1
|
Nguyen TH, Ngo V, Castro Zerba JP, Noskov S, Minh DDL. Nonequilibrium path-ensemble averages for symmetric protocols. J Chem Phys 2019; 151:194103. [DOI: 10.1063/1.5121306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Trung Hai Nguyen
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Van Ngo
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - João Paulo Castro Zerba
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, USA
- Institute of Physics “Gleb Wataghin”, University of Campinas, Campinas, SP 13083-859, Brazil
| | - Sergei Noskov
- SYN: Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - David D. L. Minh
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| |
Collapse
|
2
|
Ross GA, Rustenburg AS, Grinaway PB, Fass J, Chodera JD. Biomolecular Simulations under Realistic Macroscopic Salt Conditions. J Phys Chem B 2018; 122:5466-5486. [PMID: 29649876 PMCID: PMC6078207 DOI: 10.1021/acs.jpcb.7b11734] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biomolecular simulations are typically performed in an aqueous environment where the number of ions remains fixed for the duration of the simulation, generally with either a minimally neutralizing ion environment or a number of salt pairs intended to match the macroscopic salt concentration. In contrast, real biomolecules experience local ion environments where the salt concentration is dynamic and may differ from bulk. The degree of salt concentration variability and average deviation from the macroscopic concentration remains, as yet, unknown. Here, we describe the theory and implementation of a Monte Carlo osmostat that can be added to explicit solvent molecular dynamics or Monte Carlo simulations to sample from a semigrand canonical ensemble in which the number of salt pairs fluctuates dynamically during the simulation. The osmostat reproduces the correct equilibrium statistics for a simulation volume that can exchange ions with a large reservoir at a defined macroscopic salt concentration. To achieve useful Monte Carlo acceptance rates, the method makes use of nonequilibrium candidate Monte Carlo (NCMC) moves in which monovalent ions and water molecules are alchemically transmuted using short nonequilibrium trajectories, with a modified Metropolis-Hastings criterion ensuring correct equilibrium statistics for an ( Δμ, N, p, T) ensemble to achieve a ∼1046× boost in acceptance rates. We demonstrate how typical protein (DHFR and the tyrosine kinase Src) and nucleic acid (Drew-Dickerson B-DNA dodecamer) systems exhibit salt concentration distributions that significantly differ from fixed-salt bulk simulations and display fluctuations that are on the same order of magnitude as the average.
Collapse
Affiliation(s)
- Gregory A. Ross
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Present address: Schrödinger, New York, NY 10036
| | - Ariën S. Rustenburg
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Graduate Program in Physiology, Biophysics, and Systems Biology, Weill Cornell Medical College, New York, NY 10065
| | - Patrick B. Grinaway
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Graduate Program in Physiology, Biophysics, and Systems Biology, Weill Cornell Medical College, New York, NY 10065
| | - Josh Fass
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY 10065
| | - John D. Chodera
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
3
|
Plata CA, Scholl ZN, Marszalek PE, Prados A. Relevance of the Speed and Direction of Pulling in Simple Modular Proteins. J Chem Theory Comput 2018; 14:2910-2918. [DOI: 10.1021/acs.jctc.8b00347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Carlos A. Plata
- Física Teórica, Universidad de Sevilla, Apdo. de Correos 1065, Sevilla 41080, Spain
| | - Zackary N. Scholl
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Piotr E. Marszalek
- Department of Mechanical Engineering and Materials Science, Duke University, Durham 27708, North Carolina, United States
| | - Antonio Prados
- Física Teórica, Universidad de Sevilla, Apdo. de Correos 1065, Sevilla 41080, Spain
| |
Collapse
|
4
|
Du X, Li Y, Xia YL, Ai SM, Liang J, Sang P, Ji XL, Liu SQ. Insights into Protein-Ligand Interactions: Mechanisms, Models, and Methods. Int J Mol Sci 2016; 17:ijms17020144. [PMID: 26821017 PMCID: PMC4783878 DOI: 10.3390/ijms17020144] [Citation(s) in RCA: 844] [Impact Index Per Article: 93.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/13/2016] [Accepted: 01/18/2016] [Indexed: 01/16/2023] Open
Abstract
Molecular recognition, which is the process of biological macromolecules interacting with each other or various small molecules with a high specificity and affinity to form a specific complex, constitutes the basis of all processes in living organisms. Proteins, an important class of biological macromolecules, realize their functions through binding to themselves or other molecules. A detailed understanding of the protein–ligand interactions is therefore central to understanding biology at the molecular level. Moreover, knowledge of the mechanisms responsible for the protein-ligand recognition and binding will also facilitate the discovery, design, and development of drugs. In the present review, first, the physicochemical mechanisms underlying protein–ligand binding, including the binding kinetics, thermodynamic concepts and relationships, and binding driving forces, are introduced and rationalized. Next, three currently existing protein-ligand binding models—the “lock-and-key”, “induced fit”, and “conformational selection”—are described and their underlying thermodynamic mechanisms are discussed. Finally, the methods available for investigating protein–ligand binding affinity, including experimental and theoretical/computational approaches, are introduced, and their advantages, disadvantages, and challenges are discussed.
