1
|
Ganoe B, Shee J. On the notion of strong correlation in electronic structure theory. Faraday Discuss 2024; 254:53-75. [PMID: 39072670 DOI: 10.1039/d4fd00066h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Strong correlation has been said to have many faces, and appears to have many synonyms of questionable suitability. In this work we aim not to define the term once and for all, but to highlight one possibility that is both rigorously defined and physically transparent, and remains so in reference to molecules and quantum lattice models. We survey both molecular examples - hydrogen systems (Hn, n = 2, 4, 6), Be2, H-He-H, and benzene - and the half-filled Hubbard model over a range of correlation regimes. Various quantities are examined including the extent of spin symmetry breaking in correlated single-reference wave functions, energetic ratios inspired by the Hubbard model and the Virial theorem, and metrics derived from the one- and two-electron reduced density matrices (RDMs). The trace and the square norm of the cumulant of the two-electron reduced density matrix capture what may well be defined as strong correlation. Accordingly, strong correlation is understood as a statistical dependence between two electrons, and is distinct from the concepts of "correlation energy" and more general than entanglement quantities that require a partitioning of a quantum system into distinguishable subspaces. This work enables us to build a bridge between a rigorous and quantifiable regime of strong electron correlation and more familiar chemical concepts such as anti-aromaticity in the context of Baird's rule.
Collapse
Affiliation(s)
- Brad Ganoe
- Department of Chemistry, Rice University, Houston, TX, 77005, USA.
| | - James Shee
- Department of Chemistry, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
2
|
Ghosh KJB, Kais S, Herschbach DR. Geometrical picture of the electron-electron correlation at the large- D limit. Phys Chem Chem Phys 2022; 24:9298-9307. [PMID: 35383350 DOI: 10.1039/d2cp00438k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In electronic structure calculations, the correlation energy is defined as the difference between the mean field and the exact solution of the non relativistic Schrödinger equation. Such an error in the different calculations is not directly observable as there is no simple quantum mechanical operator, apart from correlation functions, that correspond to such quantity. Here, we use the dimensional scaling approach, in which the electrons are localized at the large-dimensional scaled space, to describe a geometric picture of the electronic correlation. Both, the mean field, and the exact solutions at the large-D limit have distinct geometries. Thus, the difference might be used to describe the correlation effect. Moreover, correlations can be also described and quantified by the entanglement between the electrons, which is a strong correlation without a classical analog. Entanglement is directly observable and it is one of the most striking properties of quantum mechanics and bounded by the area law for local gapped Hamiltonians of interacting many-body systems. This study opens up the possibility of presenting a geometrical picture of the electron-electron correlations and might give a bound on the correlation energy. The results at the large-D limit and at D = 3 indicate the feasibility of using the geometrical picture to get a bound on the electron-electron correlations.
Collapse
Affiliation(s)
- Kumar J B Ghosh
- E.ON Digital Technology GmbH, 45131, Essen, Germany. .,Department of Chemistry and Physics, Purdue University, West Lafayette, IN, 47906, USA.
| | - Sabre Kais
- Department of Chemistry and Physics, Purdue University, West Lafayette, IN, 47906, USA.
| | - Dudley R Herschbach
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
3
|
Li RR, Liebenthal MD, DePrince AE. Challenges for variational reduced-density-matrix theory with three-particle N-representability conditions. J Chem Phys 2021; 155:174110. [PMID: 34742213 DOI: 10.1063/5.0066404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The direct variational optimization of the two-electron reduced density matrix (2RDM) can provide a reference-independent description of the electronic structure of many-electron systems that naturally capture strong or nondynamic correlation effects. Such variational 2RDM approaches can often provide a highly accurate description of strong electron correlation, provided that the 2RDMs satisfy at least partial three-particle N-representability conditions (e.g., the T2 condition). However, recent benchmark calculations on hydrogen clusters [N. H. Stair and F. A. Evangelista, J. Chem. Phys. 153, 104108 (2020)] suggest that even the T2 condition leads to unacceptably inaccurate results in the case of two- and three-dimensional clusters. We demonstrate that these failures persist under the application of full three-particle N-representability conditions (3POS). A variety of correlation metrics are explored in order to identify regimes under which 3POS calculations become unreliable, and we find that the relative squared magnitudes of the cumulant three- and two-particle reduced density matrices correlate reasonably well with the energy error in these systems. However, calculations on other molecular systems reveal that this metric is not a universal indicator for the reliability of the reduced-density-matrix theory with 3POS conditions.
