1
|
Stachowiak M, Grabowska E, Wang XG, Carrington T, Szalewicz K, Jankowski P. Theory cracks old data: Rovibrational energy levels of orthoH 2-CO derived from experiment. SCIENCE ADVANCES 2024; 10:eadj8632. [PMID: 38394212 PMCID: PMC10889352 DOI: 10.1126/sciadv.adj8632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Measurements of rovibrational spectra of clusters provide physical insight only if spectral lines can be assigned to pairs of quantum states, and further insight is obtained if one can deduce the quantitative energy-level pattern. Both steps can be so difficult that some measured spectra remain unassigned, one example is orthoH2-CO. To extend the scope of spectroscopic insights, we propose to use theoretical information in interpretation of spectra. We first performed high accuracy, full-dimensional calculations of the orthoH2-CO spectrum, at the highest practically achievable levels of electronic structure theory and quantum nuclear dynamics. Then, an iterative, theory-guided method developed here allowed us to fully interpret the spectrum of orthoH2-CO, extending the range of van der Waals clusters for which spectroscopy can provide physical insights.
Collapse
Affiliation(s)
- Marcin Stachowiak
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Ewelina Grabowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Xiao-Gang Wang
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Krzysztof Szalewicz
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| | - Piotr Jankowski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| |
Collapse
|
2
|
Bostan D, Mandal B, Joy C, Żółtowski M, Lique F, Loreau J, Quintas-Sánchez E, Batista-Planas A, Dawes R, Babikov D. Mixed quantum/classical calculations of rotationally inelastic scattering in the CO + CO system: a comparison with fully quantum results. Phys Chem Chem Phys 2024; 26:6627-6637. [PMID: 38115799 DOI: 10.1039/d3cp05369e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
An updated version of the CO + CO potential energy surface from [R. Dawes, X. G. Wang and T. Carrington, J. Phys. Chem. A 2013, 117, 7612] is presented, that incorporates an improved treatment of the asymptotic behavior. It is found that this new surface is only slightly different from the other popular PES available for this system in the literature [G. W. M. Vissers, P. E. S. Wormer and A. Van Der Avoird, Phys. Chem. Chem. Phys. 2003, 5, 4767]. The differences are quantified by expanding both surfaces over a set of analytic functions and comparing the behavior of expansion coefficients along the molecule-molecule distance R. It is shown that all expansion coefficients behave similarly, except in the very high energy range at small R where the PES is repulsive. That difference has no effect on low collision-energy dynamics, which is explored via inelastic scattering calculations carried out using the MQCT program which implements the mixed quantum/classical theory for molecular energy exchange processes. The validity of MQCT predictions of state-to-state transition cross sections for CO + CO is also tested by comparison against full-quantum coupled-states calculations. In all cases MQCT gives reliable results, except at very low collision energy where the full-quantum calculations predict strong oscillations of state-to-state transition cross sections due to resonances. For strong transitions with large cross sections, the results of MQCT are reliable, especially at higher collision energy. For weaker transitions, and lower collision energies, the cross sections predicted by MQCT may be up to a factor of 2-3 different from those obtained by full-quantum calculations.
Collapse
Affiliation(s)
- Dulat Bostan
- Chemistry Department, Marquette University, Milwaukee, Wisconsin 53201-1881, USA.
| | - Bikramaditya Mandal
- Chemistry Department, Marquette University, Milwaukee, Wisconsin 53201-1881, USA.
| | - Carolin Joy
- Chemistry Department, Marquette University, Milwaukee, Wisconsin 53201-1881, USA.
| | - Michał Żółtowski
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000 Rennes, France
| | - François Lique
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000 Rennes, France
| | - Jérôme Loreau
- KU Leuven, Department of Chemistry, B-3001 Leuven, Belgium
| | - Ernesto Quintas-Sánchez
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Adrian Batista-Planas
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Dmitri Babikov
- Chemistry Department, Marquette University, Milwaukee, Wisconsin 53201-1881, USA.
| |
Collapse
|
3
|
Olejnik A, Jóźwiak H, Gancewski M, Quintas-Sánchez E, Dawes R, Wcisło P. Ab initio quantum scattering calculations and a new potential energy surface for the HCl(X1Σ+)-O2(X3Σg-) system: Collision-induced line shape parameters for O2-perturbed R(0) 0-0 line in H35Cl. J Chem Phys 2023; 159:134301. [PMID: 37782252 DOI: 10.1063/5.0169968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
The remote sensing of abundance and properties of HCl-the main atmospheric reservoir of Cl atoms that directly participate in ozone depletion-is important for monitoring the partitioning of chlorine between "ozone-depleting" and "reservoir" species. Such remote studies require knowledge of the shapes of molecular resonances of HCl, which are perturbed by collisions with the molecules of the surrounding air. In this work, we report the first fully quantum calculations of collisional perturbations of the shape of a pure rotational line in H35Cl perturbed by an air-relevant molecule [as the first model system we choose the R(0) line in HCl perturbed by O2]. The calculations are performed on our new highly accurate HCl(X1Σ+)-O2(X3Σg-) potential energy surface. In addition to pressure broadening and shift, we also determine their speed dependencies and the complex Dicke parameter. This gives important input to the community discussion on the physical meaning of the complex Dicke parameter and its relevance for atmospheric spectra (previously, the complex Dicke parameter for such systems was mainly determined from phenomenological fits to experimental spectra and the physical meaning of its value in that context is questionable). We also calculate the temperature dependence of the line shape parameters and obtain agreement with the available experimental data. We estimate the total combined uncertainties of our calculations at 2% relative root-mean-square error in the simulated line shape at 296 K. This result constitutes an important step toward computational population of spectroscopic databases with accurate ab initio line shape parameters for molecular systems of terrestrial atmospheric importance.