Collapse
Affiliation(s)
- Xing Du
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
| | - Yi Li
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
| | - Yuan-Ling Xia
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
| | - Shi-Meng Ai
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
- Department of Applied Mathematics, Yunnan Agricultural University, Kunming 650201, China.
| | - Jing Liang
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
| | - Peng Sang
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| | - Xing-Lai Ji
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
- Key Laboratory for Tumor molecular biology of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming 650091, China.
| | - Shu-Qun Liu
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
- Key Laboratory for Tumor molecular biology of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming 650091, China.
| |
Collapse
|
5
|
Moradi M, Sagui C, Roland C. Investigating rare events with nonequilibrium work measurements. I. Nonequilibrium transition path probabilities. J Chem Phys 2015; 140:034114. [PMID: 25669370 DOI: 10.1063/1.4861055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We have developed a formalism for investigating transition pathways and transition probabilities for rare events in biomolecular systems. In this paper, we set the theoretical framework for employing nonequilibrium work relations to estimate the relative reaction rates associated with different classes of transition pathways. Particularly, we derive an extension of Crook's transient fluctuation theorem, which relates the relative transition rates of driven systems in the forward and reverse directions, and allows for the calculation of these relative rates using work measurements (e.g., in Steered Molecular Dynamics). The formalism presented here can be combined with Transition Path Theory to relate the equilibrium and driven transition rates. The usefulness of this framework is illustrated by means of a Gaussian model and a driven proline dimer.
Collapse
Affiliation(s)
- Mahmoud Moradi
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Celeste Sagui
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Christopher Roland
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| |
Collapse
|
6
|
Moradi M, Sagui C, Roland C. Investigating rare events with nonequilibrium work measurements. II. Transition and reaction rates. J Chem Phys 2015; 140:034115. [PMID: 25669371 DOI: 10.1063/1.4861056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a formalism for investigating transition pathways and transition probabilities for rare events in biomolecular systems. The formalism is based on combining Transition Path Theory with the results of nonequilibrium work relations, and shows that the equilibrium and nonequilibrium transition rates are in fact related. Aside from its fundamental importance, this allows for the calculation of relative equilibrium reaction rates with driven nonequilibrium simulations such as Steered Molecular Dynamics. The workings of the formalism are illustrated with a few typical numerical examples.
Collapse
Affiliation(s)
- Mahmoud Moradi
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Celeste Sagui
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Christopher Roland
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| |
Collapse
|
7
|
Moradi M, Tajkhorshid E. Computational Recipe for Efficient Description of Large-Scale Conformational Changes in Biomolecular Systems. J Chem Theory Comput 2014; 10:2866-2880. [PMID: 25018675 PMCID: PMC4089915 DOI: 10.1021/ct5002285] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Indexed: 11/30/2022]
Abstract
Characterizing large-scale structural transitions in biomolecular systems poses major technical challenges to both experimental and computational approaches. On the computational side, efficient sampling of the configuration space along the transition pathway remains the most daunting challenge. Recognizing this issue, we introduce a knowledge-based computational approach toward describing large-scale conformational transitions using (i) nonequilibrium, driven simulations combined with work measurements and (ii) free energy calculations using empirically optimized biasing protocols. The first part is based on designing mechanistically relevant, system-specific reaction coordinates whose usefulness and applicability in inducing the transition of interest are examined using knowledge-based, qualitative assessments along with nonequilirbrium work measurements which provide an empirical framework for optimizing the biasing protocol. The second part employs the optimized biasing protocol resulting from the first part to initiate free energy calculations and characterize the transition quantitatively. Using a biasing protocol fine-tuned to a particular transition not only improves the accuracy of the resulting free energies but also speeds up the convergence. The efficiency of the sampling will be assessed by employing dimensionality reduction techniques to help detect possible flaws and provide potential improvements in the design of the biasing protocol. Structural transition of a membrane transporter will be used as an example to illustrate the workings of the proposed approach.
Collapse
Affiliation(s)
- Mahmoud Moradi
- Department of Biochemistry,
Center for Biophysics and Computational Biology, and Beckman Institute
for Advanced Science and Technology, University
of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Department of Biochemistry,
Center for Biophysics and Computational Biology, and Beckman Institute
for Advanced Science and Technology, University
of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Jeong D, Andricioaei I. Reconstructing equilibrium entropy and enthalpy profiles from non-equilibrium pulling. J Chem Phys 2013; 138:114110. [PMID: 23534630 DOI: 10.1063/1.4795236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The Jarzynski identity can be applied to instances when a microscopic system is pulled repeatedly but quickly along some coordinate, allowing the calculation of an equilibrium free energy profile along the pulling coordinate from a set of independent non-equilibrium trajectories. Using the formalism of Wiener stochastic path integrals in which we assign temperature-dependent weights to Langevin trajectories, we derive exact formulae for the temperature derivatives of the free energy profile. This leads naturally to analytical expressions for decomposing a free energy profile into equilibrium entropy and internal energy profiles from non-equilibrium pulling. This decomposition can be done from trajectories evolved at a unique temperature without repeating the measurement as done in finite-difference decompositions. Three distinct analytical expressions for the entropy-energy decomposition are derived: using a time-dependent generalization of the weighted histogram analysis method, a quasi-harmonic spring limit, and a Feynman-Kac formula. The three novel formulae of reconstructing the pair of entropy-energy profiles are exemplified by Langevin simulations of a two-dimensional model system prototypical for force-induced biomolecular conformational changes. Connections to single-molecule experimental means to probe the functionals needed in the decomposition are suggested.
