies from fourth order many-body perturbation theory. Impact of individual electron correlation contributions. J Chem Phys 2019; 151:114105. [DOI: 10.1063/1.5112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andreas Heßelmann
- Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| |
Collapse
|
28
|
Hemmati R, Patkowski K. Chiral Self Recognition: Interactions in Propylene Oxide Complexes. J Phys Chem A 2019; 123:8607-8618. [PMID: 31525971 DOI: 10.1021/acs.jpca.9b06028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Reza Hemmati
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Konrad Patkowski
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
29
|
Yourdkhani S, Jabłoński M. Physical nature of silane⋯carbene dimers revealed by state-of-the-art ab initio calculations. J Comput Chem 2019; 40:2643-2652. [PMID: 31441520 DOI: 10.1002/jcc.26043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 11/06/2022]
Abstract
Using the SAPT2 + 3(CCD)δMP2 method in complete basis set (CBS) limit, it is shown that the interactions in the recently studied silane⋯carbene dimers are mainly dispersive in nature. Consequently, slow convergence of dispersion energy also forces slow convergence of the interaction energy. Therefore, obtaining very accurate values requires extrapolation of the correlation part to the CBS limit. The most accurate values obtained at the CCSD(T)/CBS level of theory show that the studied silane⋯carbene dimers are rather weakly bound, with interaction energies ranging from about -1.9 to -1.3 kcal/mol. Comparing to CCSD(T)/CBS, it will be shown that SCS-MP2 and MP2C methods clearly underestimate and methods based on SAPT2+ and having some third-order corrections, as well as the MP2 method, overestimate values of interaction energies. Popular SAPT(DFT) method performs better than SCS-MP2 and MP2C; nevertheless, underestimation is still considerable. The underestimation is slightly quenched if third-order dispersion energy and its exchange counterpart is added to the SAPT(DFT). The closest value of CCSD(T)/CBS has been given by the SAPT2 + (3)(CCD)δMP2 method in quadruple-ζ basis set. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sirous Yourdkhani
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3,CZ-12116, Prague 2, Czech Republic
| | - Mirosław Jabłoński
- Department of Quantum Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7-Gagarina St, 87-100, Toruń, Poland
| |
Collapse
|
30
|
Kodrycka M, Patkowski K. Platinum, gold, and silver standards of intermolecular interaction energy calculations. J Chem Phys 2019; 151:070901. [DOI: 10.1063/1.5116151] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Monika Kodrycka
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, USA
| | - Konrad Patkowski
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, USA
| |
Collapse
|
31
|
Su H, Wang H, Wang H, Lu Y, Zhu Z. Description of noncovalent interactions involving π‐system with high precision: An assessment of RPA, MP2, and DFT‐D methods. J Comput Chem 2019; 40:1643-1651. [DOI: 10.1002/jcc.25817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 01/15/2023]
Affiliation(s)
- He Su
- School of Physical Science and Technology, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of ChinaSouthwest Jiaotong University Chengdu 611756 People's Republic of China
| | - Hui Wang
- School of Physical Science and Technology, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of ChinaSouthwest Jiaotong University Chengdu 611756 People's Republic of China
| | - Hongyan Wang
- School of Physical Science and Technology, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of ChinaSouthwest Jiaotong University Chengdu 611756 People's Republic of China
| | - Yunxiang Lu
- Key Laboratory for Advanced Materials and School of Chemistry & Molecular Engineering, Department of ChemistryEast China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Zhengdan Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of SciencesUniversity of Chinese Academy of Sciences Shanghai 201203 People's Republic of China
| |
Collapse
|
32
|
Řezáč J, Greenwell C, Beran GJO. Accurate Noncovalent Interactions via Dispersion-Corrected Second-Order Møller-Plesset Perturbation Theory. J Chem Theory Comput 2018; 14:4711-4721. [PMID: 30086225 DOI: 10.1021/acs.jctc.8b00548] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Noncovalent interactions govern many important areas of chemistry, ranging from biomolecules to molecular crystals. Here, an accurate and computationally inexpensive dispersion-corrected second-order Møller-Plesset perturbation theory model (MP2D) is presented. MP2D recasts the highly successful dispersion-corrected MP2C model in a framework based on Grimme's D3 dispersion correction, combining Grimme's D3 dispersion coefficients with new analogous uncoupled Hartree-Fock ones and five global empirical parameters. MP2D is faster than MP2C, and unlike MP2C, it is suitable for geometry optimizations and can describe both intra- and intermolecular noncovalent interactions with high accuracy. MP2D approaches the accuracy of higher-level ab initio wave function techniques and out-performs a widely used hybrid dispersion-corrected density functional on a range of intermolecular, intramolecular, and thermochemical benchmarks.
