1
|
Wang C, Wu F, Zhao B, Chen YC, Luo MB. Spontaneous Injection of Polymer into a Spherical Cavity from a Narrow Tube. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chao Wang
- Department of Physics, Taizhou University, Taizhou 318000, China
| | - Fan Wu
- Department of Physics, Taizhou University, Taizhou 318000, China
| | - Bin Zhao
- Department of Physics, Taizhou University, Taizhou 318000, China
| | - Ying-Cai Chen
- Department of Physics, Taizhou University, Taizhou 318000, China
| | - Meng-Bo Luo
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
2
|
Polson JM, Heckbert DR. Polymer translocation into cavities: Effects of confinement geometry, crowding, and bending rigidity on the free energy. Phys Rev E 2019; 100:012504. [PMID: 31499877 DOI: 10.1103/physreve.100.012504] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 06/10/2023]
Abstract
Monte Carlo simulations are used to study the translocation of a polymer into a cavity. Modeling the polymer as a hard-sphere chain with a length up to N=601 monomers, we use a multiple-histogram method to measure the variation of the conformational free energy of the polymer with respect to the number of translocated monomers. The resulting free-energy functions are then used to obtain the confinement free energy for the translocated portion of the polymer. We characterize the confinement free energy for a flexible polymer in cavities with constant cross-sectional area A for various cavity shapes (cylindrical, rectangular, and triangular) as well as for tapered cavities with pyramidal and conical shape. The scaling of the free energy with cavity volume and translocated polymer subchain length is generally consistent with predictions from simple scaling arguments, with small deviations in the scaling exponents likely due to finite-size effects. The confinement free energy depends strongly on cavity shape anisometry and is a minimum for an isometric cavity shape with a length-to-width ratio of unity. Entropic depletion at the edges or vertices of the confining cavity are evident in the results for constant-A and pyramidal cavities. For translocation into infinitely long cones, the scaling of the free energy with taper angle is consistent with a theoretical prediction employing the blob model. We also examine the effects of polymer bending rigidity on the translocation free energy for cylindrical cavities. For isometric cavities, the observed scaling behavior is in partial agreement with theoretical predictions, with discrepancies arising from finite-size effects that prevent the emergence of well-defined scaling regimes. In addition, translocation into highly anisometric cylindrical cavities leads to a multistage folding process for stiff polymers. Finally, we examine the effects of crowding agents inside the cavity. We find that the confinement free energy increases with crowder density. At constant packing fraction the magnitude of this effect lessens with increasing crowder size for a crowder-to-monomer size ratio ≥1.
Collapse
Affiliation(s)
- James M Polson
- Department of Physics, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island, Canada C1A 4P3
| | - David R Heckbert
- Department of Physics, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island, Canada C1A 4P3
| |
Collapse
|
3
|
Abstract
Strong chain rigidity and electrostatic self-repulsion of packed double-stranded DNA in viruses require a molecular motor to pull the DNA into the capsid. However, what is the role of electrostatic interactions between different charged components in the packaging process? Though various theories and computer simulation models were developed for the understanding of viral assembly and packaging dynamics of the genome, long-range electrostatic interactions and capsid structure have typically been neglected or oversimplified. By means of molecular dynamics simulations, we explore the effects of electrostatic interactions on the packaging dynamics of DNA based on a coarse-grained DNA and capsid model by explicitly including peptide arms (PAs), linked to the inner surface of the capsid, and counterions. Our results indicate that the electrostatic interactions between PAs, DNA, and counterions have a significant influence on the packaging dynamics. We also find that the packed DNA conformations are largely affected by the structure of the PA layer, but the packaging rate is insensitive to the layer structure.
