2
|
Sheshka R, Truskinovsky L. Power-stroke-driven actomyosin contractility. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012708. [PMID: 24580258 DOI: 10.1103/physreve.89.012708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Indexed: 06/03/2023]
Abstract
In ratchet-based models describing actomyosin contraction the activity is usually associated with actin binding potential while the power-stroke mechanism, residing inside myosin heads, is viewed as passive. To show that contraction can be propelled directly through a conformational change, we propose an alternative model where the power stroke is the only active mechanism. The asymmetry, ensuring directional motion, resides in steric interaction between the externally driven power-stroke element and the passive nonpolar actin filament. The proposed model can reproduce all four discrete states of the minimal actomyosin catalytic cycle even though it is formulated in terms of continuous Langevin dynamics. We build a conceptual bridge between processive and nonprocessive molecular motors by demonstrating that not only the former but also the latter can use structural transformation as the main driving force.
Collapse
Affiliation(s)
- R Sheshka
- LMS, CNRS-UMR 7649, École Polytechnique, Route de Saclay, 91128 Palaiseau, France and LITEN, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - L Truskinovsky
- LMS, CNRS-UMR 7649, École Polytechnique, Route de Saclay, 91128 Palaiseau, France
| |
Collapse
|
3
|
Speer D, Eichhorn R, Evstigneev M, Reimann P. Dimer motion on a periodic substrate: spontaneous symmetry breaking and absolute negative mobility. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:061132. [PMID: 23005076 DOI: 10.1103/physreve.85.061132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Indexed: 06/01/2023]
Abstract
We consider two coupled particles moving along a periodic substrate potential with negligible inertia effects (overdamped limit). Even when the particles are identical and the substrate spatially symmetric, a sinusoidal external driving of appropriate amplitude and frequency may lead to spontaneous symmetry breaking in the form of a permanent directed motion of the dimer. Thermal noise restores ergodicity and thus zero net velocity, but entails arbitrarily fast diffusion of the dimer for sufficiently weak noise. Moreover, upon application of a static bias force, the dimer exhibits a motion opposite to that force (absolute negative mobility). The key requirement for all these effects is a nonconvex interaction potential of the two particles.
Collapse
Affiliation(s)
- David Speer
- Universität Bielefeld, Fakultät für Physik, 33615 Bielefeld, Germany
| | | | | | | |
Collapse
|
4
|
Rozenbaum VM, Makhnovskii YA, Yang DY, Sheu SY, Lin SH. Reciprocating and Directed Motion on the Nanoscale: A Simple Kinetic Model. J Phys Chem B 2010; 114:1959-66. [DOI: 10.1021/jp910508t] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- V. M. Rozenbaum
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan; Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, Generala Naumova str. 17, Kiev, 03164, Ukraine; Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russia; Department of Life Sciences and Institute of Genome Sciences, Institute of Biomedical Informatics, and Structural Biology Program, National Yang-Ming University, Taipei 112,
| | - Yu. A. Makhnovskii
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan; Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, Generala Naumova str. 17, Kiev, 03164, Ukraine; Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russia; Department of Life Sciences and Institute of Genome Sciences, Institute of Biomedical Informatics, and Structural Biology Program, National Yang-Ming University, Taipei 112,
| | - D.-Y. Yang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan; Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, Generala Naumova str. 17, Kiev, 03164, Ukraine; Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russia; Department of Life Sciences and Institute of Genome Sciences, Institute of Biomedical Informatics, and Structural Biology Program, National Yang-Ming University, Taipei 112,
| | - S.-Y. Sheu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan; Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, Generala Naumova str. 17, Kiev, 03164, Ukraine; Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russia; Department of Life Sciences and Institute of Genome Sciences, Institute of Biomedical Informatics, and Structural Biology Program, National Yang-Ming University, Taipei 112,
| | - S. H. Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan; Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, Generala Naumova str. 17, Kiev, 03164, Ukraine; Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russia; Department of Life Sciences and Institute of Genome Sciences, Institute of Biomedical Informatics, and Structural Biology Program, National Yang-Ming University, Taipei 112,
| |
Collapse
|