Collapse
Affiliation(s)
- Jan Řezáč
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , 166 10 Prague , Czech Republic
| | - Chandler Greenwell
- Department of Chemistry , University of California-Riverside , Riverside , California 92521 United States
| | - Gregory J O Beran
- Department of Chemistry , University of California-Riverside , Riverside , California 92521 United States
| |
Collapse
|
33
|
Dutta NN, Patkowski K. Improving “Silver-Standard” Benchmark Interaction Energies with Bond Functions. J Chem Theory Comput 2018; 14:3053-3070. [DOI: 10.1021/acs.jctc.8b00204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Narendra Nath Dutta
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Konrad Patkowski
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
34
|
Lao KU, Herbert JM. Atomic Orbital Implementation of Extended Symmetry-Adapted Perturbation Theory (XSAPT) and Benchmark Calculations for Large Supramolecular Complexes. J Chem Theory Comput 2018; 14:2955-2978. [DOI: 10.1021/acs.jctc.8b00058] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ka Un Lao
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M. Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
35
|
Intermolecular dispersion energies from coupled exact-exchange Kohn-Sham excitation energies and vectors. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Reimers JR, Sajid A, Kobayashi R, Ford MJ. Understanding and Calibrating Density-Functional-Theory Calculations Describing the Energy and Spectroscopy of Defect Sites in Hexagonal Boron Nitride. J Chem Theory Comput 2018; 14:1602-1613. [DOI: 10.1021/acs.jctc.7b01072] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jeffrey R. Reimers
- International Centre for Quantum and Molecular Structures and Department of Physics, Shanghai University, Shanghai 200444, China
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - A. Sajid
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- Department of Physics, GC University Faisalabad, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Rika Kobayashi
- National Computational Infrastructure, The Australian National University, Canberra, Austrailian Capital Territory 2600, Australia
| | - Michael J. Ford
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| |
Collapse
|
37
|
McKinley JL, Beran GJO. Identifying pragmatic quasi-harmonic electronic structure approaches for modeling molecular crystal thermal expansion. Faraday Discuss 2018; 211:181-207. [PMID: 30027972 DOI: 10.1039/c8fd00048d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Quasi-harmonic approaches provide an economical route to modeling the temperature dependence of molecular crystal structures and properties. Several studies have demonstrated good performance of these models, at least for rigid molecules, when using fragment-based approaches with correlated wavefunction techniques. Many others have found success employing dispersion-corrected density functional theory (DFT). Here, a hierarchy of models in which the energies, geometries, and phonons are computed either with correlated methods or DFT are examined to identify which combinations produce useful predictions for properties such as the molar volume, enthalpy, and entropy as a function of temperature. The results demonstrate that refining DFT geometries and phonons with single-point energies based on dispersion-corrected second-order Møller-Plesset perturbation theory can provide clear improvements in the molar volumes and enthalpies compared to those obtained from DFT alone. Predicted entropies, which are governed by vibrational contributions, benefit less clearly from the hybrid schemes. Using these hybrid techniques, the room-temperature thermochemistry of acetaminophen (paracetamol) is predicted to address the discrepancy between two experimental sublimation enthalpy measurements.
Collapse
Affiliation(s)
- Jessica L McKinley
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | | |
Collapse
|
38
|
Shirkov L, Sladek V. Benchmark CCSD-SAPT study of rare gas dimers with comparison to MP-SAPT and DFT-SAPT. J Chem Phys 2017; 147:174103. [DOI: 10.1063/1.4997569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Leonid Shirkov
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland
| | - Vladimir Sladek
- Institute of Chemistry–Centre for Glycomics, Slovak Academy of Sciences, 845 38 Bratislava, Slovakia
| |
Collapse
|
39
|
Burns LA, Faver JC, Zheng Z, Marshall MS, Smith DGA, Vanommeslaeghe K, MacKerell AD, Merz KM, Sherrill CD. The BioFragment Database (BFDb): An open-data platform for computational chemistry analysis of noncovalent interactions. J Chem Phys 2017; 147:161727. [PMID: 29096505 PMCID: PMC5656042 DOI: 10.1063/1.5001028] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/20/2017] [Indexed: 11/14/2022] Open
Abstract
Accurate potential energy models are necessary for reliable atomistic simulations of chemical phenomena. In the realm of biomolecular modeling, large systems like proteins comprise very many noncovalent interactions (NCIs) that can contribute to the protein's stability and structure. This work presents two high-quality chemical databases of common fragment interactions in biomolecular systems as extracted from high-resolution Protein DataBank crystal structures: 3380 sidechain-sidechain interactions and 100 backbone-backbone interactions that inaugurate the BioFragment Database (BFDb). Absolute interaction energies are generated with a computationally tractable explicitly correlated coupled cluster with perturbative triples [CCSD(T)-F12] "silver standard" (0.05 kcal/mol average error) for NCI that demands only a fraction of the cost of the conventional "gold standard," CCSD(T) at the complete basis set limit. By sampling extensively from biological environments, BFDb spans the natural diversity of protein NCI motifs and orientations. In addition to supplying a thorough assessment for lower scaling force-field (2), semi-empirical (3), density functional (244), and wavefunction (45) methods (comprising >1M interaction energies), BFDb provides interactive tools for running and manipulating the resulting large datasets and offers a valuable resource for potential energy model development and validation.