Collapse
Affiliation(s)
- Artur Olejnik
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| | - Hubert Jóźwiak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| | - Maciej Gancewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| | - Ernesto Quintas-Sánchez
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409-0010, USA
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409-0010, USA
| | - Piotr Wcisło
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| |
Collapse
|
4
|
Gill WA, Janjua MRSA. Ab Initio Calculations of the Interaction Potential of the N 2O-N 2O Dimer: Strength of the Intermolecular Interactions and Physical Insights. J Phys Chem A 2023. [PMID: 37478471 DOI: 10.1021/acs.jpca.3c02634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
N2O, or nitrous oxide, is an important greenhouse gas with a significant impact on global warming and climate change. To accurately model the behavior of N2O in the atmosphere, precise representations of its intermolecular force fields are required. First principles quantum mechanical calculations followed by appropriate fitting are commonly used to establish such force fields. However, fitting such force fields is challenging due to the complex mathematical functions that describe the molecular interactions of N2O. As such, ongoing research is focused on improving our understanding of N2O and developing more accurate models for use in climate modeling and other applications. In this study, we investigated the strength of the intermolecular interactions in the N2O-N2O dimer using the coupled-cluster theory with single, double, and perturbative triple excitation [CCSD(T)] method with the def2-QZVPP basis set. Our calculations provided a detailed understanding of the intermolecular forces that govern the stability and structure of the N2O dimer. We found that the N2O-N2O dimer is stabilized by a combination of van der Waals forces and dipole-dipole interactions. The calculated interaction energy between the two N2O molecules in the dimer was found to be -5.09 kcal/mol, which is in good agreement with previous theoretical and experimental results. Additionally, we analyzed the molecular properties of the N2O-N2O dimer, including its geometry and charge distribution. Our calculations provide a comprehensive understanding of the intermolecular interactions in the N2O-N2O dimer using the CCSD(T) method with the def2-QZVPP basis set by using the improved Lennard-Jones interaction potential method. These results can be used to improve our understanding of atmospheric chemistry and climate modeling, as well as to aid in the interpretation of experimental data.
Collapse
Affiliation(s)
- Waqas Amber Gill
- Departamento de Química Física, Universidad de Valencia, Avda Dr. Moliner, 50, Burjassot E-46100, Valencia, Spain
| | | |
Collapse
|
5
|
Quintas-Sánchez E, Dawes R, Denis-Alpizar O. Theoretical study of the HCS+–H2 van der Waals complex: potential energy surface, rovibrational bound states, and rotationally inelastic collisional cross sections. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1980234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, USA
| | - Otoniel Denis-Alpizar
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
6
|
Gancewski M, Jóźwiak H, Quintas-Sánchez E, Dawes R, Thibault F, Wcisło P. Fully quantum calculations of O 2-N 2 scattering using a new potential energy surface: Collisional perturbations of the oxygen 118 GHz fine structure line. J Chem Phys 2021; 155:124307. [PMID: 34598560 DOI: 10.1063/5.0063006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A proper description of the collisional perturbation of the shapes of molecular resonances is important for remote spectroscopic studies of the terrestrial atmosphere. Of particular relevance are the collisions between the O2 and N2 molecules-the two most abundant atmospheric species. In this work, we report a new highly accurate O2(X3Σg -)-N2(X1Σg +) potential energy surface and use it for performing the first quantum scattering calculations addressing line shapes for this system. We use it to model the shape of the 118 GHz fine structure line in O2 perturbed by collisions with N2 molecules, a benchmark system for testing our methodology in the case of an active molecule in a spin triplet state. The calculated collisional broadening of the line agrees well with the available experimental data over a wide temperature range relevant for the terrestrial atmosphere. This work constitutes a step toward populating the spectroscopic databases with ab initio line shape parameters for atmospherically relevant systems.
Collapse
Affiliation(s)
- Maciej Gancewski
- Institute of Physics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| | - Hubert Jóźwiak
- Institute of Physics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| | - Ernesto Quintas-Sánchez
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409-0010, USA
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409-0010, USA
| | - Franck Thibault
- Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, Rennes F-35000, France
| | - Piotr Wcisło
- Institute of Physics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| |
Collapse
|
7
|
Šmydke J, Császár AG. Understanding the structure of complex multidimensional wave functions. A case study of excited vibrational states of ammonia. J Chem Phys 2021; 154:144306. [PMID: 33858164 DOI: 10.1063/5.0043946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Generalization of an earlier reduced-density-matrix-based vibrational assignment algorithm is given, applicable for systems exhibiting both large-amplitude motions, including tunneling, and degenerate vibrational modes. The algorithm developed is used to study the structure of the excited vibrational wave functions of the ammonia molecule, 14NH3. Characterization of the complex dynamics of systems with several degenerate vibrations requires reconsidering the traditional degenerate-mode description given by vibrational angular momentum quantum numbers and switching to a symmetry-based approach that directly predicts state degeneracy and uncovers relations between degenerate modes. Out of the 600 distinct vibrational eigenstates of ammonia obtained by a full-dimensional variational computation, the developed methodology allows for the assignment of about 500 with meaningful labels. This study confirms that vibrationally excited states truly have modal character recognizable up to very high energies even for the non-trivial case of ammonia, a molecule which exhibits a tunneling motion and has two two-dimensional normal modes. The modal characteristics of the excited states and the interplay of the vibrational modes can be easily visualized by the reduced-density matrices, giving an insight into the complex modal behavior directed by symmetry.