Collapse
Affiliation(s)
- Run R Li
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA
| | - Marcus D Liebenthal
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA
| | - A Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA
| |
Collapse
|
4
|
Alcoba DR, Oña OB, Lain L, Torre A, Capuzzi P, Massaccesi GE, Ríos E, Rubio-García A, Dukelsky J. Variational determination of ground and excited-state two-electron reduced density matrices in the doubly occupied configuration space: A dispersion operator approach. J Chem Phys 2021; 154:224104. [PMID: 34241224 DOI: 10.1063/5.0051793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This work implements a variational determination of the elements of two-electron reduced density matrices corresponding to the ground and excited states of N-electron interacting systems based on the dispersion operator technique. The procedure extends the previously reported proposal [Nakata et al., J. Chem. Phys. 125, 244109 (2006)] to two-particle interaction Hamiltonians and N-representability conditions for the two-, three-, and four-particle reduced density matrices in the doubly occupied configuration interaction space. The treatment has been applied to describe electronic spectra using two benchmark exactly solvable pairing models: reduced Bardeen-Cooper-Schrieffer and Richardson-Gaudin-Kitaev Hamiltonians. The dispersion operator combined with N-representability conditions up to the four-particle reduced density matrices provides excellent results.
Collapse
Affiliation(s)
- Diego R Alcoba
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Ofelia B Oña
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad de la Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Diag. 113 y 64 (S/N), Sucursal 4, CC 16, 1900 La Plata, Argentina
| | - Luis Lain
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain
| | - Alicia Torre
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain
| | - Pablo Capuzzi
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Gustavo E Massaccesi
- Departamento de Ciencias Exactas, Ciclo Básico Común, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Elías Ríos
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad de la Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Diag. 113 y 64 (S/N), Sucursal 4, CC 16, 1900 La Plata, Argentina
| | - Alvaro Rubio-García
- Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid, Spain
| | - Jorge Dukelsky
- Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid, Spain
| |
Collapse
|
5
|
Stair NH, Evangelista FA. Exploring Hilbert space on a budget: Novel benchmark set and performance metric for testing electronic structure methods in the regime of strong correlation. J Chem Phys 2020; 153:104108. [DOI: 10.1063/5.0014928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Nicholas H. Stair
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Francesco A. Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
6
|
Werba O, Raeber A, Head-Marsden K, Mazziotti DA. Signature of van der Waals interactions in the cumulant density matrix. Phys Chem Chem Phys 2019; 21:23900-23905. [PMID: 31650996 DOI: 10.1039/c9cp03361k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we propose and implement a universal signature of the van der Waals interactions based on the cumulant part of the two-electron reduced density matrix (2-RDM). Due to the connected property of the cumulant, we can use it to detect the van der Waals interactions between two molecular moieties. In particular, we use the squared Frobenius norm of the cumulant of the 2-RDM, which has been previously shown to provide a size-extensive measure of the electron correlation. As two moieties are separated to infinity, the cumulant Frobenius norm exhibits an r-6 decay to its asymptotic limit, providing a density-based measure of the van der Waals interaction. We study this signature of van der Waals forces in a collection of small molecules of varying geometries. These computations agree with experimental trends of known literature values.
Collapse
Affiliation(s)
- Olivia Werba
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
7
|
Ramos-Cordoba E, Salvador P, Matito E. Separation of dynamic and nondynamic correlation. Phys Chem Chem Phys 2018; 18:24015-23. [PMID: 27523386 DOI: 10.1039/c6cp03072f] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The account of electron correlation and its efficient separation into dynamic and nondynamic parts plays a key role in the development of computational methods. In this paper we suggest a physically-sound matrix formulation to split electron correlation into dynamic and nondynamic parts using the two-particle cumulant matrix and a measure of the deviation from idempotency of the first-order density matrix. These matrices are applied to a two-electron model, giving rise to a simplified electron correlation index that (i) depends only on natural orbitals and their occupancies, (ii) can be straightforwardly decomposed into orbital contributions and (iii) splits into dynamic and nondynamic correlation parts that (iv) admit a local version. These expressions are shown to account for dynamic and nondynamic correlation in a variety of systems containing different electron correlation regimes, thus providing the first separation of dynamic and nondynamic correlation using solely natural orbital occupancies.
