1
|
Maity I, Wagner N, Dev D, Ashkenasy G. Bistable Functions and Signaling Motifs in Systems Chemistry: Taking the Next Step Toward Synthetic Cells. Acc Chem Res 2025; 58:428-439. [PMID: 39841921 PMCID: PMC11800382 DOI: 10.1021/acs.accounts.4c00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/24/2025]
Abstract
A key challenge in modern chemistry research is to mimic life-like functions using simple molecular networks and the integration of such networks into the first functional artificial cell. Central to this endeavor is the development of signaling elements that can regulate the cell function in time and space by producing entities of code with specific information to induce downstream activity. Such artificial signaling motifs can emerge in nonequilibrium systems, exhibiting complex dynamic behavior like bistability, multistability, oscillations, and chaos. However, the de novo, bottom-up design of such systems remains challenging, primarily because the kinetic characteristics and energy aspects yielding bifurcation have not yet been globally defined. We herein review our recent work that focuses on the design and functional analysis of peptide-based networks, propelled by replication reactions and exhibiting bistable behavior. Furthermore, we rationalize and discuss their exploitation and implementation as variable signaling motifs in homogeneous and heterogeneous environments.The bistable reactions constitute reversible second-order autocatalysis as positive feedback to generate two distinct product distributions at steady state (SS), the low-SS and high-SS. Quantitative analyses reveal that a phase transition from simple reversible equilibration dynamics into bistability takes place when the system is continuously fueled, using a reducing agent, to keep it far from equilibrium. In addition, an extensive set of experimental, theoretical, and simulation studies highlight a defined parameter space where bistability operates.Analogous to the arrangement of protein-based bistable motifs in intracellular signaling pathways, sequential concatenation of the synthetic bistable networks is used for signal processing in homogeneous media. The cascaded network output signals are switched and erased or transduced by manipulating the order of addition of the components, allowing it to reach "on demand" either the low-SS or high-SS. The pre-encoded bistable networks are also useful as a programming tool for the downstream regulation of nanoscale materials properties, bridging together the Systems Chemistry and Nanotechnology fields. In such heterogeneous cascade pathways, the outputs of the bistable network serve as input signals for consecutive nanoparticle formation reaction and growth processes, which-depending on the applied conditions-regulate various features of (Au) nanoparticle shape and assembly.Our work enables the design and production of various signaling apparatus that feature higher complexity than previously observed in chemical networks. Future studies, briefly discussed at the end of the Account, will be directed at the design and analysis of more elaborate functionality, such as bistability under flow conditions, multistability, and oscillations. We propose that a profound understanding of the design principles facilitating the replication-based bistability and related functions bear implications for exploring the origin of protein functionality prior to the highly evolved replication-translation-transcription machinery. The integration of our peptide-based signaling motifs within future synthetic cells seems to be a straightforward development of the two alternating states as memory and switch elements for controlling cell growth and division and even communication among different cells. We furthermore suggest that such systems can be introduced into living cells for various biotechnology applications, such as switches for cell temporal and spatial manipulations.
Collapse
Affiliation(s)
- Indrajit Maity
- Department
of Chemistry, Ben-Gurion University of the
Negev, Be’er
Sheva 84105, Israel
| | - Nathaniel Wagner
- Department
of Chemistry, Ben-Gurion University of the
Negev, Be’er
Sheva 84105, Israel
| | - Dharm Dev
- Department
of Chemistry, Ben-Gurion University of the
Negev, Be’er
Sheva 84105, Israel
| | - Gonen Ashkenasy
- Department
of Chemistry, Ben-Gurion University of the
Negev, Be’er
Sheva 84105, Israel
| |
Collapse
|
2
|
Hanopolskyi AI, Smaliak VA, Novichkov AI, Semenov SN. Autocatalysis: Kinetics, Mechanisms and Design. CHEMSYSTEMSCHEM 2020. [DOI: 10.1002/syst.202000026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Anton I. Hanopolskyi
- Department of Organic Chemistry Weizmann Institute of Science Herzl, 234 7610001 Rehovot Israel
| | - Viktoryia A. Smaliak
- Department of Organic Chemistry Weizmann Institute of Science Herzl, 234 7610001 Rehovot Israel
| | - Alexander I. Novichkov
- Department of Organic Chemistry Weizmann Institute of Science Herzl, 234 7610001 Rehovot Israel
| | - Sergey N. Semenov
- Department of Organic Chemistry Weizmann Institute of Science Herzl, 234 7610001 Rehovot Israel
| |
Collapse
|
3
|
Wagner N, Hochberg D, Peacock-Lopez E, Maity I, Ashkenasy G. Open Prebiotic Environments Drive Emergent Phenomena and Complex Behavior. Life (Basel) 2019; 9:life9020045. [PMID: 31163645 PMCID: PMC6617095 DOI: 10.3390/life9020045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/20/2019] [Accepted: 05/26/2019] [Indexed: 12/05/2022] Open
Abstract
We have been studying simple prebiotic catalytic replicating networks as prototypes for modeling replication, complexification and Systems Chemistry. While living systems are always open and function far from equilibrium, these prebiotic networks may be open or closed, dynamic or static, divergent or convergent to a steady state. In this paper we review the properties of these simple replicating networks, and show, via four working models, how even though closed systems exhibit a wide range of emergent phenomena, many of the more interesting phenomena leading to complexification and emergence indeed require open systems.
