1
|
Wu B, Li B, He X, Cheng X, Ren J, Liu J. Nonadiabatic Field: A Conceptually Novel Approach for Nonadiabatic Quantum Molecular Dynamics. J Chem Theory Comput 2025; 21:3775-3813. [PMID: 40192130 PMCID: PMC12020003 DOI: 10.1021/acs.jctc.5c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/06/2025] [Accepted: 03/19/2025] [Indexed: 04/23/2025]
Abstract
Reliable trajectory-based nonadiabatic quantum dynamics methods at the atomic/molecular level are critical for the practical understanding and rational design of many important processes in real large/complex systems, where the quantum dynamical behavior of electrons and that of nuclei are coupled. The paper reports latest progress of nonadiabatic field (NaF), a conceptually novel approach for nonadiabatic quantum dynamics with independent trajectories. Substantially different from the mainstreams of Ehrenfest-like dynamics and surface hopping methods, the nuclear force in NaF involves the nonadiabatic force arising from the nonadiabatic coupling between different electronic states, in addition to the adiabatic force contributed by a single adiabatic electronic state. NaF is capable of faithfully describing the interplay between electronic and nuclear motion in a broad regime, which covers where the relevant electronic states keep coupled in a wide range or all the time and where the bifurcation characteristic of nuclear motion is essential. NaF is derived from the exact generalized phase space formulation with coordinate-momentum variables, where constraint phase space (CPS) is employed for discrete electronic-state degrees of freedom (DOFs) and infinite Wigner phase space is used for continuous nuclear DOFs. We propose efficient integrators for the equations of motion of NaF in both adiabatic and diabatic representations. Since the formalism in the CPS formulation is not unique, NaF can in principle be implemented with various phase space representations of the time correlation function (TCF) for the time-dependent property. They are applied to a suite of representative gas-phase and condensed-phase benchmark models where numerically exact results are available for comparison. It is shown that NaF is relatively insensitive to the phase space representation of the electronic TCF and will be a potential tool for practical and reliable simulations of the quantum mechanical behavior of both electronic and nuclear dynamics of nonadiabatic transition processes in real systems.
Collapse
Affiliation(s)
- Baihua Wu
- Beijing
National Laboratory for Molecular Sciences, Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bingqi Li
- Beijing
National Laboratory for Molecular Sciences, Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xin He
- Beijing
National Laboratory for Molecular Sciences, Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiangsong Cheng
- Beijing
National Laboratory for Molecular Sciences, Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiajun Ren
- Key
Laboratory of Theoretical and Computational Photochemistry, Ministry
of Education, College of Chemistry, Beijing
Normal University, Beijing 100875, China
| | - Jian Liu
- Beijing
National Laboratory for Molecular Sciences, Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
He X, Cheng X, Wu B, Liu J. Nonadiabatic Field with Triangle Window Functions on Quantum Phase Space. J Phys Chem Lett 2024; 15:5452-5466. [PMID: 38747729 PMCID: PMC11129318 DOI: 10.1021/acs.jpclett.4c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/24/2024]
Abstract
Recent progress on the constraint coordinate-momentum phase space (CPS) formulation of finite-state quantum systems has revealed that the triangle window function approach is an isomorphic representation of the exact population-population correlation function of the two-state system. We use the triangle window (TW) function and the CPS mapping kernel element to formulate a novel useful representation of discrete electronic degrees of freedom (DOFs). When it is employed with nonadiabatic field (NaF) dynamics, a new variant of the NaF approach (i.e., NaF-TW) is proposed. The NaF-TW expression of the population of any adiabatic state is always positive semidefinite. Extensive benchmark tests of model systems in both the condensed phase and gas phase demonstrate that the NaF-TW approach is able to faithfully capture the dynamical interplay between electronic and nuclear DOFs in a broad region, including where the states remain coupled all the time, as well as where the bifurcation characteristic of nuclear motion is important.
