1
|
Stückrath JB, Bischoff FA. Reduction of Hartree-Fock Wavefunctions to Kohn-Sham Effective Potentials Using Multiresolution Analysis. J Chem Theory Comput 2021; 17:1408-1420. [PMID: 33620202 DOI: 10.1021/acs.jctc.0c01103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a highly accurate numerical implementation for computing the Kohn-Sham effective potentials for molecules based on a Hartree-Fock wavefunction and density, following the RKS approach of Staroverov and co-workers [ J. Chem. Phys. 2014, 140, 18A535]. Potentials and orbitals are represented in a multiresolution wavelet basis, avoiding basis set incompleteness-related issues. Together with the RKS method, the often occurring problems of oscillating potentials are removed. The MRA implementation of the RKS method allows the generation of molecular Kohn-Sham potentials of benchmark quality. Numerical data for atoms up to Kr and a number of molecules are given, with a special emphasis on the role of nodal planes in the calculations, as showcased in HCN and benzene.
Collapse
Affiliation(s)
- Julius B Stückrath
- Institut für Chemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Florian A Bischoff
- Institut für Chemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| |
Collapse
|
2
|
Abstract
We discuss the physical properties and accuracy of three distinct dynamical (i.e., frequency-dependent) kernels for the computation of optical excitations within linear response theory: (i) an a priori built kernel inspired by the dressed time-dependent density-functional theory kernel proposed by Maitra et al. [J. Chem. Phys. 120, 5932 (2004)], (ii) the dynamical kernel stemming from the Bethe-Salpeter equation (BSE) formalism derived originally by Strinati [Riv. Nuovo Cimento 11, 1-86 (1988)], and (iii) the second-order BSE kernel derived by Zhang et al. [J. Chem. Phys. 139, 154109 (2013)]. The principal take-home message of the present paper is that dynamical kernels can provide, thanks to their frequency-dependent nature, additional excitations that can be associated with higher-order excitations (such as the infamous double excitations), an unappreciated feature of dynamical quantities. We also analyze, for each kernel, the appearance of spurious excitations originating from the approximate nature of the kernels, as first evidenced by Romaniello et al. [J. Chem. Phys. 130, 044108 (2009)]. Using a simple two-level model, prototypical examples of valence, charge-transfer, and Rydberg excited states are considered.
Collapse
Affiliation(s)
- Juliette Authier
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
3
|
Hofmann F, Kümmel S. Molecular excitations from meta-generalized gradient approximations in the Kohn-Sham scheme. J Chem Phys 2020; 153:114106. [PMID: 32962375 DOI: 10.1063/5.0023657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Meta-Generalized Gradient Approximations (meta-GGAs) can, in principle, include spatial and temporal nonlocality in time-dependent density functional theory at a much lower computational cost than functionals that use exact exchange. We here test whether a meta-GGA that has recently been developed with a focus on capturing nonlocal response properties and the particle number discontinuity can realize such features in practice. To this end, we extended the frequency-dependent Sternheimer formalism to the meta-GGA case. Using the Krieger-Li-Iafrate (KLI) approximation, we calculate the optical response for the selected paradigm molecular systems and compare the meta-GGA Kohn-Sham response to the one found with exact exchange and conventional (semi-)local functionals. We find that the new meta-GGA captures important properties of the nonlocal exchange response. The KLI approximation, however, emerges as a limiting factor in the evaluation of charge-transfer excitations.
