1
|
Clarke CJ, Burrow EM, Verlet JRR. The valence electron affinity of uracil determined by anion cluster photoelectron spectroscopy. Phys Chem Chem Phys 2024; 26:20037-20045. [PMID: 39007196 DOI: 10.1039/d4cp02146k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The unoccupied π* orbitals of the nucleobases are considered to play important roles in low-energy electron attachment to DNA, inducing damage. While the lowest anionic valence state is vertically unbound in all neutral nucleobases, it remains unclear even for the simplest nucleobase, uracil (U), whether its valence anion (U-) is adiabatically bound, which has important implications on the efficacy of damage processes. Using anion photoelectron spectroscopy, we demonstrate that the valence electron affinity (EAV) of U can be accurately measured within weakly solvating clusters, U-(Ar)n and U-(N2)n. Through extrapolation to the isolated U limit, we show that EAV = -2 ± 18 meV. We discuss these findings in the context of electron attachment to U and its reorganization energy, and more generally establish guidance for the determination of molecular electron affinities from the photoelectron spectroscopy of anion clusters.
Collapse
Affiliation(s)
- Connor J Clarke
- Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - E Michi Burrow
- Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, UK.
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
2
|
Venkataramanan NS, Suvitha A, Sahara R. Unveiling the Intermolecular Interactions between Drug 5-Fluorouracil and Watson-Crick/Hoogsteen Base Pairs: A Computational Analysis. ACS OMEGA 2024; 9:24831-24844. [PMID: 38882136 PMCID: PMC11170692 DOI: 10.1021/acsomega.4c01545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024]
Abstract
The adsorption of 5-fluorouracil (5FU) on Watson-Crick (WC) base pairs and Hoogsteen (HT) base pairs has been studied using the dispersion-corrected density functional theory (DFT). The adsorption, binding energy, and thermochemistry for the drug 5FU on the WC and HT base pairs were determined. The most stable geometries were near planar geometry, and 5FU has a higher preference for WC than HT base pairs. The adsorption energies of 5FU on nucleobase pairs are consistently higher than pristine nucleobase pairs, indicating that nucleobase pair cleavage is less likely during the adsorption of the 5FU drug. The enthalpy change for the formation of 5FU-DNA base pairs is higher than that for the formation of 5FU-nucleobases and is enthalpy-driven. The E gap of AT base pairs is higher, suggesting that their chemical reactivity toward further reaction would be less than that of GC base pairs. The electron density difference (EDD) analysis shows a significant decrease in electron density in aromatic regions on the purine bases (adenine/guanine) compared to the pyrimidine bases. The MESP diagram of the stable 5FU-nucleobase pair complexes shows a directional interaction, with the positive regions in a molecule interacting with the negative region of other molecules. The atoms in molecule analysis show that the ρ(r) values of C=O···H-N are higher than those of N···H/N-H···O. The N···H intermolecular bonds between the base pair/drug and nucleobases are weak, closed shell interactions and are electrostatic in nature. The noncovalent interaction analysis shows that several new spikes are engendered along with an increase in their strength, which indicates that the H-bonding interactions are stronger and play a dominant role in stabilizing the complexes. Energy decomposition analysis shows that the drug-nucleobase pair complex has a marginal increase in the electrostatic contributions compared to nucleobase pair complexes.
Collapse
Affiliation(s)
| | | | - Ryoji Sahara
- Research Center for Structural Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
| |
Collapse
|
3
|
Banerjee S, Sokolov AY. Algebraic Diagrammatic Construction Theory for Simulating Charged Excited States and Photoelectron Spectra. J Chem Theory Comput 2023. [PMID: 37191264 DOI: 10.1021/acs.jctc.3c00251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Charged excitations are electronic transitions that involve a change in the total charge of a molecule or material. Understanding the properties and reactivity of charged species requires insights from theoretical calculations that can accurately describe orbital relaxation and electron correlation effects in open-shell electronic states. In this Review, we describe the current state of algebraic diagrammatic construction (ADC) theory for simulating charged excitations and its recent developments. We start with a short overview of ADC formalism for the one-particle Green's function, including its single- and multireference formulations and extension to periodic systems. Next, we focus on the capabilities of ADC methods and discuss recent findings about their accuracy for calculating a wide range of excited-state properties. We conclude our Review by outlining possible directions for future developments of this theoretical approach.
Collapse
Affiliation(s)
- Samragni Banerjee
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alexander Yu Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Abdelgawwad AMA, Monari A, Tuñón I, Francés-Monerris A. Spatial and Temporal Resolution of the Oxygen-Independent Photoinduced DNA Interstrand Cross-Linking by a Nitroimidazole Derivative. J Chem Inf Model 2022; 62:3239-3252. [PMID: 35771238 PMCID: PMC9277591 DOI: 10.1021/acs.jcim.2c00460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA damage is ubiquitous in nature and is at the basis of emergent treatments such as photodynamic therapy, which is based on the activation of highly oxidative reactive oxygen species by photosensitizing O2. However, hypoxia observed in solid tumors imposes the necessity to devise oxygen-independent modes of action able to induce DNA damage under a low oxygen concentration. The complexity of these DNA damage mechanisms in realistic environments grows exponentially when taking into account light absorption and subsequent excited-state population, photochemical and (photo)-redox reactions, the multiple species involved in different electronic states, noncovalent interactions, multiple reaction steps, and the large number of DNA reactive sites. This work tackles all the intricate reactivity of a photosensitizer based on a nitroimidazole derivative reacting toward DNA in solution under UV light exposition. This is performed through a combination of ground- and excited-state quantum chemistry, classical molecular dynamics, and hybrid QM/MM simulations to rationalize in detail the formation of DNA interstrand cross-links (ICLs) exerted by the noncanonical noncovalent photosensitizer. Unprecedented spatial and temporal resolution of these phenomena is achieved, revealing that the ICL is sequence-specific and that the fastest reactions take place at AT, GC, and GT steps involving either the opposite nucleobases or adjacent Watson-Crick base pairs. The N7 and O6 positions of guanine, the N7 and N3 sites of adenine, the N4 position of cytosine, and the O2 atom of thymine are deemed as the most nucleophile sites and are positively identified to participate in the ICL productions. This work provides a multiscale computational protocol to study DNA reactivity with noncovalent photosensitizers, and contributes to the understanding of therapies based on photoinduced DNA damage at molecular and electronic levels. In addition, we believe the depth understanding of these processes should assist the design of new photosensitizers considering their molecular size, electronic properties, and the observed regioselectivity toward nucleic acids.