Collapse
Affiliation(s)
- Lori A Burns
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - John C Faver
- Quantum Theory Project, The University of Florida, 2328 New Physics Building, Gainesville, Florida 32611-8435, USA
| | - Zheng Zheng
- Quantum Theory Project, The University of Florida, 2328 New Physics Building, Gainesville, Florida 32611-8435, USA
| | - Michael S Marshall
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Daniel G A Smith
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Kenno Vanommeslaeghe
- Department of Analytical Chemistry and Pharmaceutical Technology (FABI), Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, USA
| | - Kenneth M Merz
- Quantum Theory Project, The University of Florida, 2328 New Physics Building, Gainesville, Florida 32611-8435, USA
| | - C David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
40
|
Yourdkhani S, Jabłoński M, Echeverría J. Attractive PHHP interactions revealed by state-of-the-art ab initio calculations. Phys Chem Chem Phys 2017; 19:28044-28055. [PMID: 28994835 DOI: 10.1039/c7cp04412g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We report in this work a combined structural and state-of-the-art computational study of homopolar P-HH-P intermolecular contacts. Database surveys have shown the abundance of such surprisingly unexplored contacts, which are usually accompanied by other weak interactions in the solid state. By means of a detailed theoretical study utilizing SAPT(DFT), MP2, SCS-MP2, MP2C and CCSD(T) methods and both aug-cc-pVXZ and aug-cc-pCVXZ (X = D, T, Q, 5) basis sets as well as extrapolation to the CBS limit, we have shown that P-HH-P contacts are indeed attractive and considerably strong. SAPT(DFT) calculations have revealed the dispersive nature of the P-HH-P interaction with only minor contribution of the inductive term, whereas the first-order electrostatic term is clearly overbalanced by the first-order exchange energy. In general the computed interaction energies follow the trend: E ≈ E < E < E. Our results have also shown that the aug-cc-pVDZ (or aug-cc-pCVDZ) basis set is not yet well balanced and that the second-order dispersion energy term is the slowest converging among all SAPT(DFT) energy components. Compared to aug-cc-pVXZ basis sets, their core-correlation counterparts have a modest influence on all supermolecular interaction energies and a negligible influence on both the SAPT(DFT) interaction energy and its components.
Collapse
Affiliation(s)
- Sirous Yourdkhani
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | | | | |
Collapse
|
41
|
Tsatsoulis T, Hummel F, Usvyat D, Schütz M, Booth GH, Binnie SS, Gillan MJ, Alfè D, Michaelides A, Grüneis A. A comparison between quantum chemistry and quantum Monte Carlo techniques for the adsorption of water on the (001) LiH surface. J Chem Phys 2017; 146:204108. [PMID: 28571392 PMCID: PMC5446292 DOI: 10.1063/1.4984048] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/11/2017] [Indexed: 12/03/2022] Open
Abstract
We present a comprehensive benchmark study of the adsorption energy of a single water molecule on the (001) LiH surface using periodic coupled cluster and quantum Monte Carlo theories. We benchmark and compare different implementations of quantum chemical wave function based theories in order to verify the reliability of the predicted adsorption energies and the employed approximations. Furthermore we compare the predicted adsorption energies to those obtained employing widely used van der Waals density-functionals. Our findings show that quantum chemical approaches are becoming a robust and reliable tool for condensed phase electronic structure calculations, providing an additional tool that can also help in potentially improving currently available van der Waals density-functionals.