Collapse
Affiliation(s)
- Jan Šmydke
- Department of Radiation and Chemical Physics, Institute of Physics CAS, Na Slovance 1999/2, 18221 Praha 8, Czech Republic
| | - Attila G Császár
- MTA-ELTE Complex Chemical Systems Research Group and Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Pázmány Péter Sétány 1/A, Hungary
| |
Collapse
|
8
|
Bop CT, Quintas-Sánchez E, Sur S, Robin M, Lique F, Dawes R. Inelastic scattering in isotopologues of O 2-Ar: the effects of mass, symmetry, and density of states. Phys Chem Chem Phys 2021; 23:5945-5955. [PMID: 33666616 DOI: 10.1039/d1cp00326g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The two species considered here, O2 (oxygen molecule) and Ar (argon-atom), are both abundant components of Earth's atmosphere and hence familiar collision partners in this medium. O2 is quite reactive and extensively involved in atmospheric chemistry, including Chapman's cycle of the formation and destruction of ozone; while Ar, like N2, typically plays the nevertheless crucial role of inert collider. Inert species can provide stabilization to metastable encounter-complexes through the energy transfer associated with inelastic collisions. The interplay of collision frequency and energy transfer efficiency, with state lifetimes and species concentrations, contributes to the rich and varied chemistry and dynamics found in diverse environments ranging from planetary atmospheres to the interstellar and circumstellar media. The nature and density of bound and resonance states, coupled electronic states, symmetry, and nuclear spin-statistics can all play a role. Here, we systematically investigate some of those factors by looking at the O2-Ar system, comparing rigorous quantum-scattering calculations for the 16O16O-40Ar, 18O16O-40Ar, and 18O18O-40Ar isotope combinations. A new accurate potential energy surface was constructed for this purpose holding the O2 bond distance at its vibrationally averaged distance.
Collapse
Affiliation(s)
- Cheikh T Bop
- Laboratoire Ondes et Milieux Complexes, UMR 6294, Centre National de la Recherche Scientifique-Universite du Havre, F-76063 Le Havre, France. and Universite du Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| | | | - Sangeeta Sur
- Missouri University of Science and Technology, Rolla, MO 65409-0010, USA.
| | - Mathurin Robin
- Laboratoire Ondes et Milieux Complexes, UMR 6294, Centre National de la Recherche Scientifique-Universite du Havre, F-76063 Le Havre, France.
| | - François Lique
- Laboratoire Ondes et Milieux Complexes, UMR 6294, Centre National de la Recherche Scientifique-Universite du Havre, F-76063 Le Havre, France. and Universite du Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| | - Richard Dawes
- Missouri University of Science and Technology, Rolla, MO 65409-0010, USA.
| |
Collapse
|
9
|
Quintas-Sánchez E, Dawes R. Spectroscopy and Scattering Studies Using Interpolated Ab Initio Potentials. Annu Rev Phys Chem 2021; 72:399-421. [PMID: 33503385 DOI: 10.1146/annurev-physchem-090519-051837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Born-Oppenheimer potential energy surface (PES) has come a long way since its introduction in the 1920s, both conceptually and in predictive power for practical applications. Nevertheless, nearly 100 years later-despite astonishing advances in computational power-the state-of-the-art first-principles prediction of observables related to spectroscopy and scattering dynamics is surprisingly limited. For example, the water dimer, (H2O)2, with only six nuclei and 20 electrons, still presents a formidable challenge for full-dimensional variational calculations of bound states and is considered out of reach for rigorous scattering calculations. The extremely poor scaling of the most rigorous quantum methods is fundamental; however, recent progress in development of approximate methodologies has opened the door to fairly routine high-quality predictions, unthinkable 20 years ago. In this review, in relation to the workflow of spectroscopy and/or scattering studies, we summarize progress and challenges in the component areas of electronic structure calculations, PES fitting, and quantum dynamical calculations.
Collapse
Affiliation(s)
- Ernesto Quintas-Sánchez
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA;
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA;
| |
Collapse
|
10
|
Desrousseaux B, Quintas-Sánchez E, Dawes R, Marinakis S, Lique F. Collisional excitation of interstellar PN by H 2: New interaction potential and scattering calculations. J Chem Phys 2021; 154:034304. [PMID: 33499633 DOI: 10.1063/5.0039145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Rotational excitation of interstellar PN molecules induced by collisions with H2 is investigated. We present the first ab initio four-dimensional potential energy surface (PES) for the PN-H2 van der Waals system. The PES was obtained using an explicitly correlated coupled cluster approach with single, double, and perturbative triple excitations [CCSD(T)-F12b]. The method of interpolating moving least squares was used to construct an analytical PES from these data. The equilibrium structure of the complex was found to be linear, with H2 aligned at the N end of the PN molecule, at an intermolecular separation of 4.2 Å. The corresponding well-depth is 224.3 cm-1. The dissociation energies were found to be 40.19 cm-1 and 75.05 cm-1 for complexes of PN with ortho-H2 and para-H2, respectively. Integral cross sections for rotational excitation in PN-H2 collisions were calculated using the new PES and were found to be strongly dependent on the rotational level of the H2 molecule. These new collisional data will be crucial to improve the estimation of PN abundance in the interstellar medium from observational spectra.