Collapse
Affiliation(s)
- Nathaniel Wagner
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| | - David Hochberg
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Ctra Ajalvir Km. 4, 28850 Torrejón de Ardoz, Madrid, Spain.
| | | | - Indrajit Maity
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
- Present address: Institute for Macromolecular Chemistry, Albert Ludwigs University of Freiburg, D-79104 Freiburg, Germany.
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
4
|
Rink WM, Thomas F. De Novo Designed α-Helical Coiled-Coil Peptides as Scaffolds for Chemical Reactions. Chemistry 2018; 25:1665-1677. [DOI: 10.1002/chem.201802849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Indexed: 01/31/2023]
Affiliation(s)
- W. Mathis Rink
- Institute of Organic and Biomolecular Chemistry; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Franziska Thomas
- Institute of Organic and Biomolecular Chemistry; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration; Von-Siebold-Straße 3a 37075 Göttingen Germany
| |
Collapse
|
5
|
Hordijk W, Shichor S, Ashkenasy G. The Influence of Modularity, Seeding, and Product Inhibition on Peptide Autocatalytic Network Dynamics. Chemphyschem 2018; 19:2437-2444. [PMID: 29813174 DOI: 10.1002/cphc.201800101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Indexed: 11/09/2022]
Abstract
Chemical networks often exhibit emergent, systems-level properties that cannot be simply derived from the linear sum of the individual components. The design and analysis of increasingly complex chemical networks thus constitute a major area of research in Systems Chemistry. In particular, much research is focused on the emergence of functional properties in prebiotic chemical networks relevant to the origin and early evolution of life. Here, we apply a formal framework known as RAF theory to study the dynamics of a complex network of mutually catalytic peptides. We investigate in detail the influence of network modularity, initial template seeding, and product inhibition on the network dynamics. We show that these results can be useful for designing new experiments, and further argue how they are relevant to origin of life studies.
Collapse
Affiliation(s)
- Wim Hordijk
- Institute for Advanced Study, University of Amsterdam, The Netherlands
| | - Shira Shichor
- Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | | |
Collapse
|
6
|
Wagner N, Mukherjee R, Maity I, Peacock-Lopez E, Ashkenasy G. Bistability and Bifurcation in Minimal Self-Replication and Nonenzymatic Catalytic Networks. Chemphyschem 2017; 18:1842-1850. [PMID: 28112462 DOI: 10.1002/cphc.201601293] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/23/2017] [Indexed: 11/08/2022]
Abstract
Bistability and bifurcation, found in a wide range of biochemical networks, are central to the proper function of living systems. We investigate herein recent model systems that show bistable behavior based on nonenzymatic self-replication reactions. Such models were used before to investigate catalytic growth, chemical logic operations, and additional processes of self-organization leading to complexification. By solving for their steady-state solutions by using various analytical and numerical methods, we analyze how and when these systems yield bistability and bifurcation and discover specific cases and conditions producing bistability. We demonstrate that the onset of bistability requires at least second-order catalysis and results from a mismatch between the various forward and reverse processes. Our findings may have far-reaching implications in understanding early evolutionary processes of complexification, emergence, and potentially the origin of life.