Collapse
Affiliation(s)
- Xin He
- Beijing National Laboratory
for Molecular Sciences, Institute of Theoretical and Computational
Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiangsong Cheng
- Beijing National Laboratory
for Molecular Sciences, Institute of Theoretical and Computational
Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Baihua Wu
- Beijing National Laboratory
for Molecular Sciences, Institute of Theoretical and Computational
Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jian Liu
- Beijing National Laboratory
for Molecular Sciences, Institute of Theoretical and Computational
Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Hanasaki K, Takatsuka K. Spin current in the early stage of radical reactions and its mechanisms. J Chem Phys 2023; 159:144111. [PMID: 37830453 DOI: 10.1063/5.0169281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
We study the electronic spin flux (atomic-scale flow of the spin density in molecules) by a perturbation analysis and ab initio nonadiabatic calculations. We derive a general perturbative expression of the charge and spin fluxes and identify the driving perturbation of the fluxes to be the time derivative of the electron-nucleus interaction term in the Hamiltonian. We then expand the expression in molecular orbitals so as to identify relevant components of the fluxes. Our perturbation theory describes the electronic fluxes in the early stage of reactions in an intuitively clear manner. The perturbation theory is then applied to an analysis of the spin flux obtained in ab initio calculations of the radical reaction of O2 and CH3· starting from three distinct spin configurations; (a) CH3· and triplet O2 with total spin of the system set Stot=1/2 (b) CH3· and singlet O2, Stot=1/2, and (c) CH3· and triplet O2, Stot=3/2. Further analysis of the time-dependent behaviors of the spin flux in these numerical simulations reveals (i) the spin flux induces rearrangement of the local spin structure, such as reduction of the spin polarization arising from the triplet O2 and (ii) the spin flux flows from O2 to CH3· in the reaction starting from spin configuration (a) and from CH3· to O2 in that starting from configuration (b), whereas no major intermolecular spin flux was observed in that starting from configuration (c). Our study thus establishes the mechanism of the spin flux that rearranges the local spin structures associated with chemical bonds.
Collapse
Affiliation(s)
- Kota Hanasaki
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| |
Collapse
|
4
|
Takatsuka K, Arasaki Y. Electronic-state chaos, intramolecular electronic energy redistribution, and chemical bonding in persisting multidimensional nonadiabatic systems. J Chem Phys 2023; 159:074110. [PMID: 37602802 DOI: 10.1063/5.0159178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
We study the chaotic, huge fluctuation of electronic state, resultant intramolecular energy redistribution, and strong chemical bonding surviving the fluctuation with exceedingly long lifetimes of highly excited boron clusters. Those excited states constitute densely quasi-degenerate state manifolds. The huge fluctuation is induced by persisting multidimensional nonadiabatic transitions among the states in the manifold. We clarify the mechanism of their coexistence and its physical significance. In doing so, we concentrate on two theoretical aspects. One is quantum chaos and energy randomization, which are to be directly extracted from the properties of the total electronic wavefunctions. The present dynamical chaos takes place through frequent transitions from adiabatic states to others, thereby making it very rare for the system to find dissociation channels. This phenomenon leads to the concept of what we call intramolecular nonadiabatic electronic-energy redistribution, which is an electronic-state generaliztion of the notion of intramolecular vibrational energy redistribution. The other aspect is about the peculiar chemical bonding. We investigate it with the energy natural orbitals (ENOs) to see what kind of theoretical structures lie behind the huge fluctuation. The ENO energy levels representing the highly excited states under study appear to have four robust layers. We show that the energy layers responsible for chaotic dynamics and those for chemical bonding are widely separated from each other, and only when an event of what we call "inter-layer crossing" happens to burst can the destruction of these robust energy layers occur, resulting in molecular dissociation. This crossing event happens only rarely because of the large energy gaps between the ENO layers. It is shown that the layers of high energy composed of complex-valued ENOs induce the turbulent flow of electrons and electronic-energy in the cluster. In addition, the random and fast time-oscillations of those high energy ENOs serve as a random force on the nuclear dynamics, which can work to prevent a concentration of high nuclear kinetic energy in the dissociation channels.