Collapse
Affiliation(s)
- Benjamin Desrousseaux
- LOMC, UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 1123, 76063 Le Havre Cedex, France
| | - Ernesto Quintas-Sánchez
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Sarantos Marinakis
- School of Health, Sport and Bioscience, University of East London, Stratford Campus, Water Lane, London E15 4LZ, United Kingdom
| | - François Lique
- LOMC, UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 1123, 76063 Le Havre Cedex, France
| |
Collapse
|
11
|
Quintas-Sánchez E, Dawes R, Wang XG, Carrington T. Computational study of the rovibrational spectrum of CO 2-N 2. Phys Chem Chem Phys 2020; 22:22674-22683. [PMID: 33016299 DOI: 10.1039/d0cp04186f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The CO2-N2 complex is formed from two key components of Earth's atmosphere, and as such, has received some attention from both experimental and theoretical studies. On the theory side, a potential energy surface (PES) based on high level ab initio data was reported [Nasri et al., J. Chem. Phys., 2015, 142, 174301] and then used in more recently reported rovibrational calculations [Lara-Moreno et al., Phys. Chem. Chem. Phys., 2019, 21, 3550]. Accuracy of about 1 percent was achieved for calculated rotational transitions of the ground vibrational state of the complex, compared with previously reported microwave spectra. However, a very recent measurement of the geared bending mode frequency [Barclay et al., J. Chem. Phys., 2020, 153, 014303] recorded a value of 21.4 cm-1, which is wildly different from the corresponding calculated value of 45.9 cm-1. To provide some insight into this discrepancy, we have constructed a new more accurate PES, and used it to perform highly converged variational rovibrational calculations. Our new results yield a value of 21.1 cm-1 for that bending frequency, in close agreement with the experiment. We also obtain significantly improved predicted rotational transitions. Finally, we note that a very shallow well, previously reported as a distinct second isomer, is not found on our new PES, but rather a transition structure is seen in that location.
Collapse
|
12
|
Miller I, Faulkner T, Saunier J, Raston PL. Observation of the elusive "oxygen-in" OCS dimer. J Chem Phys 2020; 152:221102. [PMID: 32534533 DOI: 10.1063/5.0010716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The carbonyl sulfide (OCS) dimer serves as a prototype system for studying intermolecular forces between nonsymmetrical linear polyatomic molecules. Here, we performed a laser spectroscopic investigation of OCS dimers embedded in helium nanodroplets and found rovibrational bands corresponding to the non-polar "sulfur-in" and parallel polar dimers that have been extensively characterized in the gas phase, as well as a new non-polar "oxygen-in" dimer that has long been predicted by theory. Frequency alternations in the rotational branches along with the absence of a Stark effect provided important clues as to its assignment.
Collapse
Affiliation(s)
- Isaac Miller
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia 22807, USA
| | - Ty Faulkner
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia 22807, USA
| | - John Saunier
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia 22807, USA
| | - Paul L Raston
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia 22807, USA
| |
Collapse
|
13
|
Karandashev K, Vaníček J. A combined on-the-fly/interpolation procedure for evaluating energy values needed in molecular simulations. J Chem Phys 2019; 151:174116. [PMID: 31703487 DOI: 10.1063/1.5124469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We propose an algorithm for molecular dynamics or Monte Carlo simulations that uses an interpolation procedure to estimate potential energy values from energies and gradients evaluated previously at points of a simplicial mesh. We chose an interpolation procedure that is exact for harmonic systems and considered two possible mesh types: Delaunay triangulation and an alternative anisotropic triangulation designed to improve performance in anharmonic systems. The mesh is generated and updated on the fly during the simulation. The procedure is tested on two-dimensional quartic oscillators and on the path integral Monte Carlo evaluation of the HCN/DCN equilibrium isotope effect.
Collapse
Affiliation(s)
- Konstantin Karandashev
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jiří Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
14
|
The most stable isomer of H2C4-(OCS)2 van der Waals complex: Theory and experiment agree on a structure with C2 symmetry. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Castro-Juárez E, Wang XG, Carrington T, Quintas-Sánchez E, Dawes R. Computational study of the ro-vibrational spectrum of CO-CO 2. J Chem Phys 2019; 151:084307. [PMID: 31470713 DOI: 10.1063/1.5119762] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An accurate ab initio ground-state intermolecular potential energy surface (PES) was determined for the CO-CO2 van der Waals dimer. The Lanczos algorithm was used to compute rovibrational energies on this PES. For both the C-in and O-in T-shaped isomers, the fundamental transition frequencies agree well with previous experimental results. We confirm that the in-plane states previously observed are geared states. In addition, we have computed and assigned many other vibrational states. The rotational constants we determine from J = 1 energy levels agree well with their experimental counterparts. Planar and out-of-plane cuts of some of the wavefunctions we compute are quite different, indicating strong coupling between the bend and torsional modes. Because the stable isomers are T-shaped, vibration along the out-of-plane coordinates is very floppy. In CO-CO2, when the molecule is out-of-plane, interconversion of the isomers is possible, but the barrier height is higher than the in-plane geared barrier height.