Collapse
Affiliation(s)
- Nathaniel Wagner
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Rakesh Mukherjee
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Indrajit Maity
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | | | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| |
Collapse
|
7
|
Wagner N, Atsmon-Raz Y, Ashkenasy G. Theoretical Models of Generalized Quasispecies. Curr Top Microbiol Immunol 2016; 392:141-59. [PMID: 26373410 DOI: 10.1007/82_2015_456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Theoretical modeling of quasispecies has progressed in several directions. In this chapter, we review the works of Emmanuel Tannenbaum, who, together with Eugene Shakhnovich at Harvard University and later with colleagues and students at Ben-Gurion University in Beersheva, implemented one of the more useful approaches, by progressively setting up various formulations for the quasispecies model and solving them analytically. Our review will focus on these papers that have explored new models, assumed the relevant mathematical approximations, and proceeded to analytically solve for the steady-state solutions and run stochastic simulations . When applicable, these models were related to real-life problems and situations, including changing environments, presence of chemical mutagens, evolution of cancer and tumor cells , mutations in Escherichia coli, stem cells , chromosomal instability (CIN), propagation of antibiotic drug resistance , dynamics of bacteria with plasmids , DNA proofreading mechanisms, and more.
Collapse
Affiliation(s)
- Nathaniel Wagner
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Yoav Atsmon-Raz
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel.
| |
Collapse
|
8
|
Wagner N, Ashkenasy G. How Catalytic Order Drives the Complexification of Molecular Replication Networks. Isr J Chem 2015. [DOI: 10.1002/ijch.201400198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Gurevich L, Cohen-Luria R, Wagner N, Ashkenasy G. Robustness of synthetic circadian clocks to multiple environmental changes. Chem Commun (Camb) 2015; 51:5672-5. [PMID: 25714790 DOI: 10.1039/c5cc00098j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A molecular network that mimics circadian clocks from cyanobacteria is constructed in silico. Simulating its oscillatory behaviour under variable conditions reveals its robustness relative to networks of alternative topologies. The principles for synthetic chemical circadian networks to work properly are consequently highlighted.
Collapse
Affiliation(s)
- Lilia Gurevich
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| | | | | | | |
Collapse
|
10
|
Paffen TFE, Ercolani G, de Greef TFA, Meijer EW. Supramolecular Buffering by Ring–Chain Competition. J Am Chem Soc 2015; 137:1501-9. [DOI: 10.1021/ja5110377] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Gianfranco Ercolani
- Dipartimento
di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Roma, Italy
| | | | | |
Collapse
|
11
|
Wagner N, Alasibi S, Peacock-Lopez E, Ashkenasy G. Coupled Oscillations and Circadian Rhythms in Molecular Replication Networks. J Phys Chem Lett 2015; 6:60-65. [PMID: 26263092 DOI: 10.1021/jz502350u] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Living organisms often display rhythmic and oscillatory behavior. We investigate here a challenge in contemporary Systems Chemistry, that is, to construct "bottom-up" molecular networks that display such complex behavior. We first describe oscillations during self-replication by applying kinetic parameters relevant to peptide replication in an open environment. Small networks of coupled oscillators are then constructed in silico, producing various functions such as logic gates, integrators, counters, triggers, and detectors. These networks are finally utilized to simulate the connectivity and network topology of the Kai proteins circadian clocks from the S. elongatus cyanobacteria, thus producing rhythms whose constant frequency is independent of the input intake rate and robust toward concentration fluctuations. We suggest that this study helps further reveal the underlying principles of biological clocks and may provide clues into their emergence in early molecular evolution.