Collapse
Affiliation(s)
- Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry, Kyoto University, 606-8103 Kyoto, Japan
| | - Yasuki Arasaki
- Fukui Institute for Fundamental Chemistry, Kyoto University, 606-8103 Kyoto, Japan
| |
Collapse
|
5
|
Arasaki Y, Takatsuka K. Energy natural orbital characterization of nonadiabatic electron wavepackets in the densely quasi-degenerate electronic state manifold. J Chem Phys 2023; 158:114102. [PMID: 36948795 DOI: 10.1063/5.0139288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Dynamics and energetic structure of largely fluctuating nonadiabatic electron wavepackets are studied in terms of Energy Natural Orbitals (ENOs) [K. Takatsuka and Y. Arasaki, J. Chem. Phys. 154, 094103 (2021)]. Such huge fluctuating states are sampled from the highly excited states of clusters of 12 boron atoms (B12), which have densely quasi-degenerate electronic excited-state manifold, each adiabatic state of which gets promptly mixed with other states through the frequent and enduring nonadiabatic interactions within the manifold. Yet, the wavepacket states are expected to be of very long lifetimes. This excited-state electronic wavepacket dynamics is extremely interesting but very hard to analyze since they are usually represented in large time-dependent configuration interaction wavefunctions and/or in some other complicated forms. We have found that ENO gives an invariant energy orbital picture to characterize not only the static highly correlated electronic wavefunctions but also those time-dependent electronic wavefunctions. Hence, we first demonstrate how the ENO representation works for some general cases, choosing proton transfer in water dimer and electron-deficient multicenter chemical bonding in diborane in the ground state. We then penetrate with ENO deep into the analysis of the essential nature of nonadiabatic electron wavepacket dynamics in the excited states and show the mechanism of the coexistence of huge electronic fluctuation and rather strong chemical bonds under very random electron flows within the molecule. To quantify the intra-molecular energy flow associated with the huge electronic-state fluctuation, we define and numerically demonstrate what we call the electronic energy flux.
Collapse
Affiliation(s)
- Yasuki Arasaki
- Fukui Institute for Fundamental Chemistry, Kyoto University, 606-8103 Kyoto, Japan
| | - Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry, Kyoto University, 606-8103 Kyoto, Japan
| |
Collapse
|
6
|
Takatsuka K. Quantum Chaos in the Dynamics of Molecules. ENTROPY (BASEL, SWITZERLAND) 2022; 25:63. [PMID: 36673204 PMCID: PMC9857761 DOI: 10.3390/e25010063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Quantum chaos is reviewed from the viewpoint of "what is molecule?", particularly placing emphasis on their dynamics. Molecules are composed of heavy nuclei and light electrons, and thereby the very basic molecular theory due to Born and Oppenheimer gives a view that quantum electronic states provide potential functions working on nuclei, which in turn are often treated classically or semiclassically. Therefore, the classic study of chaos in molecular science began with those nuclear dynamics particularly about the vibrational energy randomization within a molecule. Statistical laws in probabilities and rates of chemical reactions even for small molecules of several atoms are among the chemical phenomena requiring the notion of chaos. Particularly the dynamics behind unimolecular decomposition are referred to as Intra-molecular Vibrational energy Redistribution (IVR). Semiclassical mechanics is also one of the main research fields of quantum chaos. We herein demonstrate chaos that appears only in semiclassical and full quantum dynamics. A fundamental phenomenon possibly giving birth to quantum chaos is "bifurcation and merging" of quantum wavepackets, rather than "stretching and folding" of the baker's transformation and the horseshoe map as a geometrical foundation of classical chaos. Such wavepacket bifurcation and merging are indeed experimentally measurable as we showed before in the series of studies on real-time probing of nonadiabatic chemical reactions. After tracking these aspects of molecular chaos, we will explore quantum chaos found in nonadiabatic electron wavepacket dynamics, which emerges in the realm far beyond the Born-Oppenheimer paradigm. In this class of chaos, we propose a notion of Intra-molecular Nonadiabatic Electronic Energy Redistribution (INEER), which is a consequence of the chaotic fluxes of electrons and energy within a molecule.
Collapse
Affiliation(s)
- Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| |
Collapse
|
7
|
Takatsuka K, Arasaki Y. Real-time electronic energy current and quantum energy flux in molecules. J Chem Phys 2022; 157:244108. [PMID: 36586984 DOI: 10.1063/5.0131200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Intra- and inter-molecular electronic energy current is formulated by defining the probability current of electronic energy, called the energy flux. Among vast possible applications to electronic energy transfer phenomena, including chemical reaction dynamics, here we present a first numerical example from highly excited nonadiabatic electron wavepacket dynamics of a boron cluster B12.