Collapse
Affiliation(s)
| | - Antonio Monari
- Université Paris Cité, CNRS, ITODYS, F-75006 Paris, France.,Université de Lorraine and CNRS, UMR 7019 LPCT, F-5400 Nancy, France
| | - Iñaki Tuñón
- Departament de Química Física, Universitat de València, 46100 Burjassot, Spain
| | | |
Collapse
|
5
|
Bejarano F, Gutiérrez D, Catalán-Toledo J, Roca-Sanjuán D, Gierschner J, Veciana J, Mas-Torrent M, Rovira C, Crivillers N. Photoswitching activation of a ferrocenyl-stilbene analogue by its covalent grafting to gold. Phys Chem Chem Phys 2022; 24:6185-6192. [PMID: 35229090 DOI: 10.1039/d1cp05012e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Until now, surface-deposited stilbenes have been much less studied than other photochromic systems. Here, an asymmetrically substituted styrene incorporating a redox-active ferrocene moiety and a terminal alkyne group has been synthesised to investigate its photoisomerization in solution, and upon the formation of chemisorbed self-assembled monolayers through a carbon-gold bond formation. Charge transport measurements across the monolayers reveal that upon chemical linkage to the gold substrate there is an alteration of the isomerization pathway, which favours the trans to cis conversion, which is not observed in solution. The experimental observations are interpreted based on quantum chemistry calculations.
Collapse
Affiliation(s)
- Francesc Bejarano
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and CIBER-BBN, Campus de la UAB, 08193 Bellaterra, Spain.
| | - Diego Gutiérrez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and CIBER-BBN, Campus de la UAB, 08193 Bellaterra, Spain. .,Leitat Technological Center (LEITAT), Carrer Innovació, 2, 08225 Terrassa, Spain
| | - José Catalán-Toledo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and CIBER-BBN, Campus de la UAB, 08193 Bellaterra, Spain.
| | - Daniel Roca-Sanjuán
- Institute of Molecular Science, University of Valencia, P.O. Box 22085, ES-46071 Valencia, Spain
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, Calle Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain.
| | - Jaume Veciana
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and CIBER-BBN, Campus de la UAB, 08193 Bellaterra, Spain.
| | - Marta Mas-Torrent
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and CIBER-BBN, Campus de la UAB, 08193 Bellaterra, Spain.
| | - Concepció Rovira
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and CIBER-BBN, Campus de la UAB, 08193 Bellaterra, Spain.
| | - Núria Crivillers
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and CIBER-BBN, Campus de la UAB, 08193 Bellaterra, Spain.
| |
Collapse
|
6
|
Roldao JC, Oliveira EF, Milián-Medina B, Gierschner J, Roca-Sanjuán D. Quantum-chemistry study of the ground and excited state absorption of distyrylbenzene: Multi vs single reference methods. J Chem Phys 2022; 156:044102. [DOI: 10.1063/5.0073189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Juan Carlos Roldao
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, Ciudad Universitaria de Cantoblanco, C. Faraday 9, 28049 Madrid, Spain
| | - Eliezer Fernando Oliveira
- Gleb Wataghin Institute of Physics, University of Campinas (UNICAMP), Campinas, SP, Brazil
- Center for Computational Engineering and Sciences (CCES), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Begoña Milián-Medina
- Department for Physical Chemistry, Faculty of Chemistry, University of Valencia, Av. Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, Ciudad Universitaria de Cantoblanco, C. Faraday 9, 28049 Madrid, Spain
| | - Daniel Roca-Sanjuán
- Institute of Molecular Science, University of Valencia, 46980 Paterna, Spain
| |
Collapse
|
7
|
Theoretical Study on the Photo-Oxidation and Photoreduction of an Azetidine Derivative as a Model of DNA Repair. Molecules 2021; 26:molecules26102911. [PMID: 34068908 PMCID: PMC8157190 DOI: 10.3390/molecules26102911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022] Open
Abstract
Photocycloreversion plays a central role in the study of the repair of DNA lesions, reverting them into the original pyrimidine nucleobases. Particularly, among the proposed mechanisms for the repair of DNA (6-4) photoproducts by photolyases, it has been suggested that it takes place through an intermediate characterized by a four-membered heterocyclic oxetane or azetidine ring, whose opening requires the reduction of the fused nucleobases. The specific role of this electron transfer step and its impact on the ring opening energetics remain to be understood. These processes are studied herein by means of quantum-chemical calculations on the two azetidine stereoisomers obtained from photocycloaddition between 6-azauracil and cyclohexene. First, we analyze the efficiency of the electron-transfer processes by computing the redox properties of the azetidine isomers as well as those of a series of aromatic photosensitizers acting as photoreductants and photo-oxidants. We find certain stereodifferentiation favoring oxidation of the cis-isomer, in agreement with previous experimental data. Second, we determine the reaction profiles of the ring-opening mechanism of the cationic, neutral, and anionic systems and assess their feasibility based on their energy barrier heights and the stability of the reactants and products. Results show that oxidation largely decreases the ring-opening energy barrier for both stereoisomers, even though the process is forecast as too slow to be competitive. Conversely, one-electron reduction dramatically facilitates the ring opening of the azetidine heterocycle. Considering the overall quantum-chemistry findings, N,N-dimethylaniline is proposed as an efficient photosensitizer to trigger the photoinduced cycloreversion of the DNA lesion model.
Collapse
|
8
|
Muñoz ADO, Escobedo-Morales A, Skakerzadeh E, Anota EC. Effect of homonuclear boron bonds in the adsorption of DNA nucleobases on boron nitride nanosheets. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114951] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Diamantis P, Tavernelli I, Rothlisberger U. Redox Properties of Native and Damaged DNA from Mixed Quantum Mechanical/Molecular Mechanics Molecular Dynamics Simulations. J Chem Theory Comput 2020; 16:6690-6701. [PMID: 32926773 DOI: 10.1021/acs.jctc.0c00568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The redox properties of two large DNA fragments composed of 39 base pairs, differing only by an 8-oxoguanine (8oxoG) defect replacing a guanine (G), were investigated in physiological conditions using mixed quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations. The quantum region of the native fragment comprised 3 G-C base pairs, while one G was replaced by an 8oxoG in the defect fragment. The calculated values for the redox free energy are 6.55 ± 0.28 eV and 5.62 ± 0.30 eV for the native and the 8oxoG-containing fragment, respectively. The respective estimates for the reorganization free energy are 1.25 ± 0.18 eV and 1.00 ± 0.18 eV. Both reactions follow the Marcus theory for electron transfer. The large difference in redox potential between the two fragments shows that replacement of a G by an 8oxoG renders the DNA more easily oxidizable. This finding is in agreement with the suggestion that DNA fragments containing an 8oxoG defect can act as sinks of oxidative damage that protect the rest of the genome from assault. In addition, the difference in redox potential between the native and the defect DNA fragment indicates that a charge transfer-based mechanism for the recognition of DNA defects might be feasible, in line with recent suggestions based on experimental observations.