Collapse
Affiliation(s)
- Nathaniel Wagner
- †Department of Chemistry, Ben Gurion University of the Negev, Be'er Sheva, 84105 Israel
| | - Samaa Alasibi
- †Department of Chemistry, Ben Gurion University of the Negev, Be'er Sheva, 84105 Israel
| | - Enrique Peacock-Lopez
- ‡Department of Chemistry, Williams College, Williamstown, Massachusetts 02167, United States
| | - Gonen Ashkenasy
- †Department of Chemistry, Ben Gurion University of the Negev, Be'er Sheva, 84105 Israel
| |
Collapse
|
12
|
Villani M, Filisetti A, Graudenzi A, Damiani C, Carletti T, Serra R. Growth and division in a dynamic protocell model. Life (Basel) 2014; 4:837-64. [PMID: 25479130 PMCID: PMC4284470 DOI: 10.3390/life4040837] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 10/25/2014] [Accepted: 11/10/2014] [Indexed: 01/08/2023] Open
Abstract
In this paper a new model of growing and dividing protocells is described, whose main features are (i) a lipid container that grows according to the composition of the molecular milieu (ii) a set of “genetic memory molecules” (GMMs) that undergo catalytic reactions in the internal aqueous phase and (iii) a set of stochastic kinetic equations for the GMMs. The mass exchange between the external environment and the internal phase is described by simulating a semipermeable membrane and a flow driven by the differences in chemical potentials, thereby avoiding to resort to sometimes misleading simplifications, e.g., that of a flow reactor. Under simple assumptions, it is shown that synchronization takes place between the rate of replication of the GMMs and that of the container, provided that the set of reactions hosts a so-called RAF (Reflexive Autocatalytic, Food-generated) set whose influence on synchronization is hereafter discussed. It is also shown that a slight modification of the basic model that takes into account a rate-limiting term, makes possible the growth of novelties, allowing in such a way suitable evolution: so the model represents an effective basis for understanding the main abstract properties of populations of protocells.
Collapse
Affiliation(s)
- Marco Villani
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, v. Campi 213a, 41125 Modena, Italy.
| | - Alessandro Filisetti
- Department of Environmental Sciences (DAIS), University Ca' Foscari, Ca' Minich, S. Marco 2940, 30124 Venice, Italy.
| | - Alex Graudenzi
- Department of Informatics, Systems and Communication, University of Milan-Bicocca, Viale Sarca, 336, 20126 Milano, Italy.
| | - Chiara Damiani
- SYSBIO-Centre for Systems Biology, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
| | - Timoteo Carletti
- Department of Mathematics and Namur Center for Complex Systems-naXys, University of Namur, rue de Bruxelles 61, B-5000 Namur, Belgium.
| | - Roberto Serra
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, v. Campi 213a, 41125 Modena, Italy.
| |
Collapse
|
13
|
Dadon Z, Wagner N, Alasibi S, Samiappan M, Mukherjee R, Ashkenasy G. Competition and Cooperation in Dynamic Replication Networks. Chemistry 2014; 21:648-54. [DOI: 10.1002/chem.201405195] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Indexed: 11/09/2022]
|
14
|
Hernandez AF, Wagner MJ, Grover MA. Model identification of a template-directed peptide network for optimization in a continuous reactor. Chem Commun (Camb) 2014; 50:3849-51. [DOI: 10.1039/c4cc00501e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With an open driven system, the chemical network can be controlled to new nonequilibrium steady states.
Collapse
Affiliation(s)
- Andres F. Hernandez
- School of Chemical & Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta, USA
| | - Michael J. Wagner
- School of Chemical & Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta, USA
| | - Martha A. Grover
- School of Chemical & Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta, USA
| |
Collapse
|
15
|
Ruiz-Mirazo K, Briones C, de la Escosura A. Prebiotic Systems Chemistry: New Perspectives for the Origins of Life. Chem Rev 2013; 114:285-366. [DOI: 10.1021/cr2004844] [Citation(s) in RCA: 563] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kepa Ruiz-Mirazo
- Biophysics
Unit (CSIC-UPV/EHU), Leioa, and Department of Logic and Philosophy
of Science, University of the Basque Country, Avenida de Tolosa 70, 20080 Donostia−San Sebastián, Spain
| | - Carlos Briones
- Department
of Molecular Evolution, Centro de Astrobiología (CSIC−INTA, associated to the NASA Astrobiology Institute), Carretera de Ajalvir, Km 4, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Andrés de la Escosura
- Organic
Chemistry Department, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
16
|
|
17
|
Abstract
Autocatalysis is a fundamental concept, used in a wide range of domains. From the most general definition of autocatalysis, that is, a process in which a chemical compound is able to catalyze its own formation, several different systems can be described. We detail the different categories of autocatalyses and compare them on the basis of their mechanistic, kinetic, and dynamic properties. It is shown how autocatalytic patterns can be generated by different systems of chemical reactions. With the notion of autocatalysis covering a large variety of mechanistic realizations with very similar behaviors, it is proposed that the key signature of autocatalysis is its kinetic pattern expressed in a mathematical form.