Collapse
Affiliation(s)
- Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry, Kyoto University, 606-8103 Kyoto, Japan
| | - Yasuki Arasaki
- Fukui Institute for Fundamental Chemistry, Kyoto University, 606-8103 Kyoto, Japan
| |
Collapse
|
8
|
Li B, Xu J, Li G, Shi Z, Wang L. A Mixed Deterministic-Stochastic Algorithm of the Branching Corrected Mean Field Method for Nonadiabatic Dynamics. J Chem Phys 2022; 156:114116. [DOI: 10.1063/5.0084013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a new algorithm of the branching corrected mean field (BCMF) method for nonadiabatic dynamics [J. Xu and L. Wang, J. Phys. Chem. Lett. 11, 8283 (2020)], which combines the key advantages of the two existed algorithms, i.e., the deterministic BCMF algorithm based on weights of trajectory branches (BCMF-w) and the stochastic BCMF algorithm with random collapse of the electronic wavefunction (BCMF-s). The resulting mixed deterministic-stochastic BCMF algorithm (BCMF-ws) is benchmarked in a series of standard scattering problems with potential wells on the excited-state surfaces, which are common in realistic systems. In all investigated cases, BCMF-ws holds the same high accuracy while the computational time is reduced about two orders of magnitude compared to the original BCMF-w and BCMF-s algorithms, thus promising for nonadiabatic dynamics simulations of general systems.
Collapse
Affiliation(s)
| | | | | | | | - Linjun Wang
- Department of Chemistry, Zhejiang University, China
| |
Collapse
|
9
|
Ohnishi Y, Yamamoto K, Takatsuka K. Suppression of Charge Recombination by Auxiliary Atoms in Photoinduced Charge Separation Dynamics with Mn Oxides: A Theoretical Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030755. [PMID: 35164020 PMCID: PMC8838452 DOI: 10.3390/molecules27030755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022]
Abstract
Charge separation is one of the most crucial processes in photochemical dynamics of energy conversion, widely observed ranging from water splitting in photosystem II (PSII) of plants to photoinduced oxidation reduction processes. Several basic principles, with respect to charge separation, are known, each of which suffers inherent charge recombination channels that suppress the separation efficiency. We found a charge separation mechanism in the photoinduced excited-state proton transfer dynamics from Mn oxides to organic acceptors. This mechanism is referred to as coupled proton and electron wave-packet transfer (CPEWT), which is essentially a synchronous transfer of electron wave-packets and protons through mutually different spatial channels to separated destinations passing through nonadiabatic regions, such as conical intersections, and avoided crossings. CPEWT also applies to collision-induced ground-state water splitting dynamics catalyzed by Mn4CaO5 cluster. For the present photoinduced charge separation dynamics by Mn oxides, we identified a dynamical mechanism of charge recombination. It takes place by passing across nonadiabatic regions, which are different from those for charge separations and lead to the excited states of the initial state before photoabsorption. This article is an overview of our work on photoinduced charge separation and associated charge recombination with an additional study. After reviewing the basic mechanisms of charge separation and recombination, we herein studied substituent effects on the suppression of such charge recombination by doping auxiliary atoms. Our illustrative systems are X–Mn(OH)2 tied to N-methylformamidine, with X=OH, Be(OH)3, Mg(OH)3, Ca(OH)3, Sr(OH)3 along with Al(OH)4 and Zn(OH)3. We found that the competence of suppression of charge recombination depends significantly on the substituents. The present study should serve as a useful guiding principle in designing the relevant photocatalysts.
Collapse
|
10
|
Takatsuka K. Electron Dynamics in Molecular Elementary Processes and Chemical Reactions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| |
Collapse
|
11
|
Yamamoto K, Takatsuka K. Binuclear Mn oxo complex as a self-contained photocatalyst in water-splitting cycle: Role of additional Mn oxides as a buffer of electrons and protons. J Chem Phys 2020; 152:024115. [DOI: 10.1063/1.5139065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Kentaro Yamamoto
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyou-ku, Kyoto 606-8103, Japan
| | - Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyou-ku, Kyoto 606-8103, Japan
| |
Collapse
|
12
|
Yamamoto K, Takatsuka K. Charge separation and successive reconfigurations of electronic and protonic states in a water-splitting catalytic cycle with the Mn4CaO5 cluster. On the mechanism of water splitting in PSII. Phys Chem Chem Phys 2020; 22:7912-7934. [DOI: 10.1039/d0cp00443j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Charge separation, reloading of electrons and protons, and O2 generation in a catalytic cycle for water splitting with Mn4CaO5 in PSII.