Collapse
Affiliation(s)
- Polydefkis Diamantis
- Laboratory of Computational Chemistry and Biochemistry, École Polytechnique Fédérale de Lausanne, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland
| | - Ivano Tavernelli
- Laboratory of Computational Chemistry and Biochemistry, École Polytechnique Fédérale de Lausanne, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, École Polytechnique Fédérale de Lausanne, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland
| |
Collapse
|
10
|
A computational investigation of cytosine and 5-methyl cytosine reactivity by means of ionization potentials and one specific methylation pathway. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Grillo IB, Urquiza‐Carvalho GA, Chaves EJF, Rocha GB. Semiempirical methods do Fukui functions: Unlocking a modeling framework for biosystems. J Comput Chem 2020; 41:862-873. [DOI: 10.1002/jcc.26148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/15/2019] [Accepted: 01/01/2020] [Indexed: 01/16/2023]
Affiliation(s)
- Igor Barden Grillo
- Departamento de Química Universidade Federal da Paraíba João Pessoa Brazil
| | | | | | - Gerd Bruno Rocha
- Departamento de Química Universidade Federal da Paraíba João Pessoa Brazil
| |
Collapse
|
12
|
Wang J, Yang S, Zhang Y. One-electron oxidation and redox potential of nucleobases and deoxyribonucleosides computed by QM/MM simulations. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.136948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Jena NR. Electron and hole interactions with P, Z, and P:Z and the formation of mutagenic products by proton transfer reactions. Phys Chem Chem Phys 2020; 22:919-931. [DOI: 10.1039/c9cp05367k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Z would act as an electron acceptor and P would capture a hole in the unnatural DNA. The latter process would produce mutagenic products via a proton transfer reaction.
Collapse
Affiliation(s)
- N. R. Jena
- Discipline of Natural Sciences
- Indian Institute of Information Technology, Design, and Manufacturing
- Jabalpur-482005
- India
| |
Collapse
|
14
|
Banerjee S, Sokolov AY. Third-order algebraic diagrammatic construction theory for electron attachment and ionization energies: Conventional and Green’s function implementation. J Chem Phys 2019; 151:224112. [DOI: 10.1063/1.5131771] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Samragni Banerjee
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Alexander Yu. Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
15
|
Ma J, Denisov SA, Adhikary A, Mostafavi M. Ultrafast Processes Occurring in Radiolysis of Highly Concentrated Solutions of Nucleosides/Tides. Int J Mol Sci 2019; 20:ijms20194963. [PMID: 31597345 PMCID: PMC6801490 DOI: 10.3390/ijms20194963] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022] Open
Abstract
Among the radicals (hydroxyl radical (•OH), hydrogen atom (H•), and solvated electron (esol−)) that are generated via water radiolysis, •OH has been shown to be the main transient species responsible for radiation damage to DNA via the indirect effect. Reactions of these radicals with DNA-model systems (bases, nucleosides, nucleotides, polynucleotides of defined sequences, single stranded (ss) and double stranded (ds) highly polymeric DNA, nucleohistones) were extensively investigated. The timescale of the reactions of these radicals with DNA-models range from nanoseconds (ns) to microseconds (µs) at ambient temperature and are controlled by diffusion or activation. However, those studies carried out in dilute solutions that model radiation damage to DNA via indirect action do not turn out to be valid in dense biological medium, where solute and water molecules are in close contact (e.g., in cellular environment). In that case, the initial species formed from water radiolysis are two radicals that are ultrashort-lived and charged: the water cation radical (H2O•+) and prethermalized electron. These species are captured by target biomolecules (e.g., DNA, proteins, etc.) in competition with their inherent pathways of proton transfer and relaxation occurring in less than 1 picosecond. In addition, the direct-type effects of radiation, i.e., ionization of macromolecule plus excitations proximate to ionizations, become important. The holes (i.e., unpaired spin or cation radical sites) created by ionization undergo fast spin transfer across DNA subunits. The exploration of the above-mentioned ultrafast processes is crucial to elucidate our understanding of the mechanisms that are involved in causing DNA damage via direct-type effects of radiation. Only recently, investigations of these ultrafast processes have been attempted by studying concentrated solutions of nucleosides/tides under ambient conditions. Recent advancements of laser-driven picosecond electron accelerators have provided an opportunity to address some long-term puzzling questions in the context of direct-type and indirect effects of DNA damage. In this review, we have presented key findings that are important to elucidate mechanisms of complex processes including excess electron-mediated bond breakage and hole transfer, occurring at the single nucleoside/tide level.
Collapse
Affiliation(s)
- Jun Ma
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215000, China.
| | - Sergey A Denisov
- Laboratoire de Chimie Physique, UMR 8000 CNRS/Université Paris-Sud, Bât. 349, 91405 Orsay, CEDEX, France.
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, MI 48309, USA.
| | - Mehran Mostafavi
- Laboratoire de Chimie Physique, UMR 8000 CNRS/Université Paris-Sud, Bât. 349, 91405 Orsay, CEDEX, France.
| |
Collapse
|
16
|
Martínez Fernández L, Cerezo J, Asha H, Santoro F, Coriani S, Improta R. The Absorption Spectrum of Guanine Based Radicals: a Comparative Computational Analysis. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lara Martínez Fernández
- Departamento de Química, Facultad de Ciencias, Mòdulo13Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC Cantoblanco 28049 Madrid Spain
| | - Javier Cerezo
- Departamento de Química, Facultad de Ciencias, Mòdulo13Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC Cantoblanco 28049 Madrid Spain
| | - Haritha Asha
- Istituto di Biostrutture e Bioimmagini-CNR Via Mezzocannone 6 I-80134 Napoli
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR)Area della Ricerca del CNR Via Moruzzi 1 I-56124 Pisa
| | - Sonia Coriani
- DTU ChemistryTechnical University of Denmark, Kemitorvet Building 207 DK-2800 Kongens Lyngby Denmark
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini-CNR Via Mezzocannone 6 I-80134 Napoli
| |
Collapse
|
17
|
Kunin A, Neumark DM. Time-resolved radiation chemistry: femtosecond photoelectron spectroscopy of electron attachment and photodissociation dynamics in iodide-nucleobase clusters. Phys Chem Chem Phys 2019; 21:7239-7255. [PMID: 30855623 DOI: 10.1039/c8cp07831a] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Iodide-nucleobase (I-·N) clusters studied by time-resolved photoelectron spectroscopy (TRPES) are an opportune model system for examining radiative damage of DNA induced by low-energy electrons. By initiating charge transfer from iodide to the nucleobase and following the dynamics of the resulting transient negative ions (TNIs) with femtosecond time resolution, TRPES provides a novel window into the chemistry triggered by the attachment of low-energy electrons to nucleobases. In this Perspective, we examine and compare the dynamics of electron attachment, autodetachment, and photodissociation in a variety of I-·N clusters, including iodide-uracil (I-·U), iodide-thymine (I-·T), iodide-uracil-water (I-·U·H2O), and iodide-adenine (I-·A), to develop a more unified representation of our understanding of nucleobase TNIs. The experiments probe whether dipole-bound or valence-bound TNIs are formed initially and the subsequent time evolution of these species. We also provide an outlook for forthcoming applications of TRPES to larger iodide-containing complexes to enable the further investigation of microhydration dynamics in nucleobases, as well as electron attachment and photodissociation in more complex nucleic acid constituents.