Collapse
Affiliation(s)
- Fabian Hofmann
- Theoretical Physics IV, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Stephan Kümmel
- Theoretical Physics IV, University of Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
4
|
Werner HJ, Knowles PJ, Manby FR, Black JA, Doll K, Heßelmann A, Kats D, Köhn A, Korona T, Kreplin DA, Ma Q, Miller TF, Mitrushchenkov A, Peterson KA, Polyak I, Rauhut G, Sibaev M. The Molpro quantum chemistry package. J Chem Phys 2020; 152:144107. [PMID: 32295355 DOI: 10.1063/5.0005081] [Citation(s) in RCA: 601] [Impact Index Per Article: 120.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Molpro is a general purpose quantum chemistry software package with a long development history. It was originally focused on accurate wavefunction calculations for small molecules but now has many additional distinctive capabilities that include, inter alia, local correlation approximations combined with explicit correlation, highly efficient implementations of single-reference correlation methods, robust and efficient multireference methods for large molecules, projection embedding, and anharmonic vibrational spectra. In addition to conventional input-file specification of calculations, Molpro calculations can now be specified and analyzed via a new graphical user interface and through a Python framework.
Collapse
Affiliation(s)
- Hans-Joachim Werner
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Peter J Knowles
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Frederick R Manby
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Joshua A Black
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Klaus Doll
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Andreas Heßelmann
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Daniel Kats
- Max-Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Andreas Köhn
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Tatiana Korona
- Faculty of Chemistry, University of Warsaw, L. Pasteura 1 St., 02-093 Warsaw, Poland
| | - David A Kreplin
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Qianli Ma
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Thomas F Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, USA
| | - Iakov Polyak
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Guntram Rauhut
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Marat Sibaev
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
5
|
Kang S, Woo J, Kim J, Kim H, Kim Y, Lim J, Choi S, Kim WY. ACE-Molecule: An open-source real-space quantum chemistry package. J Chem Phys 2020; 152:124110. [DOI: 10.1063/5.0002959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sungwoo Kang
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Jeheon Woo
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Jaewook Kim
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Hyeonsu Kim
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Yongjun Kim
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Jaechang Lim
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Sunghwan Choi
- National Institute of Supercomputing and Network, Korea Institute of Science and Technology Information, 245 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Woo Youn Kim
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| |
Collapse
|
6
|
Kaur J, Ospadov E, Staroverov VN. What Is the Accuracy Limit of Adiabatic Linear-Response TDDFT Using Exact Exchange-Correlation Potentials and Approximate Kernels? J Chem Theory Comput 2019; 15:4956-4964. [PMID: 31386366 DOI: 10.1021/acs.jctc.9b00618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Calculation of vertical excitation energies by the adiabatic linear-response time-dependent density-functional theory (TDDFT) requires static Kohn-Sham potentials and exchange-correlation kernels. When these quantities are derived from standard density-functional approximations (DFA), mean absolute errors (MAE) of the method are known to range from 0.2 eV to over 1 eV, depending on the functional and type of excitation. We investigate how the performance of TDDFT varies when increasingly accurate exchange-correlation potentials derived from Hartree-Fock (HF) and post-HF wavefunctions are combined with different approximate kernels. The lowest MAEs obtained in this manner for valence excitations are about 0.15-0.2 eV, which appears to be the practical limit of the accuracy of TDDFT that can be achieved by improving the Kohn-Sham potentials alone. These findings are consistent with previous reports on the benefits of accurate exchange-correlation potentials in TDDFT, but provide new insights and afford more definitive conclusions.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Chemistry , The University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | - Egor Ospadov
- Department of Chemistry , The University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | - Viktor N Staroverov
- Department of Chemistry , The University of Western Ontario , London , Ontario N6A 5B7 , Canada
| |
Collapse
|
7
|
Heßelmann A. Correlation effects and many-body interactions in water clusters. Beilstein J Org Chem 2018; 14:979-991. [PMID: 29977369 PMCID: PMC6009095 DOI: 10.3762/bjoc.14.83] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/11/2018] [Indexed: 11/23/2022] Open