Collapse
Affiliation(s)
- Kentaro Yamamoto
- Fukui Institute for Fundamental Chemistry
- Kyoto University
- Kyoto 606-8103
- Japan
| | - Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry
- Kyoto University
- Kyoto 606-8103
- Japan
| |
Collapse
|
13
|
Hanasaki K, Takatsuka K. Relativistic theory of electron-nucleus-radiation coupled dynamics in molecules: Wavepacket approach. J Chem Phys 2019; 151:084102. [DOI: 10.1063/1.5109272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kota Hanasaki
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| |
Collapse
|
14
|
Yamamoto K, Takatsuka K. On the Elementary Chemical Mechanisms of Unidirectional Proton Transfers: A Nonadiabatic Electron-Wavepacket Dynamics Study. J Phys Chem A 2019; 123:4125-4138. [PMID: 30977655 DOI: 10.1021/acs.jpca.9b01178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We propose a set of chemical reaction mechanisms of unidirectional proton transfers, which may possibly work as an elementary process in chemical and biological systems. Being theoretically derived based on our series of studies on charge separation dynamics in water splitting by Mn oxides, the present mechanisms have been constructed after careful exploration over the accumulated biological studies on cytochrome c oxidase (CcO) and bacteriorhodopsin. In particular, we have focused on the biochemical findings in the literature that unidirectional transfers of approximately two protons are driven by one electron passage through the reaction center (binuclear center) in CcO, whereas no such dissipative electron transfer is believed to be demanded in the proton transport in bacteriorhodopsin. The proposed basic mechanisms of unidirectional proton transfers are further reduced to two elementary dynamical processes, namely, what we call the coupled proton and electron-wavepacket transfer (CPEWT) and the inverse CPEWT. To show that the proposed mechanisms can indeed be materialized in a molecular level, we construct model systems with possible molecules that are rather familiar in biological chemistry, for which we perform the ab initio calculations of full-dimensional nonadiabatic electron-wavepacket dynamics coupled with all nuclear motions including proton transfers.
Collapse
Affiliation(s)
- Kentaro Yamamoto
- Fukui Institute for Fundamental Chemistry , Kyoto University , Sakyou-ku, Kyoto 606-8103 , Japan
| | - Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry , Kyoto University , Sakyou-ku, Kyoto 606-8103 , Japan
| |
Collapse
|
15
|
Arasaki Y, Takatsuka K. Chemical bonding and nonadiabatic electron wavepacket dynamics in densely quasi-degenerate excited electronic state manifold of boron clusters. J Chem Phys 2019; 150:114101. [DOI: 10.1063/1.5094149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yasuki Arasaki
- Institute for Fundamental Chemistry, Kyoto University, 606-8103 Kyoto, Japan
| | - Kazuo Takatsuka
- Institute for Fundamental Chemistry, Kyoto University, 606-8103 Kyoto, Japan
| |
Collapse
|
16
|
|
17
|
Takatsuka K. Adiabatic and nonadiabatic dynamics in classical mechanics for coupled fast and slow modes: sudden transition caused by the fast mode against the slaving principle. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1430389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry, Kyoto University , Kyoto, Japan
| |
Collapse
|
18
|
Yamamoto K, Takatsuka K. On the photocatalytic cycle of water splitting with small manganese oxides and the roles of water clusters as direct sources of oxygen molecules. Phys Chem Chem Phys 2018; 20:6708-6725. [DOI: 10.1039/c7cp07171j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A study on the photocatalytic cycle of water splitting and coupled proton electron-wavepacket transfer (CPEWT) as key processes of the mechanism.
Collapse
Affiliation(s)
- Kentaro Yamamoto
- Fukui Institute for Fundamental Chemistry
- Kyoto University
- Kyoto 606-8103
- Japan
| | - Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry
- Kyoto University
- Kyoto 606-8103
- Japan
| |
Collapse
|
19
|
Yamamoto K, Takatsuka K. Collision induced charge separation in ground-state water splitting dynamics. Phys Chem Chem Phys 2018; 20:12229-12240. [DOI: 10.1039/c8cp00520f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pathway of one-way electron–hole transfer induced by proton reciprocating motions, thereby realizing the collision induced ground-state charge separation.