Collapse
Affiliation(s)
| | - Xiao-Gang Wang
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Ernesto Quintas-Sánchez
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| |
Collapse
|
16
|
Zhang XL, Ma YT, Zhai Y, Li H. Full quantum calculation of the rovibrational states and intensities for a symmetric top-linear molecule dimer: Hamiltonian, basis set, and matrix elements. J Chem Phys 2019; 151:074301. [PMID: 31438702 DOI: 10.1063/1.5115496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The rovibrational energy levels and intensities of the CH3F-H2 dimer have been obtained using our recent global intermolecular potential energy surface [X.-L. Zhang et al., J. Chem. Phys. 148, 124302 (2018)]. The Hamiltonian, basis set, and matrix elements are derived and given for a symmetric top-linear molecule complex. This approach to the generation of energy levels and wavefunctions can readily be utilized for studying the rovibrational spectra of other van der Waals complexes composed of a symmetric top molecule and a linear molecule, and may readily be extended to other complexes of nonlinear molecules and linear molecules. To confirm our method, the rovibrational levels of the H2O-H2 dimer have been computed and shown to be in good agreement with experiment and with previous theoretical results. The rovibrational Schrödinger equation has been solved using a Lanczos algorithm together with an uncoupled product basis set. As expected, dimers containing ortho-H2 are more strongly bound than dimers containing para-H2. Energies and wavefunctions of the discrete rovibrational levels of CH3F-paraH2 complexes obtained from the direct vibrationally averaged 5-dimensional potentials are in good agreement with the results of the reduced 3-dimensional adiabatic-hindered-rotor (AHR) approximation. Accurate calculations of the transition line strengths for the orthoCH3F-paraH2 complex are also carried out, and are consistent with results obtained using the AHR approximation. The microwave spectrum associated with the orthoCH3F-orthoH2 dimer has been predicted for the first time.
Collapse
Affiliation(s)
- Xiao-Long Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| | - Yong-Tao Ma
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| | - Yu Zhai
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| | - Hui Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| |
Collapse
|
17
|
Desrousseaux B, Quintas-Sánchez E, Dawes R, Lique F. Collisional Excitation of CF+ by H2: Potential Energy Surface and Rotational Cross Sections. J Phys Chem A 2019; 123:9637-9643. [DOI: 10.1021/acs.jpca.9b05538] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Benjamin Desrousseaux
- LOMC - UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 1123, F-76063 Le Havre, France
| | - Ernesto Quintas-Sánchez
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - François Lique
- LOMC - UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 1123, F-76063 Le Havre, France
| |
Collapse
|
18
|
Barclay AJ, Esteki K, Michaelian KH, McKellar ARW, Moazzen-Ahmadi N. Infrared bands of CS 2 dimer and trimer at 4.5 μm. J Chem Phys 2019; 150:144305. [PMID: 30981255 DOI: 10.1063/1.5091508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We report observation of new infrared bands of (CS2)2 and (CS2)3 in the region of the CS2 ν1 + ν3 combination band (at 4.5 µm) using a quantum cascade laser. The complexes are formed in a pulsed supersonic slit-jet expansion of a gas mixture of carbon disulfide in helium. We have previously shown that the most stable isomer of (CS2)2 is a cross-shaped structure with D2d symmetry and that for (CS2)3 is a barrel-shaped structure with D3 symmetry. The dimer has one doubly degenerate infrared-active band in the ν1 + ν3 region of the CS2 monomer. This band is observed to have a rather small vibrational shift of -0.844 cm-1. We expect one parallel and one perpendicular infrared-active band for the trimer but observe two parallel bands and one perpendicular band. Much larger vibrational shifts of -8.953 cm-1 for the perpendicular band and -8.845 cm-1 and +16.681 cm-1 for the parallel bands are observed. Vibrational shifts and possible vibrational assignments, in the case of the parallel bands of the trimer, are discussed using group theoretical arguments.
Collapse
Affiliation(s)
- A J Barclay
- Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4, Canada
| | - K Esteki
- Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4, Canada
| | - K H Michaelian
- Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Suite A202, Devon, Alberta T9G 1A8, Canada
| | - A R W McKellar
- National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - N Moazzen-Ahmadi
- Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
19
|
Sur S, Quintas-Sánchez E, Ndengué SA, Dawes R. Development of a potential energy surface for the O3–Ar system: rovibrational states of the complex. Phys Chem Chem Phys 2019; 21:9168-9180. [DOI: 10.1039/c9cp01044k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Collisional stabilization is an important step in the process of atmospheric formation of ozone.
Collapse
Affiliation(s)
- Sangeeta Sur
- Department of Chemistry
- Missouri University of Science & Technology
- Rolla
- USA
| | | | - Steve A. Ndengué
- Department of Chemistry
- Missouri University of Science & Technology
- Rolla
- USA
| | - Richard Dawes
- Department of Chemistry
- Missouri University of Science & Technology
- Rolla
- USA
| |
Collapse
|
20
|
Han S, Zheng X, Ndengué S, Song Y, Dawes R, Xie D, Zhang J, Guo H. Dynamical interference in the vibronic bond breaking reaction of HCO. SCIENCE ADVANCES 2019; 5:eaau0582. [PMID: 30613767 PMCID: PMC6314872 DOI: 10.1126/sciadv.aau0582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
First-principles treatments of quantum molecular reaction dynamics have reached the level of quantitative accuracy even in cases with strong non-Born-Oppenheimer effects. This achievement permits the interpretation of puzzling experimental phenomena related to dynamics governed by multiple coupled potential energy surfaces. We present a combined experimental and theoretical study of the photodissociation of formyl radical (HCO). Oscillations observed in the distribution of product states are found to arise from the interference of matter waves-a manifestation analogous to Young's double-slit experiment.