Collapse
Affiliation(s)
- Daun Jeong
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | | |
Collapse
|
9
|
Seifert U. Stochastic thermodynamics, fluctuation theorems and molecular machines. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:126001. [PMID: 23168354 DOI: 10.1088/0034-4885/75/12/126001] [Citation(s) in RCA: 1280] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Stochastic thermodynamics as reviewed here systematically provides a framework for extending the notions of classical thermodynamics such as work, heat and entropy production to the level of individual trajectories of well-defined non-equilibrium ensembles. It applies whenever a non-equilibrium process is still coupled to one (or several) heat bath(s) of constant temperature. Paradigmatic systems are single colloidal particles in time-dependent laser traps, polymers in external flow, enzymes and molecular motors in single molecule assays, small biochemical networks and thermoelectric devices involving single electron transport. For such systems, a first-law like energy balance can be identified along fluctuating trajectories. For a basic Markovian dynamics implemented either on the continuum level with Langevin equations or on a discrete set of states as a master equation, thermodynamic consistency imposes a local-detailed balance constraint on noise and rates, respectively. Various integral and detailed fluctuation theorems, which are derived here in a unifying approach from one master theorem, constrain the probability distributions for work, heat and entropy production depending on the nature of the system and the choice of non-equilibrium conditions. For non-equilibrium steady states, particularly strong results hold like a generalized fluctuation-dissipation theorem involving entropy production. Ramifications and applications of these concepts include optimal driving between specified states in finite time, the role of measurement-based feedback processes and the relation between dissipation and irreversibility. Efficiency and, in particular, efficiency at maximum power can be discussed systematically beyond the linear response regime for two classes of molecular machines, isothermal ones such as molecular motors, and heat engines such as thermoelectric devices, using a common framework based on a cycle decomposition of entropy production.
Collapse
Affiliation(s)
- Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|
10
|
Minh DDL, Chodera JD. Erratum: “Estimating equilibrium ensemble averages using multiple time slices from driven nonequilibrium processes: Theory and application to free energies, moments, and thermodynamic length in single-molecule pulling experiments” [J. Chem. Phys. 134, 024111 (2011)]. J Chem Phys 2012. [DOI: 10.1063/1.3673567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Nonequilibrium candidate Monte Carlo is an efficient tool for equilibrium simulation. Proc Natl Acad Sci U S A 2011; 108:E1009-18. [PMID: 22025687 DOI: 10.1073/pnas.1106094108] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metropolis Monte Carlo simulation is a powerful tool for studying the equilibrium properties of matter. In complex condensed-phase systems, however, it is difficult to design Monte Carlo moves with high acceptance probabilities that also rapidly sample uncorrelated configurations. Here, we introduce a new class of moves based on nonequilibrium dynamics: Candidate configurations are generated through a finite-time process in which a system is actively driven out of equilibrium, and accepted with criteria that preserve the equilibrium distribution. The acceptance rule is similar to the Metropolis acceptance probability, but related to the nonequilibrium work rather than the instantaneous energy difference. Our method is applicable to sampling from both a single thermodynamic state or a mixture of thermodynamic states, and allows both coordinates and thermodynamic parameters to be driven in nonequilibrium proposals. Whereas generating finite-time switching trajectories incurs an additional cost, driving some degrees of freedom while allowing others to evolve naturally can lead to large enhancements in acceptance probabilities, greatly reducing structural correlation times. Using nonequilibrium driven processes vastly expands the repertoire of useful Monte Carlo proposals in simulations of dense solvated systems.
Collapse
|
12
|
Free energy calculations of protein-ligand interactions. Curr Opin Chem Biol 2011; 15:547-52. [PMID: 21684797 DOI: 10.1016/j.cbpa.2011.05.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 05/03/2011] [Accepted: 05/23/2011] [Indexed: 01/25/2023]
Abstract
In the calculation of free energies of binding for protein-ligand complexes, we distinguish endpoint methods, methods involving alchemical modifications and methods that physically displace the ligand from the protein. Most methodological advances seem to come from a clever combination of multiple existing methods to enhance the sampling or to utilize specific advantages of various approaches. The coupling parameters common in thermodynamic integration and in Hamiltonian replica exchange are for instance combined to yield replica exchange thermodynamic integration. As new methods mostly aim to improve efficiency or to attain more complete sampling, there are good prospects to understand and tackle the sampling problem better and to shift the focus towards the scoring problem in the context of more robust and accurate force fields.
Collapse
|
13
|
Minh DDL, Vaikuntanathan S. Density-dependent analysis of nonequilibrium paths improves free energy estimates II. A Feynman–Kac formalism. J Chem Phys 2011; 134:034117. [DOI: 10.1063/1.3541152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|