Collapse
Affiliation(s)
- Eloy Ramos-Cordoba
- Faculty of Chemistry, University of the Basque Country UPV/EHU, and Donostia International Physics Center (DIPC)., P.K. 1072, 20080 Donostia, Euskadi, Spain. and Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA
| | - Pedro Salvador
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, University of Girona, 17071 Girona, Catalonia, Spain
| | - Eduard Matito
- Faculty of Chemistry, University of the Basque Country UPV/EHU, and Donostia International Physics Center (DIPC)., P.K. 1072, 20080 Donostia, Euskadi, Spain. and IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
8
|
Alcoba DR, Torre A, Lain L, Massaccesi GE, Oña OB. Seniority number in spin-adapted spaces and compactness of configuration interaction wave functions. J Chem Phys 2013; 139:084103. [DOI: 10.1063/1.4818755] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Boguslawski K, Tecmer P, Barcza G, Legeza Ö, Reiher M. Orbital Entanglement in Bond-Formation Processes. J Chem Theory Comput 2013; 9:2959-73. [DOI: 10.1021/ct400247p] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Katharina Boguslawski
- ETH Zürich, Laboratory of Physical Chemistry, Wolfgang-Pauli-Str. 10, CH-8093 Zürich, Switzerland
| | - Paweł Tecmer
- ETH Zürich, Laboratory of Physical Chemistry, Wolfgang-Pauli-Str. 10, CH-8093 Zürich, Switzerland
| | - Gergely Barcza
- Strongly Correlated Systems ″Lendület″
Research Group, Wigner Research Center for Physics, H-1525 Budapest, Hungary
| | - Örs Legeza
- Strongly Correlated Systems ″Lendület″
Research Group, Wigner Research Center for Physics, H-1525 Budapest, Hungary
| | - Markus Reiher
- ETH Zürich, Laboratory of Physical Chemistry, Wolfgang-Pauli-Str. 10, CH-8093 Zürich, Switzerland
| |
Collapse
|
10
|
Boguslawski K, Tecmer P, Legeza Ö, Reiher M. Entanglement Measures for Single- and Multireference Correlation Effects. J Phys Chem Lett 2012; 3:3129-3135. [PMID: 26296018 DOI: 10.1021/jz301319v] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Electron correlation effects are essential for an accurate ab initio description of molecules. A quantitative a priori knowledge of the single- or multireference nature of electronic structures as well as of the dominant contributions to the correlation energy can facilitate the decision regarding the optimum quantum chemical method of choice. We propose concepts from quantum information theory as orbital entanglement measures that allow us to evaluate the single- and multireference character of any molecular structure in a given orbital basis set. By studying these measures we can detect possible artifacts of small active spaces.
Collapse
Affiliation(s)
- Katharina Boguslawski
- †ETH Zurich, Laboratory of Physical Chemistry, Wolfgang-Pauli-Str. 10, CH-8093 Zurich, Switzerland
| | - Pawel̷ Tecmer
- †ETH Zurich, Laboratory of Physical Chemistry, Wolfgang-Pauli-Str. 10, CH-8093 Zurich, Switzerland
| | - Örs Legeza
- ‡MTA-WRCP Strongly Correlated Systems "Lendület" Research Group, H-1525, Budapest, Hungary
| | - Markus Reiher
- †ETH Zurich, Laboratory of Physical Chemistry, Wolfgang-Pauli-Str. 10, CH-8093 Zurich, Switzerland
| |
Collapse
|
11
|
Oleś AM. Fingerprints of spin-orbital entanglement in transition metal oxides. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:313201. [PMID: 22776856 DOI: 10.1088/0953-8984/24/31/313201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The concept of spin-orbital entanglement on superexchange bonds in transition metal oxides is introduced and explained on several examples. It is shown that spin-orbital entanglement in superexchange models destabilizes the long-range (spin and orbital) order and may lead either to a disordered spin-liquid state or to novel phases at low temperature which arise from strongly frustrated interactions. Such novel ground states cannot be described within the conventionally used mean field theory which separates spin and orbital degrees of freedom. Even in cases where the ground states are disentangled, spin-orbital entanglement occurs in excited states and may become crucial for a correct description of physical properties at finite temperature. As an important example of this behaviour we present spin-orbital entanglement in the RV O(3) perovskites, with R = La,Pr,…,Y b,Lu, where the finite temperature properties of these compounds can be understood only using entangled states: (i) the thermal evolution of the optical spectral weights, (ii) the dependence of the transition temperatures for the onset of orbital and magnetic order on the ionic radius in the phase diagram of the RV O(3) perovskites, and (iii) the dimerization observed in the magnon spectra for the C-type antiferromagnetic phase of Y V O(3). Finally, it is shown that joint spin-orbital excitations in an ordered phase with coexisting antiferromagnetic and alternating orbital order introduce topological constraints for the hole propagation and will thus radically modify the transport properties in doped Mott insulators where hole motion implies simultaneous spin and orbital excitations.
Collapse
Affiliation(s)
- Andrzej M Oleś
- Marian Smoluchowski Institute of Physics, Jagellonian University, Kraków, Poland.
| |
Collapse
|
12
|
Alcoba DR, Torre A, Lain L, Bochicchio RC. Determination of Local Spins by Means of a Spin-Free Treatment. J Chem Theory Comput 2011; 7:3560-6. [DOI: 10.1021/ct200594f] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Diego R. Alcoba
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, 1428, Buenos Aires, Argentina
| | - Alicia Torre
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644 E-48080 Bilbao, Spain
| | - Luis Lain
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644 E-48080 Bilbao, Spain
| | - Roberto C. Bochicchio
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, 1428, Buenos Aires, Argentina
| |
Collapse
|
13
|
Luzanov AV, Prezhdo OV. The spin-polarized extended Brueckner orbitals. J Chem Phys 2011; 135:094107. [DOI: 10.1063/1.3629780] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Kong L, Valeev EF. A novel interpretation of reduced density matrix and cumulant for electronic structure theories. J Chem Phys 2011; 134:214109. [DOI: 10.1063/1.3596948] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|