Collapse
Affiliation(s)
- Shanyu Han
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Xianfeng Zheng
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, Wuhu, Anhui 241000, China
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Steve Ndengué
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Yu Song
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics (CAS), University of Science and Technology of China, Hefei, Anhui 230026, China
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jingsong Zhang
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
21
|
Quintas-Sánchez E, Dawes R. AUTOSURF: A Freely Available Program To Construct Potential Energy Surfaces. J Chem Inf Model 2018; 59:262-271. [DOI: 10.1021/acs.jcim.8b00784] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ernesto Quintas-Sánchez
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65401, United States
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65401, United States
| |
Collapse
|
22
|
Dawes R, Quintas‐Sánchez E. THE CONSTRUCTION OF AB INITIO‐BASED POTENTIAL ENERGY SURFACES. REVIEWS IN COMPUTATIONAL CHEMISTRY 2018. [DOI: 10.1002/9781119518068.ch5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Zhang T, Wen M, Ju Y, Kang J, Wang R, Cao J, Roy SK. Theoretical studies on the mechanism and kinetic for CH3
CH2
O + HO2
and CH3
CHOH + HO2
reactions. J PHYS ORG CHEM 2018. [DOI: 10.1002/poc.3895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tianlei Zhang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis; Shaanxi University of Technology; Hanzhong Shaanxi China
| | - Mingjie Wen
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis; Shaanxi University of Technology; Hanzhong Shaanxi China
| | - Yan Ju
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan China
| | - Jiaxin Kang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan China
| | - Rui Wang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis; Shaanxi University of Technology; Hanzhong Shaanxi China
| | - Jia Cao
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering; Yan'an University; Yan'an Shaanxi China
| | - Soumendra K. Roy
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis; Shaanxi University of Technology; Hanzhong Shaanxi China
| |
Collapse
|
24
|
Ndengué S, Dawes R, Gatti F, Guo H. Influence of Renner–Teller Coupling between Electronic States on H + CO Inelastic Scattering. J Phys Chem A 2018; 122:6381-6390. [DOI: 10.1021/acs.jpca.8b05235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Steve Ndengué
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Fabien Gatti
- Institut des Sciences Moléculaires d’Orsay, CNRS, Université Paris-Sud/Paris Saclay, F-91405 Orsay, France
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
25
|
Wang XG, Carrington T. Using monomer vibrational wavefunctions to compute numerically exact (12D) rovibrational levels of water dimer. J Chem Phys 2018; 148:074108. [DOI: 10.1063/1.5020426] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xiao-Gang Wang
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
26
|
|
27
|
Cybulski H, Henriksen C, Dawes R, Wang XG, Bora N, Avila G, Carrington T, Fernández B. Ab initio study of the CO–N2 complex: a new highly accurate intermolecular potential energy surface and rovibrational spectrum. Phys Chem Chem Phys 2018; 20:12624-12636. [DOI: 10.1039/c8cp01373j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a highly accurate ab initio intermolecular potential-energy surface and rovibrational spectrum for the CO–N2 complex.
Collapse
Affiliation(s)
- Hubert Cybulski
- Institute of Physics
- Faculty of Physics
- Astronomy and Informatics
- Nicolaus Copernicus University in Torun
- 87-100 Torun
| | - Christian Henriksen
- Department of Applied Mathematics and Computer Science
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| | - Richard Dawes
- Missouri University of Science and Technology
- Rolla
- USA
| | | | - Neha Bora
- Chemistry Department
- Queen's University
- Kingston
- Canada
| | - Gustavo Avila
- Chemistry Department
- Queen's University
- Kingston
- Canada
| | | | - Berta Fernández
- Department of Physical Chemistry
- University of Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| |
Collapse
|
28
|
Barclay AJ, McKellar ARW, Moazzen-Ahmadi N, Dawes R, Wang XG, Carrington T. Infrared spectrum and intermolecular potential energy surface of the CO–O2 dimer. Phys Chem Chem Phys 2018; 20:14431-14440. [DOI: 10.1039/c8cp02282h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The spectrum of the weakly-bound radical complex CO–O2 is studied for the first time.