Collapse
Affiliation(s)
- Alice Kunin
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
18
|
Diamantis P, Tavernelli I, Rothlisberger U. Vertical Ionization Energies and Electron Affinities of Native and Damaged DNA Bases, Nucleotides, and Pairs from Density Functional Theory Calculations: Model Assessment and Implications for DNA Damage Recognition and Repair. J Chem Theory Comput 2019; 15:2042-2052. [PMID: 30681847 DOI: 10.1021/acs.jctc.8b00645] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To assess the effect of an 8-oxoguanine (8OG) defect base on the vertical ionization energies (VIEs) and electron affinities (VEAs) of DNA, density functional theory calculations were carried out for native and defect DNA bases and nucleotides, as well as for larger fragments containing one or multiple pairs. Absolute values of VIE and VEA under implicit solvation did not converge as a function of model size even up to the largest systems taken into consideration (3 base pairs/2 nucleotide pairs). Nonetheless, a consistent trend was observed for the relative difference in the VIE of native and damaged DNA showing that the defect was lowering the VIE by -0.1 eV for the largest fragments. This strongly suggests that the presence of 8OG makes the DNA more easily oxidizable and is in line with experimental evidence that a defect region can act as a sink of oxidative damage. In contrast, relative differences in VEA were very small and varied inconsistently around 0.01 eV. This seems to indicate that insertion of 8OG has a negligible effect on the electron capturing properties of DNA. Similar conclusions can be drawn by the adiabatic IEs and EAs computed for some of the larger fragments. Analysis of the hole and excess electron distributions was consistent with the above trends. The findings presented here support the possibility that a mechanism based on hole transport through DNA may be efficiently employed by the cell for the detection of defect bases.
Collapse
Affiliation(s)
- Polydefkis Diamantis
- Laboratory of Computational Chemistry and Biochemistry , École Polytechnique Fédérale de Lausanne , Swiss Federal Institute of Technology, CH-1015 Lausanne , Switzerland
| | - Ivano Tavernelli
- Laboratory of Computational Chemistry and Biochemistry , École Polytechnique Fédérale de Lausanne , Swiss Federal Institute of Technology, CH-1015 Lausanne , Switzerland
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry , École Polytechnique Fédérale de Lausanne , Swiss Federal Institute of Technology, CH-1015 Lausanne , Switzerland
| |
Collapse
|
19
|
Muchová E, Slavíček P. Beyond Koopmans' theorem: electron binding energies in disordered materials. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:043001. [PMID: 30524069 DOI: 10.1088/1361-648x/aaf130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The topical review focuses on calculating ionization energies (IE), or electronic polarons in quasi-particle terminology, in large disordered systems, e.g. for a solute dissolved in a molecular solvent. The simplest estimate of the ionization energy is provided by one-electron energies in the Hartree-Fock theory, but the calculated quantities are not accurate. Density functional theory as many-body theory provides a principal opportunity for calculating one-electron energies including correlation and relaxation effects, i.e. the true energies of electronic polarons. We argue that such a principal possibility materializes within the concept of optimally tuned range-separated hybrid functionals (OT-RSH). We describe various schemes for optimal tuning. Importantly, the OT-RSH scheme is investigated for systems capped with dielectric continuum, providing a consistent picture on the QM/dielectric boundary. Finally, some limitations and open issues of the OT-RSH approach are addressed.
Collapse
Affiliation(s)
- Eva Muchová
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | | |
Collapse
|
20
|
Zhang Y, Xie P, Yang S, Han K. Ionization and Electron Attachment for Nucleobases in Water. J Phys Chem B 2019; 123:1237-1247. [DOI: 10.1021/acs.jpcb.8b09435] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Zhongshan Road 457, Dalian 116023, China
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, Binhai Road 72, Qingdao 266237, China
| | - Peng Xie
- School of Chemistry & Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Songqiu Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Zhongshan Road 457, Dalian 116023, China
| | - Keli Han
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
21
|
Fraga-Timiraos AB, Francés-Monerris A, Rodríguez-Muñiz GM, Navarrete-Miguel M, Miranda MA, Roca-Sanjuán D, Lhiaubet-Vallet V. Experimental and Theoretical Study on the Cycloreversion of a Nucleobase-Derived Azetidine by Photoinduced Electron Transfer. Chemistry 2018; 24:15346-15354. [PMID: 30053323 DOI: 10.1002/chem.201803298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Indexed: 12/16/2022]
Abstract
Azetidines are interesting compounds in medicine and chemistry as bioactive scaffolds and synthetic intermediates. However, photochemical processes involved in the generation and fate of azetidine-derived radical ions have scarcely been reported. In this context, the photoreduction of this four-membered heterocycle might be relevant in connection with the DNA (6-4) photoproduct obtained from photolyase. Herein, a stable azabipyrimidinic azetidine (AZTm ), obtained from cycloaddition between thymine and 6-azauracil units, is considered to be an interesting model of the proposed azetidine-like intermediate. Hence, its photoreduction and photo-oxidation are thoroughly investigated through a multifaceted approach, including spectroscopic, analytical, and electrochemical studies, complemented by CASPT2 and DFT calculations. Both injection and removal of an electron result in the formation of radical ions, which evolve towards repaired thymine and azauracil units. Whereas photoreduction energetics are similar to those of the cyclobutane thymine dimers, photo-oxidation is clearly more favorable in the azetidine. Ring opening occurs with relatively low activation barriers (<13 kcal mol-1 ) and the process is clearly exergonic for photoreduction. In general, a good correlation has been observed between the experimental results and theoretical calculations, which has allowed a synergic understanding of the phenomenon.
Collapse
Affiliation(s)
- Ana B Fraga-Timiraos
- Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, 46022, Valencia, Spain
| | - Antonio Francés-Monerris
- Laboratoire de Physique et Chimie Théoriques (LPCT), Université de Lorraine, CNRS, 54000, Nancy, France
| | - Gemma M Rodríguez-Muñiz
- Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, 46022, Valencia, Spain
| | - Miriam Navarrete-Miguel
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071, Valencia, Spain
| | - Miguel A Miranda
- Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, 46022, Valencia, Spain
| | - Daniel Roca-Sanjuán
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071, Valencia, Spain
| | - Virginie Lhiaubet-Vallet
- Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, 46022, Valencia, Spain
| |
Collapse
|
22
|
Fennimore MA, Matsika S. Electronic Resonances of Nucleobases Using Stabilization Methods. J Phys Chem A 2018; 122:4048-4057. [DOI: 10.1021/acs.jpca.8b01523] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Mark A. Fennimore
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
23
|
Kochman MA, Bil A, Miller RJD. Mechanism Underlying the Nucleobase-Distinguishing Ability of Benzopyridopyrimidine (BPP). J Phys Chem A 2017; 121:8267-8279. [PMID: 28984456 DOI: 10.1021/acs.jpca.7b08334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Benzopyridopyrimidine (BPP) is a fluorescent nucleobase analogue capable of forming base pairs with adenine (A) and guanine (G) at different sites. When incorporated into oligodeoxynucleotides, it is capable of differentiating between the two purine nucleobases by virtue of the fact that its fluorescence is largely quenched when it is base-paired to guanine, whereas base-pairing to adenine causes only a slight reduction of the fluorescence quantum yield. In the present article, the photophysics of BPP is investigated through computer simulations. BPP is found to be a good charge acceptor, as demonstrated by its positive and appreciably large electron affinity. The selective quenching process is attributed to charge transfer (CT) from the purine nucleobase, which is predicted to be efficient in the BPP-G base pair, but essentially inoperative in the BPP-A base pair. The CT process owes its high selectivity to a combination of two factors: the ionization potential of guanine is lower than that of adenine, and less obviously, the site occupied by guanine enables a greater stabilization of the CT state through electrostatic interactions than the one occupied by adenine. The case of BPP illustrates that molecular recognition via hydrogen bonding can enhance the selectivity of photoinduced CT processes.