Collapse
Affiliation(s)
- Qianqian Cao
- College of Mechanical and Electrical Engineering, Jiaxing University, Jiaxing 314001, P. R. China. and Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, GA 30602, USA. and Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Michael Bachmann
- Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, GA 30602, USA. and Instituto de Física, Universidade Federal de Mato Grosso, Cuiabá (MT), Brazil and Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| |
Collapse
|
4
|
The Semiflexible Polymer Translocation into Laterally Unbounded Region between Two Parallel Flat Membranes. Polymers (Basel) 2016; 8:polym8090332. [PMID: 30974609 PMCID: PMC6431992 DOI: 10.3390/polym8090332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/28/2016] [Accepted: 08/30/2016] [Indexed: 11/17/2022] Open
Abstract
Using the dynamic Monte Carlo method, we investigate dynamics of semiflexible polymer translocation through a nanopore into laterally unbounded region between two parallel flat membranes with separation R in presence of an electric field inside the pore. The average translocation time τ initially decreases rapidly with increase of R in the range of R < 10 and then almost keeps constant for R ≥ 10, and the decline range increases with increase of dimensionless bending stiffness κ. We mainly study the effect of chain length N, κ and electric field strength E on the translocation process for R = 5. The translocation dynamics is significantly altered in comparison to an unconfined environment. We find τ ~ Nα, where the exponent α increases with increase of E for small κ. α initially increases slowly with increase of E and then keeps constant for moderate κ. α decreases with increase of E for large κ. However, α decreases with increase of κ under various E. In addition, we find τ ~ κβ. β decreases with increase of N under various E. These behaviors are interpreted in terms of the probability distribution of translocation time and the waiting time of an individual monomer segment passing through the pore during translocation.
Collapse
|
5
|
Polson JM. Polymer translocation into and out of an ellipsoidal cavity. J Chem Phys 2015; 142:174903. [DOI: 10.1063/1.4919642] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- James M. Polson
- Department of Physics, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island C1A 4P3, Canada
| |
Collapse
|
6
|
Cao Q, Bachmann M. Dynamics and limitations of spontaneous polyelectrolyte intrusion into a charged nanocavity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:060601. [PMID: 25615036 DOI: 10.1103/physreve.90.060601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Indexed: 06/04/2023]
Abstract
We systematically investigate the spontaneous packaging mechanism of a single polyelectrolyte chain into an oppositely charged nanocavity by Langevin molecular dynamics simulations of a generic coarse-grained model. Intrusion dynamics and packaging rate, as well as the self-assembly process inside turn out to depend sensitively on the stiffness of the polyelectrolyte, the surface charge density inside the capsid, and the radius of the cavity. Further analysis shows that, depending on the stiffness, thermal fluctuations and charge inversion can be important factors to overcome barriers that slow down the intrusion and packaging dynamics. These results help advance our understanding of the function of charges on the inner surface of viral capsids and the possibility to design capsids as synthetic nanocarriers.
Collapse
Affiliation(s)
- Qianqian Cao
- Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA and Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Michael Bachmann
- Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA and Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá, Mato Grosso, Brazil and Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
7
|
Yang S, Neimark AV. Adsorption-driven translocation of polymer chain into nanopores. J Chem Phys 2012; 136:214901. [DOI: 10.1063/1.4720505] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
8
|
Ali I, Marenduzzo D. Influence of ions on genome packaging and ejection: A molecular dynamics study. J Chem Phys 2011; 135:095101. [DOI: 10.1063/1.3617416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Sun M, Zhang JJ, Wang B, Wu HS, Pan J. Domain patterns in a diblock copolymer-diblock copolymer mixture with oscillatory particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:011802. [PMID: 21867200 DOI: 10.1103/physreve.84.011802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 05/04/2011] [Indexed: 05/31/2023]
Abstract
We investigate the orientational order transition of striped patterns in microphase structures of diblock copolymer-diblock copolymer mixtures in the presence of periodic oscillatory particles. Under certain conditions, although the macrophase separation of a system is almost isotropic, microphase separation of one diblock copolymer takes place and becomes anisotropic gradually. By changing the oscillatory frequency and amplitude, the orientational order transition of a striped microphase structure from the state parallel to the oscillatory direction to the state perpendicular to the oscillatory direction is observed. We also find that the order transition occurs when we change the initial composition ratio. Furthermore, we examine the domain size and the orientational order parameter of microstructure in the process of orientational order transition. The results may provide guidance for experimentalists. This model system can also give a simple way to realize orientational order transition of soft materials by changing the oscillatory field.
Collapse
Affiliation(s)
- Minna Sun
- School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, China
| | | | | | | | | |
Collapse
|