Collapse
Affiliation(s)
- Kentaro Yamamoto
- Fukui Institute for Fundamental Chemistry
- Kyoto University
- Kyoto 606-8103
- Japan
| | - Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry
- Kyoto University
- Kyoto 606-8103
- Japan
| |
Collapse
|
20
|
Takatsuka K. Theory of molecular nonadiabatic electron dynamics in condensed phases. J Chem Phys 2017; 147:174102. [DOI: 10.1063/1.4993240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto 606-8103, Japan
| |
Collapse
|
21
|
Time-resolved photoelectron signals from bifurcating electron wavepackets propagated across conical intersection in path-branching dynamics. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2017.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Tao G. Multi-state trajectory approach to non-adiabatic dynamics: General formalism and the active state trajectory approximation. J Chem Phys 2017; 147:044107. [DOI: 10.1063/1.4985898] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Guohua Tao
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China and Shenzhen Key Laboratory of New Energy Materials by Design, Peking University, Shenzhen 518055, China
| |
Collapse
|
23
|
Takatsuka K. Lorentz-like force emerging from kinematic interactions between electrons and nuclei in molecules: A quantum mechanical origin of symmetry breaking that can trigger molecular chirality. J Chem Phys 2017; 146:084312. [DOI: 10.1063/1.4976976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry, Kyoto University, Nishikiraki-cho Sakyo-ku, Kyoto 606-8103, Japan
| |
Collapse
|
24
|
Yamamoto K, Takatsuka K. Photoinduced Charge Separation Catalyzed by Manganese Oxides onto a Y-Shaped Branching Acceptor Efficiently Preventing Charge Recombination. Chemphyschem 2017; 18:537-548. [DOI: 10.1002/cphc.201601237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/27/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Kentaro Yamamoto
- Fukui Institute for Fundamental Chemistry; Kyoto University; Takano-Nishihiraki-cho 34-4, Sakyou-ku Kyoto 606-8103 Japan
| | - Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry; Kyoto University; Takano-Nishihiraki-cho 34-4, Sakyou-ku Kyoto 606-8103 Japan
| |
Collapse
|
25
|
Ichikawa H, Takatsuka K. Chemical Modification of Conical Intersections in Photoisomerization Dynamics of Butadiene Derivatives. J Phys Chem A 2016; 121:315-325. [DOI: 10.1021/acs.jpca.6b10680] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hiroki Ichikawa
- Department of Basic Science, The University of Tokyo, Komaba 3-8-1, Tokyo 153-8902, Japan
| | - Kazuo Takatsuka
- Fukui Institute for Fundamental
Chemistry, Kyoto University, Takano-Nishikiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan
| |
Collapse
|
26
|
Yamamoto K, Takatsuka K. Dynamical mechanism of charge separation by photoexcited generation of proton–electron pairs in organic molecular systems. A nonadiabatic electron wavepacket dynamics study. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2016.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Yonehara T, Takatsuka K. Nonadiabtic electron dynamics in densely quasidegenerate states in highly excited boron cluster. J Chem Phys 2016; 144:164304. [DOI: 10.1063/1.4947302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Takehiro Yonehara
- Department of Basic Science, The University of Tokyo, Komaba, 153-8902 Tokyo, Japan
| | - Kazuo Takatsuka
- Department of Basic Science, The University of Tokyo, Komaba, 153-8902 Tokyo, Japan
| |
Collapse
|
28
|
Tao G. A multi-state trajectory method for non-adiabatic dynamics simulations. J Chem Phys 2016; 144:094108. [DOI: 10.1063/1.4943006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Guohua Tao
- Shenzhen Key Laboratory of New Energy Materials by Design, Peking University, Shenzhen 518055, China and School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
29
|
Takatsuka K, Matsumoto K. Classical and semiclassical dynamics in statistical environments with a mixed dynamical and statistical representation. Phys Chem Chem Phys 2016; 18:1771-85. [PMID: 26674298 DOI: 10.1039/c5cp06161j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a basic theory to study real-time dynamics embedded in a large environment that is treated using a statistical method. In light of great progress in the molecular-level studies on time-resolved spectroscopies, chemical reaction dynamics, and so on, not only in the gas phase but also in condensed phases like liquid solvents and even in crowded environments in living cells, we need to bridge over a gap between statistical mechanics and microscopic real-time dynamics. For instance, an analogy to gas-phase dynamics in which molecules are driven by the gradient of the potential energy hyper-surfaces (PESs) suggests that particles in condensed phases should run on the free energy surface instead. The question is whether this anticipation is correct. To answer it, we here propose a mixed dynamics and statistical representation to treat chemical dynamics embedded in a statistical ensemble. We first define the entropy functional, which is a function of the phase-space position of the dynamical subsystem, being dressed with statistical weights from the statistical counterpart. We then consider the functionals of temperature, free energy, and chemical potential as their extensions in statistical mechanics, through which one can clarify the relationship between real-time microscopic dynamics and statistical quantities. As an illustrative example we show that molecules in the dynamical subsystem should run on the free-energy functional surface, if and only if the spatial gradients of the temperature functional are all zero. Otherwise, additional forces emerge from the gradient of the temperature functional. Numerical demonstrations are presented at the very basic level of this theory of molecular dissociation in atomic cluster solvents.