Collapse
Affiliation(s)
- A. J. Barclay
- Department of Physics and Astronomy
- University of Calgary
- Calgary
- Canada
| | | | - N. Moazzen-Ahmadi
- Department of Physics and Astronomy
- University of Calgary
- Calgary
- Canada
| | - Richard Dawes
- Department of Chemistry
- Missouri University of Science and Technology
- Rolla
- USA
| | - Xiao-Gang Wang
- Chemistry Department
- Queen's University
- Ontario K7L 3N6
- Canada
| | | |
Collapse
|
29
|
Wang XG, Carrington T. Using monomer vibrational wavefunctions as contracted basis functions to compute rovibrational levels of an H2O-atom complex in full dimensionality. J Chem Phys 2017; 146:104105. [DOI: 10.1063/1.4977179] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Xiao-Gang Wang
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
30
|
Manzhos S, Carrington T. Using an internal coordinate Gaussian basis and a space-fixed Cartesian coordinate kinetic energy operator to compute a vibrational spectrum with rectangular collocation. J Chem Phys 2016; 145:224110. [DOI: 10.1063/1.4971295] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sergei Manzhos
- Department of Mechanical Engineering, National University of Singapore, Block EA #07-08, 9 Engineering Drive 1, 117576 Singapore
| | - Tucker Carrington
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
31
|
Jiang B, Li J, Guo H. Potential energy surfaces from high fidelity fitting ofab initiopoints: the permutation invariant polynomial - neural network approach. INT REV PHYS CHEM 2016. [DOI: 10.1080/0144235x.2016.1200347] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Walker KM, Dumouchel F, Lique F, Dawes R. The first potential energy surfaces for the C6H−–H2 and C6H−–He collisional systems and their corresponding inelastic cross sections. J Chem Phys 2016; 145:024314. [DOI: 10.1063/1.4955200] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kyle M. Walker
- LOMC-UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 1123, 76 063 Le Havre Cedex, France
| | - Fabien Dumouchel
- LOMC-UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 1123, 76 063 Le Havre Cedex, France
| | - François Lique
- LOMC-UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 1123, 76 063 Le Havre Cedex, France
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| |
Collapse
|
33
|
Dawes R, Ndengué SA. Single- and multireference electronic structure calculations for constructing potential energy surfaces. INT REV PHYS CHEM 2016. [DOI: 10.1080/0144235x.2016.1195102] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Ndengué SA, Dawes R, Guo H. A new set of potential energy surfaces for HCO: Influence of Renner-Teller coupling on the bound and resonance vibrational states. J Chem Phys 2016; 144:244301. [DOI: 10.1063/1.4954374] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Steve Alexandre Ndengué
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
35
|
Yu HG, Han H, Guo H. Full-Dimensional Quantum Calculations of Vibrational Levels of NH4+ and Isotopomers on An Accurate Ab Initio Potential Energy Surface. J Phys Chem A 2016; 120:2185-93. [DOI: 10.1021/acs.jpca.6b01946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hua-Gen Yu
- Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Huixian Han
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
- School of Physics, Northwest University, Xi’an, Shaanxi 710069, China
| | - Hua Guo
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
36
|
Ndengué S, Dawes R, Wang XG, Carrington T, Sun Z, Guo H. Calculated vibrational states of ozone up to dissociation. J Chem Phys 2016; 144:074302. [DOI: 10.1063/1.4941559] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Steve Ndengué
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Xiao-Gang Wang
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China and Center for Advanced Chemical Physics and 2011 Frontier Center for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
37
|
Thomas PS, Carrington T. Using Nested Contractions and a Hierarchical Tensor Format To Compute Vibrational Spectra of Molecules with Seven Atoms. J Phys Chem A 2015; 119:13074-91. [DOI: 10.1021/acs.jpca.5b10015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Phillip S. Thomas
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
38
|
Avila G, Carrington T. A multi-dimensional Smolyak collocation method in curvilinear coordinates for computing vibrational spectra. J Chem Phys 2015; 143:214108. [DOI: 10.1063/1.4936294] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Gustavo Avila
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
39
|
|
40
|
Brown J, Carrington T. Using an iterative eigensolver to compute vibrational energies with phase-spaced localized basis functions. J Chem Phys 2015; 143:044104. [DOI: 10.1063/1.4926805] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- James Brown
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
41
|
Wang XG, Carrington T. The vibration-rotation-tunneling levels of N2-H2O and N2-D2O. J Chem Phys 2015; 143:024303. [PMID: 26178101 DOI: 10.1063/1.4923339] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In this paper, we report vibration-rotation-tunneling levels of the van der Waals clusters N2-H2O and N2-D2O computed from an ab initio potential energy surface. The only dynamical approximation is that the monomers are rigid. We use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. The pattern of the cluster's levels is complicated by splittings caused by H-H exchange tunneling (larger splitting) and N-N exchange tunneling (smaller splitting). An interesting result that emerges from our calculation is that whereas in N2-H2O, the symmetric H-H tunnelling state is below the anti-symmetric H-H tunnelling state for both K = 0 and K = 1, the order is reversed in N2-D2O for K = 1. The only experimental splitting measurements are the D-D exchange tunneling splittings reported by Zhu et al. [J. Chem. Phys. 139, 214309 (2013)] for N2-D2O in the v2 = 1 region of D2O. Due to the inverted order of the split levels, they measure the sum of the K = 0 and K = 1 tunneling splittings, which is in excellent agreement with our calculated result. Other splittings we predict, in particular those of N2-H2O, may guide future experiments.
Collapse
Affiliation(s)
- Xiao-Gang Wang
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
42
|
Crusius JP, Hellmann R, Hassel E, Bich E. Ab initio intermolecular potential energy surface and thermophysical properties of nitrous oxide. J Chem Phys 2015; 142:244307. [PMID: 26133428 DOI: 10.1063/1.4922830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present an analytical intermolecular potential energy surface (PES) for two rigid nitrous oxide (N2O) molecules derived from high-level quantum-chemical ab initio calculations. Interaction energies for 2018 N2O-N2O configurations were computed utilizing the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory using basis sets up to aug-cc-pVQZ supplemented with bond functions. A site-site potential function with seven sites per N2O molecule was fitted to the pair interaction energies. We validated our PES by computing the second virial coefficient as well as shear viscosity and thermal conductivity in the dilute-gas limit. The values of these properties are substantiated by the best experimental data.