Collapse
Affiliation(s)
- Raphaël Plasson
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Yokohama, 223-8852 Japan.
| | | | | | | |
Collapse
|
18
|
Plasson R, Brandenburg A, Jullien L, Bersini H. Autocatalysis: at the root of self-replication. ARTIFICIAL LIFE 2011; 17:219-236. [PMID: 21554116 DOI: 10.1162/artl_a_00033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Autocatalysis is a fundamental concept, used in a wide range of domains. From its most general definition, that is, a process in which a chemical compound is able to catalyze its own formation, several different systems can be described. We detail the different categories of autocatalyses, and compare them on the basis of their mechanistic, kinetic, and dynamic properties. It is shown how autocatalytic patterns can be generated by different systems of chemical reactions. The notion of autocatalysis covers a large variety of mechanistic realizations with very similar behaviors; it is proposed that its key signature is its kinetic pattern expressed in a mathematical form. This notion, while describing dynamic behaviors at the most fundamental level, is at the basis for developing higher-level concepts towards life: autocatalytic sets, and autopoietic systems.
Collapse
Affiliation(s)
- Raphaël Plasson
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama, Japan.
| | | | | | | |
Collapse
|
19
|
Dieckmann A, Beniken S, Lorenz CD, Doltsinis NL, von Kiedrowski G. Elucidating the origin of diastereoselectivity in a self-replicating system: selfishness versus altruism. Chemistry 2011; 17:468-80. [PMID: 21207563 DOI: 10.1002/chem.201002325] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have investigated a diastereoselective self-replicating system based on a cycloaddition of a fulvene derivative and a maleimide using a two-pronged approach of combining NMR spectroscopy with computational modelling. Two diastereomers are formed with identical rates in the absence of replication. When replication is enabled, one diastereomer takes over the resources as a "selfish" autocatalyst, while exploiting the competitor as a weak "altruist", resulting in a diastereoselectivity of 16:1. We applied 1D and 2D NMR spectroscopic techniques supported by ab initio chemical shifts as well as ab initio molecular dynamics simulations to study the structure and dynamics of the underlying network. This powerful combination allowed us to decipher the energetic and structural rationale behind the observed behaviour, while static computational methods currently used in the field did not.
Collapse
Affiliation(s)
- Arne Dieckmann
- Lehrstuhl für Organische Chemie I, Bioorganische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | | | | | | | | |
Collapse
|
20
|
Boiteau L, Pascal R. Energy sources, self-organization, and the origin of life. ORIGINS LIFE EVOL B 2011; 41:23-33. [PMID: 20333546 DOI: 10.1007/s11084-010-9209-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 03/05/2010] [Indexed: 10/19/2022]
Abstract
The emergence and early developments of life are considered from the point of view that contingent events that inevitably marked evolution were accompanied by deterministic driving forces governing the selection between different alternatives. Accordingly, potential energy sources are considered for their propensity to induce self-organization within the scope of the chemical approach to the origin of life. Requirements in terms of quality of energy locate thermal or photochemical activation in the atmosphere as highly likely processes for the formation of activated low-molecular weight organic compounds prone to induce biomolecular self-organization through their ability to deliver quanta of energy matching the needs of early biochemical pathways or the reproduction of self-replicating entities. These lines of reasoning suggest the existence of a direct connection between the free energy content of intermediates of early pathways and the quanta of energy delivered by available sources of energy.