Collapse
Affiliation(s)
- Kazuo Takatsuka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, 153-8902 Tokyo, Japan.
| | | |
Collapse
|
30
|
Li ZW, Yonehara T, Takatsuka K. Nonadiabatic electron wavepacket study on symmetry breaking dynamics of the low-lying excited states of cyclic-B4. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2015.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Yamamoto K, Takatsuka K. An Electron Dynamics Mechanism of Charge Separation in the Initial-Stage Dynamics of Photoinduced Water Splitting in XMnWater (X=OH, OCaH) and Electron-Proton Acceptors. Chemphyschem 2015; 16:2534-7. [DOI: 10.1002/cphc.201500416] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 11/11/2022]
|
32
|
Bai S, Xie W, Shi Q. A new trajectory branching approximation to propagate the mixed quantum-classical Liouville equation. J Phys Chem A 2014; 118:9262-71. [PMID: 24964189 DOI: 10.1021/jp503522g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Starting from the mixed quantum-classical Liouville (MQCL) equation, we derive a new trajectory branching method as a modification to the conventional mean field approximation. In the new method, the mean field approximation is used to propagate the mixed quantum-classical dynamics for short times. When the mean field description becomes invalid, new trajectories are added in the simulation by branching the single trajectory into multiple ones. To achieve this, a new set of variables are defined to monitor the deviations of the dynamics on different potential energy surfaces from the reference mean field trajectory, and their equations of motion are derived from the MQCL equation based on the method of first moment expansion. The new method is tested on several one-dimensional two surface problems and is shown to correctly solve the problem of the mean field approximation in several cases.
Collapse
Affiliation(s)
- Shuming Bai
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Zhongguancun, Beijing 100190, China
| | | | | |
Collapse
|
33
|
Yamamoto K, Takatsuka K. Electronic quantum effects mapped onto non-Born-Oppenheimer nuclear paths: Nonclassical surmounting over potential barriers and trapping above the transition states due to nonadiabatic path-branching. J Chem Phys 2014; 140:124111. [DOI: 10.1063/1.4869191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
34
|
Arasaki Y, Takatsuka K. Pulse-Train Photoelectron Spectroscopy of Electronic and Nuclear Dynamics in Molecules. Chemphyschem 2013; 14:1387-96. [DOI: 10.1002/cphc.201201094] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/06/2013] [Indexed: 11/06/2022]
|
35
|
Yonehara T, Takatsuka K. Path-Branching Representation for Nonadiabatic Electron Dynamics in Conical Intersection. J Phys Chem A 2013; 117:8599-608. [DOI: 10.1021/jp402655q] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Takehiro Yonehara
- Department of Basic
Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, 153-8902 Tokyo, Japan
| | - Kazuo Takatsuka
- Department of Basic
Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, 153-8902 Tokyo, Japan
| |
Collapse
|
36
|
Yonehara T, Takatsuka K. Electron wavepacket dynamics in highly quasi-degenerate coupled electronic states: A theory for chemistry where the notion of adiabatic potential energy surface loses the sense. J Chem Phys 2012; 137:22A520. [DOI: 10.1063/1.4742155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Nagashima K, Takatsuka K. Early-Stage Dynamics in Coupled Proton–Electron Transfer from the π–π* State of Phenol to Solvent Ammonia Clusters: A Nonadiabatic Electron Dynamics Study. J Phys Chem A 2012; 116:11167-79. [DOI: 10.1021/jp304781m] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kengo Nagashima
- Department of Basic Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, 153-8902 Tokyo, Japan
| | - Kazuo Takatsuka
- Department of Basic Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, 153-8902 Tokyo, Japan
| |
Collapse
|
38
|
Okuyama M, Takatsuka K. Dynamical Electron Mechanism of Double Proton Transfer in Formic Acid Dimer. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2012. [DOI: 10.1246/bcsj.20110237] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Michihiro Okuyama
- Department of Basic Sciences, Graduate School of Arts and Sciences, The University of Tokyo
| | - Kazuo Takatsuka
- Department of Basic Sciences, Graduate School of Arts and Sciences, The University of Tokyo
| |
Collapse
|
39
|