Collapse
Affiliation(s)
- Theodoros Tsatsoulis
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - Felix Hummel
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - Denis Usvyat
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-St. 2, D-12489 Berlin, Germany
| | - Martin Schütz
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-St. 2, D-12489 Berlin, Germany
| | - George H Booth
- Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Simon S Binnie
- London Centre for Nanotechnology, University College London, Gordon St., London WC1H 0AH, United Kingdom
| | - Michael J Gillan
- London Centre for Nanotechnology, University College London, Gordon St., London WC1H 0AH, United Kingdom
| | - Dario Alfè
- London Centre for Nanotechnology, University College London, Gordon St., London WC1H 0AH, United Kingdom
| | - Angelos Michaelides
- London Centre for Nanotechnology, University College London, Gordon St., London WC1H 0AH, United Kingdom
| | - Andreas Grüneis
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| |
Collapse
|
42
|
Tan S, Barrera Acevedo S, Izgorodina EI. Generalized spin-ratio scaled MP2 method for accurate prediction of intermolecular interactions for neutral and ionic species. J Chem Phys 2017; 146:064108. [DOI: 10.1063/1.4975326] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Samuel Tan
- Monash Computational Chemistry Group, School of Chemistry, Monash University, 17 Rainforest Walk, Clayton VIC 3800, Australia
| | - Santiago Barrera Acevedo
- School of Mathematical Sciences, Monash University, 9 Rainforest Walk, Clayton VIC 3800, Australia
| | - Ekaterina I. Izgorodina
- Monash Computational Chemistry Group, School of Chemistry, Monash University, 17 Rainforest Walk, Clayton VIC 3800, Australia
| |
Collapse
|
43
|
Yourdkhani S, Jabłoński M. Revealing the physical nature and the strength of charge-inverted hydrogen bonds by SAPT(DFT), MP2, SCS-MP2, MP2C, and CCSD(T) methods. J Comput Chem 2017; 38:773-780. [PMID: 28145082 DOI: 10.1002/jcc.24739] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 01/26/2023]
Abstract
The physical nature of charge-inverted hydrogen bonds in H3 XH ⋯YH3 (X = Si, Ge; Y = Al, Ga) dimer systems is studied by means of the SAPT(DFT)-based decomposition of interaction energies and supermolecular interaction energies based on MP2, SCS-MP2, MP2C, and CCSD(T) methods utilizing dimer-centered aug-cc-pCVnZ (n = D, T, Q) basis sets as well as an extrapolation to the complete basis set limit. It is revealed that charge-inverted hydrogen bonds are inductive in nature, although dispersion is also important. Computed interaction energies form the following relation: EintSAPT<EintSCS-MP2≤EintMP2C<EintMP2≈EintCCSD(T). It is confirmed that the aug-cc-pCVDZ basis set performs poorly and that very accurate values of interaction and dispersion energies require basis sets of at least quadrupole-ζ quality. Considerably large binding energies suggest potential usefulness of charge-inverted hydrogen bonds as an important structural motif in molecular binding. Terminology applying to σ- and π-hole interactions as well as to triel and tetrel bonds is discussed. According to this new terminology the charge-inverted hydrogen bond would become the first described case of a hydride-triel bond. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sirous Yourdkhani
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Mirosław Jabłoński
- Department of Quantum Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7-Gagarina St, Toruń, 87-100, Poland
| |
Collapse
|
44
|
Tan SYS, Wylie L, Begic I, Tran D, Izgorodina EI. Application of spin-ratio scaled MP2 for the prediction of intermolecular interactions in chemical systems. Phys Chem Chem Phys 2017; 19:28936-28942. [DOI: 10.1039/c7cp04391k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Accurate prediction of intermolecular interactions plays a pivotal role in many areas of chemistry and biology including (but not limited to) the design of pharmaceuticals, solid electrolytes and food additives.
Collapse
Affiliation(s)
| | - Luke Wylie
- School of Chemistry
- Monash University
- Clayton
- Australia
| | - Ivan Begic
- School of Chemistry
- Monash University
- Clayton
- Australia
| | - Dennis Tran
- School of Chemistry
- Monash University
- Clayton
- Australia
| | | |
Collapse
|
45
|
Description of Weak Halogen Bonding Using Various Levels of Symmetry-Adapted Perturbation Theory Combined with Effective Core Potentials. J CHEM-NY 2017. [DOI: 10.1155/2017/9031494] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present work starts with providing a description of the halogen bonding (XB) interaction between the halogen atom of MH3X (where M = C–Pb and X = I, At) and the N atom of HCN. This interaction leads to the formation of stable yet very weakly bound MH3X⋯NCH complexes for which the interaction energy (Eint) between MH3X and HCN is calculated using various symmetry-adapted perturbation theory (SAPT) methods combined with the def2-QZVPP basis set and midbond functions. This basis set assigns effective core potentials (ECPs) not only to the I or At atom directly participating in the XB interaction with HCN but also to the M atom when substituted with Sn or Pb. Twelve SAPT methods (or levels) are taken into consideration. According to the SAPT analysis ofEint, the XB interaction in the complexes shows mixed electrostatic-dispersion nature. Next, the accuracy of SAPTEintis evaluated by comparing with CCSD(T) reference data. This comparison reveals that high-order SAPT2+(3)method and the much less computationally demanding SAPT(DFT) method perform very well in describingEintof the complexes. However, the accuracy of these methods decreases dramatically if they are combined with the so-called Hartree-Fock correction.