Collapse
Affiliation(s)
- Michał A Kochman
- Max Planck Institute for the Structure and Dynamics of Matter and Hamburg Centre for Ultrafast Imaging, Bldg. 99 (CFEL) , Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Andrzej Bil
- Faculty of Chemistry, University of Wrocław , F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - R J Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter and Hamburg Centre for Ultrafast Imaging, Bldg. 99 (CFEL) , Luruper Chaussee 149, 22761 Hamburg, Germany.,Department of Chemistry and Physics, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
24
|
Kumar D, Dutta AK, Manohar PU. Resolution of the Identity and Cholesky Representation of EOM-MP2 Approximation: Implementation, Accuracy and Efficiency. J CHEM SCI 2017. [DOI: 10.1007/s12039-017-1378-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
25
|
Kohanoff J, McAllister M, Tribello GA, Gu B. Interactions between low energy electrons and DNA: a perspective from first-principles simulations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:383001. [PMID: 28617676 DOI: 10.1088/1361-648x/aa79e3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
DNA damage caused by irradiation has been studied for many decades. Such studies allow us to better assess the dangers posed by radiation, and to increase the efficiency of the radiotherapies that are used to combat cancer. A full description of the irradiation process involves multiple size and time scales. It starts with the interaction of radiation-either photons or swift ions-and the biological medium, which causes electronic excitation and ionisation. The two main products of ionising radiation are thus electrons and radicals. Both of these species can cause damage to biological molecules, in particular DNA. In the long run, this molecular level damage can prevent cells from replicating and can hence lead to cell death. For a long time it was assumed that the main actors in the damage process were the radicals. However, experiments in a seminal paper by the group of Leon Sanche in 2000 showed that low-energy electrons (LEE), such as those generated when ionising biological targets, can also cause bond breaks in biomolecules, and strand breaks in plasmid DNA in particular (Boudaiffa et al 2000 Science 287 1658-60). These results prompted a significant amount of experimental and theoretical work aimed at elucidating the role played by LEE in DNA damage. In this Topical Review we provide a general overview of the problem. We discuss experimental findings and theoretical results hand in hand with the aim of describing the physics and chemistry that occurs during the process of radiation damage, from the initial stages of electronic excitation, through the inelastic propagation of electrons in the medium, the interaction of electrons with DNA, and the chemical end-point effects on DNA. A very important aspect of this discussion is the consideration of a realistic, physiological environment. The role played by the aqueous solution and the amino acids from the histones in chromatin must be considered. Moreover, thermal fluctuations must be incorporated when studying these phenomena. Hence, a special place in this Topical Review is occupied by our recent first-principles molecular dynamics simulations that address the issue of how the environment favours or prevents LEEs from causing damage to DNA. We finish by summarising the conclusions achieved so far, and by suggesting a number of possible directions for further study.
Collapse
Affiliation(s)
- Jorge Kohanoff
- Atomistic Simulation Centre, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | | | | | | |
Collapse
|
26
|
Duchemin I, Jacquemin D, Blase X. Combining the GW formalism with the polarizable continuum model: A state-specific non-equilibrium approach. J Chem Phys 2017; 144:164106. [PMID: 27131530 DOI: 10.1063/1.4946778] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have implemented the polarizable continuum model within the framework of the many-body Green's function GW formalism for the calculation of electron addition and removal energies in solution. The present formalism includes both ground-state and non-equilibrium polarization effects. In addition, the polarization energies are state-specific, allowing to obtain the bath-induced renormalisation energy of all occupied and virtual energy levels. Our implementation is validated by comparisons with ΔSCF calculations performed at both the density functional theory and coupled-cluster single and double levels for solvated nucleobases. The present study opens the way to GW and Bethe-Salpeter calculations in disordered condensed phases of interest in organic optoelectronics, wet chemistry, and biology.
Collapse
Affiliation(s)
- Ivan Duchemin
- INAC, SP2M/L_Sim, CEA/UJF Cedex 09, 38054 Grenoble, France
| | - Denis Jacquemin
- Laboratoire CEISAM - UMR CNR 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | | |
Collapse
|
27
|
Augusto FA, Francés-Monerris A, Fdez. Galván I, Roca-Sanjuán D, Bastos EL, Baader WJ, Lindh R. Mechanism of activated chemiluminescence of cyclic peroxides: 1,2-dioxetanes and 1,2-dioxetanones. Phys Chem Chem Phys 2017; 19:3955-3962. [DOI: 10.1039/c6cp08154a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The supermolecule model explains low quantum efficiency of the catalyzed decomposition of 1,2-dioxetanones.
Collapse
Affiliation(s)
- Felipe A. Augusto
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | - Antonio Francés-Monerris
- Department of Chemistry—Ångström
- Uppsala Center for Computational Chemistry
- UC3
- Uppsala University
- Uppsala
| | - Ignacio Fdez. Galván
- Department of Chemistry—Ångström
- Uppsala Center for Computational Chemistry
- UC3
- Uppsala University
- Uppsala
| | | | - Erick L. Bastos
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | - Wilhelm J. Baader
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | - Roland Lindh
- Department of Chemistry—Ångström
- Uppsala Center for Computational Chemistry
- UC3
- Uppsala University
- Uppsala
| |
Collapse
|
28
|
Francés-Monerris A, Segarra-Martí J, Merchán M, Roca-Sanjuán D. Complete-active-space second-order perturbation theory (CASPT2//CASSCF) study of the dissociative electron attachment in canonical DNA nucleobases caused by low-energy electrons (0-3 eV). J Chem Phys 2016; 143:215101. [PMID: 26646889 DOI: 10.1063/1.4936574] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Low-energy (0-3 eV) ballistic electrons originated during the irradiation of biological material can interact with DNA/RNA nucleobases yielding transient-anion species which undergo decompositions. Since the discovery that these reactions can eventually lead to strand breaking of the DNA chains, great efforts have been dedicated to their study. The main fragmentation at the 0-3 eV energy range is the ejection of a hydrogen atom from the specific nitrogen positions. In the present study, the methodological approach introduced in a previous work on uracil [I. González-Ramírez et al., J. Chem. Theory Comput. 8, 2769-2776 (2012)] is employed to study the DNA canonical nucleobases fragmentations of N-H bonds induced by low-energy electrons. The approach is based on minimum energy path and linear interpolation of internal coordinates computations along the N-H dissociation channels carried out at the complete-active-space self-consistent field//complete-active-space second-order perturbation theory level. On the basis of the calculated theoretical quantities, new assignations for the adenine and cytosine anion yield curves are provided. In addition, the π1 (-) and π2 (-) states of the pyrimidine nucleobases are expected to produce the temporary anions at electron energies close to 1 and 2 eV, respectively. Finally, the present theoretical results do not allow to discard neither the dipole-bound nor the valence-bound mechanisms in the range of energies explored, suggesting that both possibilities may coexist in the experiments carried out with the isolated nucleobases.