Abstract
Background: The quantum-chemical description of the interactions in water clusters is an essential basis for deriving accurate and physically sound models of the interaction potential for water to be used in molecular simulations. In particular, the role of many-body interactions beyond the two-body interactions, which are often not explicitly taken into account by empirical force fields, can be accurately described by quantum chemistry methods on an adequate level, e.g., random-phase approximation electron correlation methods. The relative magnitudes of the different interaction energy contributions obtained by accurate ab initio calculations can therefore provide useful insights that can be exploited to develop enhanced force field methods. Results: In line with earlier theoretical studies of the interactions in water clusters, it has been found that the main contribution to the many-body interactions in clusters with a size of up to N = 13 molecules are higher-order polarisation interaction terms. Compared to this, many-body dispersion interactions are practically negligible for all studied sytems. The two-body dispersion interaction, however, plays a significant role in the formation of the structures of the water clusters and their stability, since it leads to a distinct compression of the cluster sizes compared to the structures optimized on an uncorrelated level. Overall, the many-body interactions amount to about 13% of the total interaction energy, irrespective of the cluster size. The electron correlation contribution to these, however, amounts to only about 30% to the total many-body interactions for the largest clusters studied and is repulsive for all structures considered in this work. Conclusion: While this shows that three- and higher-body interactions can not be neglected in the description of water complexes, the electron correlation contributions to these are much smaller in comparison to the two-body electron correlation effects. Efficient quantum chemistry approaches for describing intermolecular interactions between water molecules may therefore describe higher-body interactions on an uncorrelated Hartree-Fock level without a serious loss in accuracy.
Collapse
Affiliation(s)
- Andreas Heßelmann
- Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| |
Collapse
|
8
|
Intermolecular dispersion energies from coupled exact-exchange Kohn-Sham excitation energies and vectors. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Heßelmann A. DFT-SAPT Intermolecular Interaction Energies Employing Exact-Exchange Kohn–Sham Response Methods. J Chem Theory Comput 2018; 14:1943-1959. [DOI: 10.1021/acs.jctc.7b01233] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andreas Heßelmann
- Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg, Egerlandstrasse 3, D-91058 Erlangen, Germany
| |
Collapse
|
10
|
Heßelmann A. Polarisabilities of long conjugated chain molecules with density functional response methods: The role of coupled and uncoupled response. J Chem Phys 2015; 142:164102. [DOI: 10.1063/1.4918680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Heßelmann A. Molecular Excitation Energies from Time-Dependent Density Functional Theory Employing Random-Phase Approximation Hessians with Exact Exchange. J Chem Theory Comput 2015; 11:1607-20. [DOI: 10.1021/acs.jctc.5b00024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andreas Heßelmann
- Lehrstuhl für Theoretische
Chemie, Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| |
Collapse
|
12
|
Peukert W, Segets D, Pflug L, Leugering G. Unified Design Strategies for Particulate Products. MESOSCALE MODELING IN CHEMICAL ENGINEERING PART I 2015. [DOI: 10.1016/bs.ache.2015.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Bleiziffer P, Schmidtel D, Görling A. Stability conditions for exact-exchange Kohn-Sham methods and their relation to correlation energies from the adiabatic-connection fluctuation-dissipation theorem. J Chem Phys 2014; 141:204107. [DOI: 10.1063/1.4901924] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
14
|
Vargas J, Springborg M, Kirtman B. Electronic responses of long chains to electrostatic fields: Hartree-Fock vs. density-functional theory: a model study. J Chem Phys 2014; 140:054117. [PMID: 24511932 DOI: 10.1063/1.4864038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The response to an electrostatic field is determined through simple model calculations, within both the restricted Hartree-Fock and density functional theory methods, for long, finite as well as infinite, periodic chains. The permanent dipole moment, μ0, the polarizability, α, and the hyperpolarizabilities β and γ, calculated using a finite-field approach, are extensively analyzed. Our simple model allows for treatment of large systems and for separation of the properties into atomic and unit-cell contributions. That part of the response properties attributable to the terminations of the finite system change into delocalized current contributions in the corresponding infinite periodic system. Special emphasis is placed on analyzing the reasons behind the dramatic overestimation of the response properties found with density functional theory methods presently in common use.