Collapse
|
46
|
Masur O, Schütz M, Maschio L, Usvyat D. Fragment-Based Direct-Local-Ring-Coupled-Cluster Doubles Treatment Embedded in the Periodic Hartree–Fock Solution. J Chem Theory Comput 2016; 12:5145-5156. [DOI: 10.1021/acs.jctc.6b00651] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Oliver Masur
- Institut
für Physikalische und Theoretische Chemie, Universität Regensburg, 93049 Regensburg, Germany
| | - Martin Schütz
- Institut
für Physikalische und Theoretische Chemie, Universität Regensburg, 93049 Regensburg, Germany
| | - Lorenzo Maschio
- Dipartimento
di Chimica, and NIS (Nanostructured Interfaces and Surfaces) Centre, Università di Torino, via Giuria 5, I-10125 Torino, Italy
| | - Denis Usvyat
- Institut
für Physikalische und Theoretische Chemie, Universität Regensburg, 93049 Regensburg, Germany
| |
Collapse
|
47
|
Klimeš J. Lattice energies of molecular solids from the random phase approximation with singles corrections. J Chem Phys 2016; 145:094506. [DOI: 10.1063/1.4962188] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jiří Klimeš
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-18223 Prague 8, Czech Republic and Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-12116 Prague 2, Czech Republic
| |
Collapse
|
48
|
Heit YN, Beran GJO. How important is thermal expansion for predicting molecular crystal structures and thermochemistry at finite temperatures? ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2016; 72:514-529. [PMID: 27484373 DOI: 10.1107/s2052520616005382] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/30/2016] [Indexed: 06/06/2023]
Abstract
Molecular crystals expand appreciably upon heating due to both zero-point and thermal vibrational motion, yet this expansion is often neglected in molecular crystal modeling studies. Here, a quasi-harmonic approximation is coupled with fragment-based hybrid many-body interaction calculations to predict thermal expansion and finite-temperature thermochemical properties in crystalline carbon dioxide, ice Ih, acetic acid and imidazole. Fragment-based second-order Möller-Plesset perturbation theory (MP2) and coupled cluster theory with singles, doubles and perturbative triples [CCSD(T)] predict the thermal expansion and the temperature dependence of the enthalpies, entropies and Gibbs free energies of sublimation in good agreement with experiment. The errors introduced by neglecting thermal expansion in the enthalpy and entropy cancel somewhat in the Gibbs free energy. The resulting ∼ 1-2 kJ mol(-1) errors in the free energy near room temperature are comparable to or smaller than the errors expected from the electronic structure treatment, but they may be sufficiently large to affect free-energy rankings among energetically close polymorphs.
Collapse
Affiliation(s)
- Yonaton N Heit
- Department of Chemistry, University of California, Riverside, California 92521, USA
| | - Gregory J O Beran
- Department of Chemistry, University of California, Riverside, California 92521, USA
| |
Collapse
|
49
|
Yourdkhani S, Chojecki M, Hapka M, Korona T. Interaction of Boron–Nitrogen Doped Benzene Isomers with Water. J Phys Chem A 2016; 120:6287-302. [DOI: 10.1021/acs.jpca.6b05248] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sirous Yourdkhani
- Department
of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
- Faculty
of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland
| | - Michał Chojecki
- Faculty
of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland
| | - Michał Hapka
- Faculty
of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland
| | - Tatiana Korona
- Faculty
of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
50
|
de Lara-Castells MP, Fernández-Perea R, Madzharova F, Voloshina E. Post-Hartree-Fock studies of the He/Mg(0001) interaction: Anti-corrugation, screening, and pairwise additivity. J Chem Phys 2016; 144:244707. [DOI: 10.1063/1.4954772] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
| | | | - Fani Madzharova
- Humboldt-Universität zu Berlin, Institut für Chemie, Unter den Linden 6, 10099 Berlin, Germany
| | - Elena Voloshina
- Humboldt-Universität zu Berlin, Institut für Chemie, Unter den Linden 6, 10099 Berlin, Germany
| |
Collapse
|