Collapse
Affiliation(s)
| | - Javier Segarra-Martí
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071 València, Spain
| | - Manuela Merchán
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071 València, Spain
| | - Daniel Roca-Sanjuán
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071 València, Spain
| |
Collapse
|
29
|
Nakarada Đ, Etinski M, Petković M. Using Density Functional Theory To Study Neutral and Ionized Stacked Thymine Dimers. J Phys Chem A 2016; 120:7704-7713. [PMID: 27626138 DOI: 10.1021/acs.jpca.6b06493] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stacking interactions in thymine dimers are studied with density functional theory. According to our calculations, six dimers of comparable stability can be prepared at low temperature, but dimerization is impossible at room temperature due to the large entropy contribution that accompanies it. Analysis of vibrational anharmonic coupling terms shows that each of the dimers exhibits distinct vibrational dynamics. Properties of electron density in the intermolecular region are used to analyze neutral stacked species and their ionized forms. Bond paths and critical points in the intermolecular region are identified, but a simple relationship between binding energy and total electron density in the intermolecular critical points could not be found due to an uneven electron distribution in the binding region. The reduced density gradient was confirmed to be a useful tool for analysis of weak stacking interactions. Those interactions also affect vertical and adiabatic ionization energies, which are computed to be slightly lower for the dimers compared to the monomer.
Collapse
Affiliation(s)
- Đura Nakarada
- Faculty of Physical Chemistry, University of Belgrade , Studentski trg 12-16, 11 158 Belgrade, Serbia
| | - Mihajlo Etinski
- Faculty of Physical Chemistry, University of Belgrade , Studentski trg 12-16, 11 158 Belgrade, Serbia
| | - Milena Petković
- Faculty of Physical Chemistry, University of Belgrade , Studentski trg 12-16, 11 158 Belgrade, Serbia
| |
Collapse
|
30
|
Nguyen NL, Borghi G, Ferretti A, Marzari N. First-Principles Photoemission Spectroscopy of DNA and RNA Nucleobases from Koopmans-Compliant Functionals. J Chem Theory Comput 2016; 12:3948-58. [DOI: 10.1021/acs.jctc.6b00145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ngoc Linh Nguyen
- Theory
and Simulations of Materials (THEOS) and National Centre for Computational
Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Giovanni Borghi
- Theory
and Simulations of Materials (THEOS) and National Centre for Computational
Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Centro
S3, CNR−Istituto Nanoscienze, 41125 Modena, Italy
| | | | - Nicola Marzari
- Theory
and Simulations of Materials (THEOS) and National Centre for Computational
Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
31
|
Stephansen AB, King SB, Yokoi Y, Minoshima Y, Li WL, Kunin A, Takayanagi T, Neumark DM. Dynamics of dipole- and valence bound anions in iodide-adenine binary complexes: A time-resolved photoelectron imaging and quantum mechanical investigation. J Chem Phys 2016; 143:104308. [PMID: 26374036 DOI: 10.1063/1.4929995] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dipole bound (DB) and valence bound (VB) anions of binary iodide-adenine complexes have been studied using one-color and time-resolved photoelectron imaging at excitation energies near the vertical detachment energy. The experiments are complemented by quantum chemical calculations. One-color spectra show evidence for two adenine tautomers, the canonical, biologically relevant A9 tautomer and the A3 tautomer. In the UV-pump/IR-probe time-resolved experiments, transient adenine anions can be formed by electron transfer from the iodide. These experiments show signals from both DB and VB states of adenine anions formed on femto- and picosecond time scales, respectively. Analysis of the spectra and comparison with calculations suggest that while both the A9 and A3 tautomers contribute to the DB signal, only the DB state of the A3 tautomer undergoes a transition to the VB anion. The VB anion of A9 is higher in energy than both the DB anion and the neutral, and the VB anion is therefore not accessible through the DB state. Experimental evidence of the metastable A9 VB anion is instead observed as a shape resonance in the one-color photoelectron spectra, as a result of UV absorption by A9 and subsequent electron transfer from iodide into the empty π-orbital. In contrast, the iodide-A3 complex constitutes an excellent example of how DB states can act as doorway state for VB anion formation when the VB state is energetically available.
Collapse
Affiliation(s)
- Anne B Stephansen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 København Ø, Denmark
| | - Sarah B King
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Yuki Yokoi
- Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Yusuke Minoshima
- Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Wei-Li Li
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Alice Kunin
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Toshiyuki Takayanagi
- Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
32
|
King SB, Stephansen AB, Yokoi Y, Yandell MA, Kunin A, Takayanagi T, Neumark DM. Electron accommodation dynamics in the DNA base thymine. J Chem Phys 2016; 143:024312. [PMID: 26178110 DOI: 10.1063/1.4923343] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The dynamics of electron attachment to the DNA base thymine are investigated using femtosecond time-resolved photoelectron imaging of the gas phase iodide-thymine (I(-)T) complex. An ultraviolet pump pulse ejects an electron from the iodide and prepares an iodine-thymine temporary negative ion that is photodetached with a near-IR probe pulse. The resulting photoelectrons are analyzed with velocity-map imaging. At excitation energies ranging from -120 meV to +90 meV with respect to the vertical detachment energy (VDE) of 4.05 eV for I(-)T, both the dipole-bound and valence-bound negative ions of thymine are observed. A slightly longer rise time for the valence-bound state than the dipole-bound state suggests that some of the dipole-bound anions convert to valence-bound species. No evidence is seen for a dipole-bound anion of thymine at higher excitation energies, in the range of 0.6 eV above the I(-)T VDE, which suggests that if the dipole-bound anion acts as a "doorway" to the valence-bound anion, it only does so at excitation energies near the VDE of the complex.
Collapse
Affiliation(s)
- Sarah B King
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Anne B Stephansen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 København Ø, Denmark
| | - Yuki Yokoi
- Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Margaret A Yandell
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Alice Kunin
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Toshiyuki Takayanagi
- Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
33
|
Kanazawa Y, Ehara M, Sommerfeld T. Low-Lying π* Resonances of Standard and Rare DNA and RNA Bases Studied by the Projected CAP/SAC–CI Method. J Phys Chem A 2016; 120:1545-53. [DOI: 10.1021/acs.jpca.5b12190] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuki Kanazawa
- SOKENDAI, the Graduate University for Advanced Studies, Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
- Institute for Molecular Science and Research Center for Computational Science, Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
| | - Masahiro Ehara
- SOKENDAI, the Graduate University for Advanced Studies, Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
- Institute for Molecular Science and Research Center for Computational Science, Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
| | - Thomas Sommerfeld
- Department
of Chemistry and Physics, Southeastern Louisiana University, SLU 10878, Hammond, Louisiana 70402, United States
| |
Collapse
|
34
|
Kunitsa AA, Bravaya KB. Electronic structure of the para-benzoquinone radical anion revisited. Phys Chem Chem Phys 2016; 18:3454-62. [DOI: 10.1039/c5cp06476g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Photoinduced processes in para-benzoquinone anion are studied with multistate multireference perturbation theory: an interplay between autodetachment and internal conversion.
