1
|
Tilahun M, Tatek YB. End‐Pulled Translocation of a Star Polymer Out of a Confining Cylindrical Cavity. MACROMOL THEOR SIMUL 2021. [DOI: 10.1002/mats.202000090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mesay Tilahun
- Department of Physics Addis Ababa University Addis Ababa 1176 Ethiopia
| | - Yergou B. Tatek
- Department of Physics Addis Ababa University Addis Ababa 1176 Ethiopia
| |
Collapse
|
2
|
Polson JM, