1
|
Schmid F. Understanding and Modeling Polymers: The Challenge of Multiple Scales. ACS POLYMERS AU 2022. [DOI: 10.1021/acspolymersau.2c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Friederike Schmid
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 9, 55128Mainz, Germany
| |
Collapse
|
2
|
Herranz M, Foteinopoulou K, Karayiannis NC, Laso M. Polymorphism and Perfection in Crystallization of Hard Sphere Polymers. Polymers (Basel) 2022; 14:polym14204435. [PMID: 36298013 PMCID: PMC9612263 DOI: 10.3390/polym14204435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
We present results on polymorphism and perfection, as observed in the spontaneous crystallization of freely jointed polymers of hard spheres, obtained in an unprecedentedly long Monte Carlo (MC) simulation on a system of 54 chains of 1000 monomers. Starting from a purely amorphous configuration, after an initial dominance of the hexagonal closed packed (HCP) polymorph and a transitory random hexagonal close packed (rHCP) morphology, the system crystallizes in a final, stable, face centered cubic (FCC) crystal of very high perfection. An analysis of chain conformational characteristics, of the spatial distribution of monomers and of the volume accessible to them shows that the phase transition is caused by an increase in translational entropy that is larger than the loss of conformational entropy of the chains in the crystal, compared to the amorphous state. In spite of the significant local re-arrangements, as reflected in the bending and torsion angle distributions, the average chain size remains unaltered during crystallization. Polymers in the crystal adopt ideal random walk statistics as their great length renders local conformational details, imposed by the geometry of the FCC crystal, irrelevant.
Collapse
Affiliation(s)
| | | | - Nikos Ch. Karayiannis
- Correspondence: (N.C.K.); (M.L.); Tel.: +34-910677318 (N.C.K.); +34-910677320 (M.L.)
| | - Manuel Laso
- Correspondence: (N.C.K.); (M.L.); Tel.: +34-910677318 (N.C.K.); +34-910677320 (M.L.)
| |
Collapse
|
3
|
Herranz M, Martínez-Fernández D, Ramos PM, Foteinopoulou K, Karayiannis NC, Laso M. Simu-D: A Simulator-Descriptor Suite for Polymer-Based Systems under Extreme Conditions. Int J Mol Sci 2021; 22:12464. [PMID: 34830346 PMCID: PMC8621175 DOI: 10.3390/ijms222212464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/03/2021] [Accepted: 11/12/2021] [Indexed: 11/21/2022] Open
Abstract
We present Simu-D, a software suite for the simulation and successive identification of local structures of atomistic systems, based on polymers, under extreme conditions, in the bulk, on surfaces, and at interfaces. The protocol is built around various types of Monte Carlo algorithms, which include localized, chain-connectivity-altering, identity-exchange, and cluster-based moves. The approach focuses on alleviating one of the main disadvantages of Monte Carlo algorithms, which is the general applicability under a wide range of conditions. Present applications include polymer-based nanocomposites with nanofillers in the form of cylinders and spheres of varied concentration and size, extremely confined and maximally packed assemblies in two and three dimensions, and terminally grafted macromolecules. The main simulator is accompanied by a descriptor that identifies the similarity of computer-generated configurations with respect to reference crystals in two or three dimensions. The Simu-D simulator-descriptor can be an especially useful tool in the modeling studies of the entropy- and energy-driven phase transition, adsorption, and self-organization of polymer-based systems under a variety of conditions.
Collapse
Affiliation(s)
| | | | | | | | - Nikos Ch. Karayiannis
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain; (M.H.); (D.M.-F.); (P.M.R.); (K.F.)
| | - Manuel Laso
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain; (M.H.); (D.M.-F.); (P.M.R.); (K.F.)
| |
Collapse
|
4
|
Ruiz MB, Pérez-Camargo RA, López JV, Penott-Chang E, Múgica A, Coulembier O, Müller AJ. Accelerating the crystallization kinetics of linear polylactides by adding cyclic poly (L-lactide): Nucleation, plasticization and topological effects. Int J Biol Macromol 2021; 186:255-267. [PMID: 34246673 DOI: 10.1016/j.ijbiomac.2021.07.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Polylactide is one of the most versatile biopolymers, but its slow crystallization limits its temperature usage range. Hence finding ways to enhance it is crucial to widen its applications. Linear and cyclic poly (L-lactide) (l-PLLA and c-PLLA) of similarly low molecular weights (MW) were synthesized by ring-opening polymerization of L-lactide, and ring-expansion methodology, respectively. Two types of blends were prepared by solution mixing: (a) l-PLLA/c-PLLA, at extreme compositions (rich in linear or in cyclic chains), and (b) blends of each of these low MW materials with a commercial high MW linear PLA. The crystallization of the different blends was evaluated by polarized light optical microscopy and differential scanning calorimetry. It was found, for the first time, that in the l-PLLA rich blends, small amounts of c-PLLA (i.e., 5 and 10 wt%) increase the nucleation density, nucleation rate (1/τ0), spherulitic growth rate (G), and overall crystallization rate (1/τ50%), when compared to neat l-PLLA, due to a synergistic effect (i.e., nucleation plus plasticization). In contrast, the opposite effect was found in the c-PLLA rich blends. The addition of small amounts of l-PLLA to a matrix of c-PLLA chains causes a decrease in the nucleation density, 1/τ0, G, and 1/τ50% values, due to threading effects between cyclic and linear chains. Small amounts of l-PLLA and c-PLLA enhance the crystallization ability of a commercial high MW linear PLA without affecting its melting temperature. The l-PLLA only acts as a plasticizer for the PLA matrix, whereas c-PLLA has a synergistic effect in accelerating the crystallization of PLA that goes beyond simple plasticization. The addition of small amounts of c-PLLA affects not only PLA crystal growth but also its nucleation due to the unique cyclic chains topology.
Collapse
Affiliation(s)
- Marina Betegón Ruiz
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Ricardo A Pérez-Camargo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Juan V López
- Grupo de Polímeros USB, Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Apartado 89000, Caracas 1080-A, Venezuela
| | - Evis Penott-Chang
- Grupo de Polímeros USB, Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Apartado 89000, Caracas 1080-A, Venezuela
| | - Agurtzane Múgica
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Olivier Coulembier
- Laboratory of Polymeric and Composite Materials, University of Mons - UMONS, Place du Parc 23, 7000 Mons, Belgium
| | - Alejandro J Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
5
|
Pestryaev EM. Chain Heterogeneity in Simulated Polymer Melts: Segment Orientational Autocorrelation Function. POLYMER SCIENCE SERIES A 2020. [DOI: 10.1134/s0965545x20060085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Rauscher PM, Schweizer KS, Rowan SJ, de Pablo JJ. Thermodynamics and Structure of Poly[n]catenane Melts. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02706] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Phillip M. Rauscher
- Pritzker School of Molecular Engineering, University of Chicago, 5747 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Kenneth S. Schweizer
- Department of Materials Science, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801-3028, United States
- Materials Research Laboratory, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801-3028, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801-3028, United States
- Department of Chemistry, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801-3028, United States
| | - Stuart J. Rowan
- Pritzker School of Molecular Engineering, University of Chicago, 5747 South Ellis Avenue, Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago, 5747 South Ellis Avenue, Chicago, Illinois 60637, United States
- Chemical and Engineering Sciences, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
- Center for Molecular Engineering, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, 5747 South Ellis Avenue, Chicago, Illinois 60637, United States
- Center for Molecular Engineering, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
- Materials Science Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
7
|
Affiliation(s)
- Yuichi Masubuchi
- Department of Materials Physics, Nagoya University, Nagoya, Japan
| |
Collapse
|
8
|
García NA, Barrat JL. Entanglement Reduction Induced by Geometrical Confinement in Polymer Thin Films. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01884] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nicolás A. García
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Jean-Louis Barrat
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| |
Collapse
|
9
|
Subramanian G. Parallel Replica Dynamics of Bead‐Spring Elastomers at Low Strain Rates. MACROMOL THEOR SIMUL 2018. [DOI: 10.1002/mats.201800010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gopinath Subramanian
- School of Polymer Science and Engineering University of Southern Mississippi 118 College Drive #5050 MS 39406 USA
| |
Collapse
|
10
|
Morthomas J, Fusco C, Zhai Z, Lame O, Perez M. Crystallization of finite-extensible nonlinear elastic Lennard-Jones coarse-grained polymers. Phys Rev E 2017; 96:052502. [PMID: 29347659 DOI: 10.1103/physreve.96.052502] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Indexed: 06/07/2023]
Abstract
The ability of a simple coarse-grained finite-extensible nonlinear elastic (FENE) Lennard-Jones (LJ) polymer model to be crystallized is investigated by molecular dynamics simulations. The optimal FENE Lennard-Jones parameter combinations (ratio between FENE and LJ equilibrium distances) and the optimal lattice parameters are calculated for five different perfect crystallite structures: simple tetragonal, body-centered tetragonal, body-centered orthorhombic, hexagonal primitive, and hexagonal close packed. It was found that the most energetically favorable structure is the body-centered orthorhombic. Starting with an equilibrated polymer liquid and with the optimal parameters found for the body-centered orthorhombic, an isothermal treatment led to the formation of large lamellar crystallites with a typical chain topology: folded, loop, and tie chains, and with a crystallinity of about 60%-70%, similar to real semicrystalline polymers. This simple coarse-grained Lennard-Jones model provides a qualitative tool to study semicrystalline microstructures for polymers.
Collapse
Affiliation(s)
- Julien Morthomas
- INSA de Lyon, Université de Lyon, MATEIS, UMR CNRS 5510, 69621 Villeurbanne, France
| | - Claudio Fusco
- INSA de Lyon, Université de Lyon, MATEIS, UMR CNRS 5510, 69621 Villeurbanne, France
| | - Zengqiang Zhai
- INSA de Lyon, Université de Lyon, MATEIS, UMR CNRS 5510, 69621 Villeurbanne, France
| | - Olivier Lame
- INSA de Lyon, Université de Lyon, MATEIS, UMR CNRS 5510, 69621 Villeurbanne, France
| | - Michel Perez
- INSA de Lyon, Université de Lyon, MATEIS, UMR CNRS 5510, 69621 Villeurbanne, France
| |
Collapse
|
11
|
Korolkovas A, Gutfreund P, Barrat JL. Simulation of entangled polymer solutions. J Chem Phys 2016; 145:124113. [DOI: 10.1063/1.4963400] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Svaneborg C, Karimi-Varzaneh HA, Hojdis N, Fleck F, Everaers R. Multiscale approach to equilibrating model polymer melts. Phys Rev E 2016; 94:032502. [PMID: 27739755 DOI: 10.1103/physreve.94.032502] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Indexed: 06/06/2023]
Abstract
We present an effective and simple multiscale method for equilibrating Kremer Grest model polymer melts of varying stiffness. In our approach, we progressively equilibrate the melt structure above the tube scale, inside the tube and finally at the monomeric scale. We make use of models designed to be computationally effective at each scale. Density fluctuations in the melt structure above the tube scale are minimized through a Monte Carlo simulated annealing of a lattice polymer model. Subsequently the melt structure below the tube scale is equilibrated via the Rouse dynamics of a force-capped Kremer-Grest model that allows chains to partially interpenetrate. Finally the Kremer-Grest force field is introduced to freeze the topological state and enforce correct monomer packing. We generate 15 melts of 500 chains of 10.000 beads for varying chain stiffness as well as a number of melts with 1.000 chains of 15.000 monomers. To validate the equilibration process we study the time evolution of bulk, collective, and single-chain observables at the monomeric, mesoscopic, and macroscopic length scales. Extension of the present method to longer, branched, or polydisperse chains, and/or larger system sizes is straightforward.
Collapse
Affiliation(s)
- Carsten Svaneborg
- University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | - Nils Hojdis
- Continental, PO Box 169, D-30001 Hannover, Germany
| | - Frank Fleck
- Continental, PO Box 169, D-30001 Hannover, Germany
| | - Ralf Everaers
- Univ Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique and Centre Blaise Pascal, F-69342 Lyon, France
| |
Collapse
|
13
|
Moreira LA, Zhang G, Müller F, Stuehn T, Kremer K. Direct Equilibration and Characterization of Polymer Melts for Computer Simulations. MACROMOL THEOR SIMUL 2015. [DOI: 10.1002/mats.201500013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Livia A. Moreira
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Germany
| | - Guojie Zhang
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Germany
| | - Franziska Müller
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Germany
| | - Torsten Stuehn
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Germany
| | - Kurt Kremer
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Germany
| |
Collapse
|
14
|
|
15
|
Senda Y, Fujio M, Shimamura S, Blomqvist J, Nieminen RM. Fast convergence to equilibrium for long-chain polymer melts using a MD/continuum hybrid method. J Chem Phys 2012; 137:154115. [DOI: 10.1063/1.4759036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Sliozberg YR, Andzelm JW. Fast protocol for equilibration of entangled and branched polymer chains. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2011.12.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
17
|
Subramanian G. An Iterative Method for Producing Equilibrated Symmetric Three-Arm Star Polymer Melts in Molecular Dynamics. MACROMOL THEOR SIMUL 2010. [DOI: 10.1002/mats.201000062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|