Collapse
Affiliation(s)
- Alexander A. Kunitsa
- Department of Chemistry
- Boston University
- Boston
- USA
- Institute of Problems of Chemical Physics
| | | |
Collapse
|
35
|
Gallandi L, Körzdörfer T. Long-Range Corrected DFT Meets GW: Vibrationally Resolved Photoelectron Spectra from First Principles. J Chem Theory Comput 2015; 11:5391-400. [DOI: 10.1021/acs.jctc.5b00820] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lukas Gallandi
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| | - Thomas Körzdörfer
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| |
Collapse
|
36
|
Nenov A, Giussani A, Segarra-Martí J, Jaiswal VK, Rivalta I, Cerullo G, Mukamel S, Garavelli M. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy. J Chem Phys 2015; 142:212443. [PMID: 26049463 DOI: 10.1063/1.4921016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040-1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide conformational dependent fingerprints in dimeric systems, the performances of the selected reduced level of calculations have been tested in the construction of 2D electronic spectra for the in vacuo adenine monomer and the unstacked adenine homodimer, thereby exciting the Lb/La transitions with the pump pulse pair and probing in the Vis to near ultraviolet spectral window.
Collapse
Affiliation(s)
- Artur Nenov
- Dipartimento di Chimica "G. Ciamician," Università di Bologna, Via Selmi 2, IT-40126 Bologna, Italy
| | - Angelo Giussani
- Dipartimento di Chimica "G. Ciamician," Università di Bologna, Via Selmi 2, IT-40126 Bologna, Italy
| | - Javier Segarra-Martí
- Dipartimento di Chimica "G. Ciamician," Università di Bologna, Via Selmi 2, IT-40126 Bologna, Italy
| | - Vishal K Jaiswal
- Dipartimento di Chimica "G. Ciamician," Università di Bologna, Via Selmi 2, IT-40126 Bologna, Italy
| | - Ivan Rivalta
- Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d'Italie, F-69364 Lyon Cedex 07, France
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, IFN-CNR, Piazza Leonardo Da Vinci 32, IT-20133 Milano, Italy
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA
| | - Marco Garavelli
- Dipartimento di Chimica "G. Ciamician," Università di Bologna, Via Selmi 2, IT-40126 Bologna, Italy
| |
Collapse
|
37
|
King SB, Yandell MA, Stephansen AB, Neumark DM. Time-resolved radiation chemistry: dynamics of electron attachment to uracil following UV excitation of iodide-uracil complexes. J Chem Phys 2015; 141:224310. [PMID: 25494752 DOI: 10.1063/1.4903197] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Electron attachment to uracil was investigated by applying time-resolved photoelectron imaging to iodide-uracil (I(-)U) complexes. In these studies, an ultraviolet pump pulse initiated charge transfer from the iodide to the uracil, and the resulting dynamics of the uracil temporary negative ion were probed. Five different excitation energies were used, 4.00 eV, 4.07 eV, 4.14 eV, 4.21 eV, and 4.66 eV. At the four lowest excitation energies, which lie near the vertical detachment energy of the I(-)U complex (4.11 eV), signatures of both the dipole bound (DB) as well as the valence bound (VB) anion of uracil were observed. In contrast, only the VB anion was observed at 4.66 eV, in agreement with previous experiments in this higher energy range. The early-time dynamics of both states were highly excitation energy dependent. The rise time of the DB anion signal was ∼250 fs at 4.00 eV and 4.07 eV, ∼120 fs at 4.14 eV and cross-correlation limited at 4.21 eV. The VB anion rise time also changed with excitation energy, ranging from 200 to 300 fs for excitation energies 4.00-4.21 eV, to a cross-correlation limited time at 4.66 eV. The results suggest that the DB state acts as a "doorway" state to the VB anion at 4.00-4.21 eV, while direct attachment to the VB anion occurs at 4.66 eV.
Collapse
Affiliation(s)
- Sarah B King
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Margaret A Yandell
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Anne B Stephansen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 København Ø, Denmark
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
38
|
Alvarez JR, Skachkov D, Massey SE, Kalitsov A, Velev JP. DNA/RNA transverse current sequencing: intrinsic structural noise from neighboring bases. Front Genet 2015; 6:213. [PMID: 26150827 PMCID: PMC4473640 DOI: 10.3389/fgene.2015.00213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/01/2015] [Indexed: 01/23/2023] Open
Abstract
Nanopore DNA sequencing via transverse current has emerged as a promising candidate for third-generation sequencing technology. It produces long read lengths which could alleviate problems with assembly errors inherent in current technologies. However, the high error rates of nanopore sequencing have to be addressed. A very important source of the error is the intrinsic noise in the current arising from carrier dispersion along the chain of the molecule, i.e., from the influence of neighboring bases. In this work we perform calculations of the transverse current within an effective multi-orbital tight-binding model derived from first-principles calculations of the DNA/RNA molecules, to study the effect of this structural noise on the error rates in DNA/RNA sequencing via transverse current in nanopores. We demonstrate that a statistical technique, utilizing not only the currents through the nucleotides but also the correlations in the currents, can in principle reduce the error rate below any desired precision.
Collapse
Affiliation(s)
- Jose R Alvarez
- Department of Physics, University of Puerto Rico San Juan, PR, USA
| | - Dmitry Skachkov
- Department of Physics, University of Puerto Rico San Juan, PR, USA
| | - Steven E Massey
- Department of Biology, University of Puerto Rico San Juan, PR, USA
| | - Alan Kalitsov
- Department of Physics, University of Puerto Rico San Juan, PR, USA
| | - Julian P Velev
- Department of Physics, University of Puerto Rico San Juan, PR, USA ; Department of Physics, University of Nebraska Lincoln, NE, USA ; Université Grenoble Alpes/CNRS/CEA, INAC-SPINTEC Grenoble, France
| |
Collapse
|
39
|
Sun H, Zhang S, Sun Z. Applicability of optimal functional tuning in density functional calculations of ionization potentials and electron affinities of adenine–thymine nucleobase pairs and clusters. Phys Chem Chem Phys 2015; 17:4337-45. [DOI: 10.1039/c4cp05470a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Successful application of optimally tuned long-range corrected functionals for calculation of vertical ionization potentials and electron affinities of various adenine–thymine nucleobase pairs and clusters is demonstrated.