Yonehara T, Hanasaki K, Takatsuka K. Fundamental Approaches to Nonadiabaticity: Toward a Chemical Theory beyond the Born–Oppenheimer Paradigm. Chem Rev 2011; 112:499-542. [DOI: 10.1021/cr200096s] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takehiro Yonehara
- Department of Basic Sciences, Graduate School of Arts and Sciences, The University of Tokyo Komaba, 153-8902 Tokyo, Japan
| | - Kota Hanasaki
- Department of Basic Sciences, Graduate School of Arts and Sciences, The University of Tokyo Komaba, 153-8902 Tokyo, Japan
| | - Kazuo Takatsuka
- Department of Basic Sciences, Graduate School of Arts and Sciences, The University of Tokyo Komaba, 153-8902 Tokyo, Japan
| |
Collapse
|
40
|
Hu C, Sugino O, Watanabe K. Second-order nonadiabatic couplings from time-dependent density functional theory: Evaluation in the immediate vicinity of Jahn-Teller/Renner-Teller intersections. J Chem Phys 2011; 135:074101. [DOI: 10.1063/1.3624565] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Takatsuka K, Yonehara T. Exploring dynamical electron theory beyond the Born-Oppenheimer framework: from chemical reactivity to non-adiabatically coupled electronic and nuclear wavepackets on-the-fly under laser field. Phys Chem Chem Phys 2011; 13:4987-5016. [PMID: 21321712 DOI: 10.1039/c0cp00937g] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemical theory and its application to dynamical electrons in molecules under intense electromagnetic fields is explored, in which we take an explicit account of nuclear nonadiabatic (kinematic) interactions along with simultaneous coupling with intense optical interactions. All the electronic wavefunctions studied here are necessarily time-dependent, and thereby beyond stationary state quantum chemistry based on the Born-Oppenheimer framework. As a general and tractable alternative framework with which to track the electronic and nuclear simultaneous dynamics, we propose an on-the-fly method to calculate the electron and nuclear wavepackets coupled along the branching non-Born-Oppenheimer paths, through which their bifurcations, strong quantum entanglement between nuclear electronic motions, and coherence and decoherence among the phases associated with them are properly represented. Some illustrative numerical examples are also reported, which are aimed at our final goals; real time tracking of nonadiabatic electronic states, chemical dynamics in densely degenerate electronic states coupled with nuclear motions and manipulation and/or creation of new electronic states in terms of intense lasers, and so on. Other examples are also presented as to how the electron wavepacket dynamics can be used to analyze chemical reactions, shedding a new light on some typical and conventional chemical reactions such as proton transfer followed by tautomerization.
Collapse
Affiliation(s)
- Kazuo Takatsuka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, 153-8902, Tokyo, Japan.
| | | |
Collapse
|
42
|
Yonehara T, Takatsuka K. Non-Born–Oppenheimer quantum chemistry on the fly with continuous path branching due to nonadiabatic and intense optical interactions. J Chem Phys 2010; 132:244102. [DOI: 10.1063/1.3439396] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
43
|
Takatsuka K, Yonehara T. Nonadiabatic Chemical Dynamics in Intermediate and Intense Laser Fields. ADVANCES IN CHEMICAL PHYSICS 2010. [DOI: 10.1002/9780470564318.ch2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
44
|
Yonehara T, Takatsuka K. Characterization of electron-deficient chemical bonding of diborane with attosecond electron wavepacket dynamics and laser response. Chem Phys 2009. [DOI: 10.1016/j.chemphys.2009.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Kato T, Yamanouchi K. Time-dependent multiconfiguration theory for describing molecular dynamics in diatomic-like molecules. J Chem Phys 2009; 131:164118. [DOI: 10.1063/1.3249967] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
46
|
Nagashima K, Takatsuka K. Electron-Wavepacket Reaction Dynamics in Proton Transfer of Formamide. J Phys Chem A 2009; 113:15240-9. [DOI: 10.1021/jp905583s] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kengo Nagashima
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Komaba, 153-8902 Tokyo, Japan
| | - Kazuo Takatsuka
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Komaba, 153-8902 Tokyo, Japan
| |
Collapse
|
47
|
|
48
|
Yonehara T, Takahashi S, Takatsuka K. Non-Born–Oppenheimer electronic and nuclear wavepacket dynamics. J Chem Phys 2009; 130:214113. [DOI: 10.1063/1.3151684] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|