Collapse
Affiliation(s)
- Jorge Vargas
- Physical and Theoretical Chemistry, University of Saarland, 66123 Saarbrücken, Germany
| | - Michael Springborg
- Physical and Theoretical Chemistry, University of Saarland, 66123 Saarbrücken, Germany
| | - Bernard Kirtman
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
15
|
Zhang D, Steinmann SN, Yang W. Dynamical second-order Bethe-Salpeter equation kernel: A method for electronic excitation beyond the adiabatic approximation. J Chem Phys 2013; 139:154109. [DOI: 10.1063/1.4824907] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Bleiziffer P, Heßelmann A, Görling A. Resolution of identity approach for the Kohn-Sham correlation energy within the exact-exchange random-phase approximation. J Chem Phys 2012; 136:134102. [DOI: 10.1063/1.3697845] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
17
|
Abstract
The classic density-functional theory (DFT) formalism introduced by Hohenberg, Kohn, and Sham in the mid-1960s is based on the idea that the complicated N-electron wave function can be replaced with the mathematically simpler 1-electron charge density in electronic structure calculations of the ground stationary state. As such, ordinary DFT cannot treat time-dependent (TD) problems nor describe excited electronic states. In 1984, Runge and Gross proved a theorem making TD-DFT formally exact. Information about electronic excited states may be obtained from this theory through the linear response (LR) theory formalism. Beginning in the mid-1990s, LR-TD-DFT became increasingly popular for calculating absorption and other spectra of medium- and large-sized molecules. Its ease of use and relatively good accuracy has now brought LR-TD-DFT to the forefront for this type of application. As the number and the diversity of applications of TD-DFT have grown, so too has our understanding of the strengths and weaknesses of the approximate functionals commonly used for TD-DFT. The objective of this article is to continue where a previous review of TD-DFT in Volume 55 of the Annual Review of Physical Chemistry left off and highlight some of the problems and solutions from the point of view of applied physical chemistry. Because doubly-excited states have a particularly important role to play in bond dissociation and formation in both thermal and photochemistry, particular emphasis is placed on the problem of going beyond or around the TD-DFT adiabatic approximation, which limits TD-DFT calculations to nominally singly-excited states.
Collapse
Affiliation(s)
- M E Casida
- Laboratoire de Chimie Théorique, Département de Chimie Moléculaire, Institut de Chimie Moléculaire de Grenoble, Université Joseph Fourier, France.
| | | |
Collapse
|
18
|
|
19
|
Hesselmann A. Comparison of Intermolecular Interaction Energies from SAPT and DFT Including Empirical Dispersion Contributions. J Phys Chem A 2011; 115:11321-30. [DOI: 10.1021/jp205031e] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Andreas Hesselmann
- Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg, Egerlandstrasse 3, D-91058 Erlangen
| |
Collapse
|
20
|
Hesselmann A, Görling A. Correct description of the bond dissociation limit without breaking spin symmetry by a random-phase-approximation correlation functional. PHYSICAL REVIEW LETTERS 2011; 106:093001. [PMID: 21405619 DOI: 10.1103/physrevlett.106.093001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Indexed: 05/30/2023]
Abstract
A correlation functional that is termed exact-exchange random phase approximation (EXX-RPA) functional and is obtained with the exact frequency-dependent exchange kernel via the fluctuation-dissipation theorem is shown to correctly describe electron pair bonds in the dissociation limit without the need to resort to symmetry breaking in spin space. Because the functional also yields more accurate electronic energies for molecules in their equilibrium geometry than standard correlation functionals, it combines accuracy at equilibrium bond distances and in dissociation processes with a correct description of spin, something all commonly employed correlation functionals fail to do. The reason why the EXX-RPA correlation functional yields distinctively and qualitatively better results than RPA approaches based on Hartree-Fock and time-dependent Hartree-Fock is explained.
Collapse
Affiliation(s)
- Andreas Hesselmann
- Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg, Germany
| | | |
Collapse
|