Collapse
Affiliation(s)
- Laurent Boiteau
- Institut des Biomolécules Max Mousseron, UMR 5247, Universités Montpellier 1 & Montpellier 2-CNRS, CC DSBC 1706-Université Montpellier 2, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | | |
Collapse
|
21
|
Ashkenasy G, Dadon Z, Alesebi S, Wagner N, Ashkenasy N. Building Logic into Peptide Networks: Bottom-Up and Top-Down. Isr J Chem 2011. [DOI: 10.1002/ijch.201000071] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
22
|
Samiappan M, Dadon Z, Ashkenasy G. Replication NAND gate with light as input and output. Chem Commun (Camb) 2011; 47:710-2. [DOI: 10.1039/c0cc04098c] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Angelin M, Vongvilai P, Fischer A, Ramström O. Crystallization-Driven Asymmetric Synthesis of Pyridine-β-nitroalcohols via Discovery-Oriented Self-Resolution of a Dynamic System. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000907] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Dadon Z, Samiappan M, Safranchik EY, Ashkenasy G. Light-Induced Peptide Replication Controls Logic Operations in Small Networks. Chemistry 2010; 16:12096-9. [DOI: 10.1002/chem.201001488] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Dieckmann A, Beniken S, Lorenz C, Doltsinis NL, von Kiedrowski G. Unravelling a fulvene based Replicator: Experiment and Theory in Interplay. ACTA ACUST UNITED AC 2010. [DOI: 10.1186/1759-2208-1-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Allen VC, Robertson CC, Turega SM, Philp D. A simple network of synthetic replicators can perform the logical OR operation. Org Lett 2010; 12:1920-3. [PMID: 20392115 DOI: 10.1021/ol100404g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A small network of synthetic replicators is capable of responding to instructional inputs such that the output of the network is an excess of one of the replicators whenever the input contains either or both of the replicators, mirroring the OR boolean logic operation.
Collapse
Affiliation(s)
- Victoria C Allen
- EaStCHEM and Centre for Biomolecular Sciences, School of Chemistry, University of St Andrews, North Haugh, St. Andrews, Fife KY16 9ST, United Kingdom
| | | | | | | |
Collapse
|
27
|
Wagner N, Tannenbaum E, Ashkenasy G. Second order catalytic quasispecies yields discontinuous mean fitness at error threshold. PHYSICAL REVIEW LETTERS 2010; 104:188101. [PMID: 20482213 DOI: 10.1103/physrevlett.104.188101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Indexed: 05/29/2023]
Abstract
The quasispecies model describes processes related to the origin of life and viral evolutionary dynamics. We discuss how the error catastrophe that reflects the transition from localized to delocalized quasispecies population is affected by catalytic replication of different reaction orders. Specifically, we find that second order mechanisms lead to a discontinuity in the mean fitness of the population at the error threshold. This is in contrast to the behavior of the first order, autocatalytic replication mechanism considered in the standard quasispecies model. This suggests that quasispecies models with higher order replication mechanisms produce discontinuities in the mean fitness, and hence the viable population fraction as well, at the error threshold, while lower order replication mechanisms yield a continuous mean fitness function. We discuss potential implications for understanding replication in the RNA world and in virology.
Collapse
Affiliation(s)
- Nathaniel Wagner
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | | | | |
Collapse
|
28
|
Plasson R, Brandenburg A. Homochirality and the need for energy. ORIGINS LIFE EVOL B 2010; 40:93-110. [PMID: 19911301 DOI: 10.1007/s11084-009-9181-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 09/16/2009] [Indexed: 11/30/2022]
Abstract
The mechanisms for explaining how a stable asymmetric chemical system can be formed from a symmetric chemical system, in the absence of any asymmetric influence other than statistical fluctuations, have been developed during the last decades, focusing on the non-linear kinetic aspects. Besides the absolute necessity of self-amplification processes, the importance of energetic aspects is often underestimated. Going down to the most fundamental aspects, the distinction between a single object-that can be intrinsically asymmetric-and a collection of objects-whose racemic state is the more stable one-must be emphasized. A system of strongly interacting objects can be described as one single object retaining its individuality and a single asymmetry; weakly or non-interacting objects keep their own individuality, and are prone to racemize towards the equilibrium state. In the presence of energy fluxes, systems can be maintained in an asymmetric non-equilibrium steady-state. Such dynamical systems can retain their asymmetry for times longer than their racemization time.
Collapse
|
29
|
Kassianidis E, Pearson RJ, Wood EA, Philp D. Designing instructable networks using synthetic replicators. Faraday Discuss 2010. [DOI: 10.1039/b915061g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Rubinov B, Wagner N, Rapaport H, Ashkenasy G. Self-replicating amphiphilic beta-sheet peptides. Angew Chem Int Ed Engl 2009; 48:6683-6. [PMID: 19644990 DOI: 10.1002/anie.200902790] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Boris Rubinov
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | | | | | | |
Collapse
|
31
|
Rubinov B, Wagner N, Rapaport H, Ashkenasy G. Self-Replicating Amphiphilic β-Sheet Peptides. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200902790] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|