Collapse
Affiliation(s)
| | - Robert Hellmann
- Institut für Chemie, Universität Rostock, 18059 Rostock, Germany
| | - Egon Hassel
- Lehrstuhl für Technische Thermodynamik, Universität Rostock, 18059 Rostock, Germany
| | - Eckard Bich
- Institut für Chemie, Universität Rostock, 18059 Rostock, Germany
| |
Collapse
|
43
|
Abstract
I review two new ideas for coping with the size of large product basis sets and large product grids when one computes vibrational energy levels. The first is based on a tensor reduction scheme. It exploits advantages of a sum-of-products potential. The key idea is to use a basis each of whose function is a sum of optimized products and to compress the number of terms in each basis function. When the potential does not have the sum-of-products form, it is usually necessary to use quadrature. The second idea uses a nondirect product grid that has structure and is therefore compatible with efficient matrix–vector products.
Collapse
Affiliation(s)
- Tucker Carrington
- Chemistry Department, Queen’s University, Kingston, ON K7L 3N6, Canada
- Chemistry Department, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
44
|
Li J, Jiang B, Song H, Ma J, Zhao B, Dawes R, Guo H. From ab Initio Potential Energy Surfaces to State-Resolved Reactivities: X + H2O ↔ HX + OH [X = F, Cl, and O(3P)] Reactions. J Phys Chem A 2015; 119:4667-87. [DOI: 10.1021/acs.jpca.5b02510] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jun Li
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
- School of Chemistry
and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Bin Jiang
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Hongwei Song
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Jianyi Ma
- Institute of Atomic
and Molecular Physics, Sichuan University, Chengdu, Sichuan 610065, China
| | - Bin Zhao
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Richard Dawes
- Department
of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Hua Guo
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
45
|
Ndengué SA, Dawes R, Gatti F. Rotational Excitations in CO–CO Collisions at Low Temperature: Time-Independent and Multiconfigurational Time-Dependent Hartree Calculations. J Phys Chem A 2015; 119:7712-23. [DOI: 10.1021/acs.jpca.5b01022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Steve A. Ndengué
- Department
of Chemistry, Missouri University of Science and Technology, 142 Schrenk
Hall, 400 West 11th Street, Rolla, Missouri 65409, United States
| | - Richard Dawes
- Department
of Chemistry, Missouri University of Science and Technology, 142 Schrenk
Hall, 400 West 11th Street, Rolla, Missouri 65409, United States
| | - Fabien Gatti
- CTMM,
Institut Charles Gerhardt, UMR 5253, Univeristé de Montpellier II, Place
Eugène Bataillon, 34095 Montpellier, France
| |
Collapse
|
46
|
Majumder M, Hegger SE, Dawes R, Manzhos S, Wang XG, Tucker C, Li J, Guo H. Explicitly correlated MRCI-F12 potential energy surfaces for methane fit with several permutation invariant schemes and full-dimensional vibrational calculations. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1015642] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Moumita Majumder
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, USA
| | - Samuel E. Hegger
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, USA
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, USA
| | - Sergei Manzhos
- Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Xiao-Gang Wang
- Chemistry Department, Queen's University, Kingston, Canada
| | | | - Jun Li
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
47
|
Zhang T, Wang R, Chen H, Min S, Wang Z, Zhao C, Xu Q, Jin L, Wang W, Wang Z. Can a single water molecule really affect the HO2 + NO2 hydrogen abstraction reaction under tropospheric conditions? Phys Chem Chem Phys 2015; 17:15046-55. [DOI: 10.1039/c5cp00968e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
During the HO2 + NO2 reaction, hydrogen abstraction by a single water molecule not only changes the branching ratio of HONO and HNO2 formation, but also introduces different features with respect to the naked reaction, acting as a reactant that leads to the production of HNO3.
Collapse
Affiliation(s)
- Tianlei Zhang
- School of Chemical & Environment Science
- Shaanxi University of Technology
- Hanzhong
- China
| | - Rui Wang
- School of Chemical & Environment Science
- Shaanxi University of Technology
- Hanzhong
- China
| | - Hao Chen
- School of Chemical & Environment Science
- Shaanxi University of Technology
- Hanzhong
- China
| | - Suotian Min
- School of Chemical & Environment Science
- Shaanxi University of Technology
- Hanzhong
- China
| | - Zhiyin Wang
- School of Chemical & Environment Science
- Shaanxi University of Technology
- Hanzhong
- China
| | - Caibin Zhao
- School of Chemical & Environment Science
- Shaanxi University of Technology
- Hanzhong
- China
| | - Qiong Xu
- School of Chemical & Environment Science
- Shaanxi University of Technology
- Hanzhong
- China
| | - Lingxia Jin
- School of Chemical & Environment Science
- Shaanxi University of Technology
- Hanzhong
- China
| | - Wenliang Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an
- China
| | - Zhuqing Wang
- Shandong Provincial Key Laboratory of Ocean Environment Monitoring Technology
- Shandong Academy of Sciences Institute of Oceanographic Instrumentation
- Qingdao 266001
- China
| |
Collapse
|
48
|
Wang XG, Carrington T. Using experimental data and a contracted basis Lanczos method to determine an accurate methane potential energy surface from a least squares optimization. J Chem Phys 2014; 141:154106. [DOI: 10.1063/1.4896569] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xiao-Gang Wang
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
49
|
Zhang T, Wang R, Wang W, Min S, Xu Q, Wang Z, Zhao C, Wang Z. Water effect on the formation of 3O2 from the self-reaction of two HO2 radicals in tropospheric conditions. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Wang XG, Carrington T. Rovibrational levels and wavefunctions of Cl−H2O. J Chem Phys 2014; 140:204306. [DOI: 10.1063/1.4875798] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|