Collapse
Affiliation(s)
- Haitao Sun
- State Key Laboratory of Precision Spectroscopy
- Department of Physics
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Shian Zhang
- State Key Laboratory of Precision Spectroscopy
- Department of Physics
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy
- Department of Physics
- East China Normal University
- Shanghai 200062
- P. R. China
| |
Collapse
|
40
|
Yokoi Y, Kano K, Minoshima Y, Takayanagi T. Application of long-range corrected density-functional theory to excess electron attachment to biomolecules. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
41
|
VALADBEIGI YOUNES, FARROKHPOUR HOSSEIN, TABRIZCHI MAHMOUD. G4MP2, DFT and CBS-Q calculation of proton and electron affinities, gas phase basicities and ionization energies of hydroxylamines and alkanolamines. J CHEM SCI 2014. [DOI: 10.1007/s12039-014-0668-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Yin H, Ma Y, Mu J, Liu C, Rohlfing M. Charge-transfer excited states in aqueous DNA: Insights from many-body Green's function theory. PHYSICAL REVIEW LETTERS 2014; 112:228301. [PMID: 24949791 DOI: 10.1103/physrevlett.112.228301] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Indexed: 06/03/2023]
Abstract
Charge-transfer (CT) excited states play an important role in the excited-state dynamics of DNA in aqueous solution. However, there is still much controversy on their energies. By ab initio many-body Green's function theory, together with classical molecular dynamics simulations, we confirm the existence of CT states at the lower energy side of the optical absorption maximum in aqueous DNA as observed in experiments. We find that the hydration shell can exert strong effects (∼1 eV) on both the electronic structure and CT states of DNA molecules through dipole electric fields. In this case, the solvent cannot be simply regarded as a macroscopic screening medium as usual. The influence of base stacking and base pairing on the CT states is also discussed.
Collapse
Affiliation(s)
- Huabing Yin
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Yuchen Ma
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Jinglin Mu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Chengbu Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Michael Rohlfing
- Institut für Festkörpertheorie, Universität Münster, 48149 Münster, Germany
| |
Collapse
|
43
|
Dutta AK, Gupta J, Pathak H, Vaval N, Pal S. Partitioned EOMEA-MBPT(2): An Efficient N5 Scaling Method for Calculation of Electron Affinities. J Chem Theory Comput 2014; 10:1923-33. [DOI: 10.1021/ct4009409] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Achintya Kumar Dutta
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune-411008, India
| | - Jitendra Gupta
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune-411008, India
| | - Himadri Pathak
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune-411008, India
| | - Nayana Vaval
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune-411008, India
| | - Sourav Pal
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune-411008, India
| |
Collapse
|
44
|
Gu J, Xie Y, Schaefer HF. Benchmarking the Electron Affinity of Uracil. J Chem Theory Comput 2014; 10:609-12. [DOI: 10.1021/ct400958d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jiande Gu
- Drug Design & Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, CAS, Shanghai 201203, People’s Republic of China
| | - Yaoming Xie
- Center for Computational
Quantum Chemistry, University of Georgia, Athens, Georgia 30602-2525, United States
| | - Henry F. Schaefer
- Center for Computational
Quantum Chemistry, University of Georgia, Athens, Georgia 30602-2525, United States
| |
Collapse
|
45
|
Gu B, Smyth M, Kohanoff J. Protection of DNA against low-energy electrons by amino acids: a first-principles molecular dynamics study. Phys Chem Chem Phys 2014; 16:24350-8. [DOI: 10.1039/c4cp03906h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The physical shielding and chemical stabilizing of the low energy electron by glycine around the thymine through proton transfer.
Collapse
Affiliation(s)
- Bin Gu
- Department of Physics
- Nanjing University of Information Science and Technology
- Nanjing 210044, China
- Atomistic Simulation Centre
- Queen's University Belfast
| | - Maeve Smyth
- Atomistic Simulation Centre
- Queen's University Belfast
- Belfast BT7 1NN, UK
| | - Jorge Kohanoff
- Atomistic Simulation Centre
- Queen's University Belfast
- Belfast BT7 1NN, UK
| |
Collapse
|
46
|
Excitation of Nucleobases from a Computational Perspective I: Reaction Paths. Top Curr Chem (Cham) 2013; 355:57-97. [DOI: 10.1007/128_2013_501] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
47
|
Streit L, Dolgounitcheva O, Zakrzewski VG, Ortiz JV. Valence and diffuse-bound anions of noble-gas complexes with uracil. J Chem Phys 2012. [DOI: 10.1063/1.4766735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
48
|
González-Ramírez I, Segarra-Martí J, Serrano-Andrés L, Merchán M, Rubio M, Roca-Sanjuán D. On the N1-H and N3-H Bond Dissociation in Uracil by Low Energy Electrons: A CASSCF/CASPT2 Study. J Chem Theory Comput 2012; 8:2769-76. [PMID: 26592118 DOI: 10.1021/ct300153f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dissociative electron-attachment (DEA) phenomena at the N1-H and N3-H bonds observed experimentally at low energies (<3 eV) in uracil are studied with the CASSCF/CASPT2 methodology. Two valence-bound π(-) and two dissociative σ(-) states of the uracil anionic species, together with the ground state of the neutral molecule, are proven to contribute to the shapes appearing in the experimental DEA cross sections. Conical intersections (CI) between the π(-) and σ(-) are established as the structures which activate the DEA processes. The N1-H and N3-H DEA mechanisms in uracil are described, and experimental observations are interpreted on the basis of two factors: (1) the relative energy of the (U-H)(-) + H fragments obtained after DEA with respect to the ground-state equilibrium structure (S0) of the neutral molecule (threshold for DEA) and (2) the relative energy of the CIs also with respect to S0 (band maxima). The π1(-) state is found to be mainly responsible for the N1-H bond breaking, whereas the π2(-) state is proved to be involved in the cleavage of the N3-H bond.
Collapse
Affiliation(s)
- Israel González-Ramírez
- Instituto de Ciencia Molecular, Universitat de València , P.O. Box 22085, 46071 València, Spain
| | - Javier Segarra-Martí
- Instituto de Ciencia Molecular, Universitat de València , P.O. Box 22085, 46071 València, Spain
| | - Luis Serrano-Andrés
- Instituto de Ciencia Molecular, Universitat de València , P.O. Box 22085, 46071 València, Spain
| | - Manuela Merchán
- Instituto de Ciencia Molecular, Universitat de València , P.O. Box 22085, 46071 València, Spain
| | - Mercedes Rubio
- Instituto de Ciencia Molecular, Universitat de València , P.O. Box 22085, 46071 València, Spain
| | - Daniel Roca-Sanjuán
- Department of Chemistry-Ångström, Theoretical Chemistry Program, Uppsala Univeristy , P.O. Box 518, 75120 Uppsala, Sweden
| |
Collapse
|
49
|
Segarra-Martí J, Merchán M, Roca-Sanjuán D. Ab initiodetermination of the ionization potentials of water clusters (H2O)n(n= 2−6). J Chem Phys 2012; 136:244306. [DOI: 10.1063/1.4730301] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
50
|
Gu J, Leszczynski J, Schaefer HF. Interactions of electrons with bare and hydrated biomolecules: from nucleic acid bases to DNA segments. Chem Rev 2012; 112:5603-40. [PMID: 22694487 DOI: 10.1021/cr3000219] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jiande Gu
- Drug Design & Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, CAS, PR China.
| | | | | |
Collapse
|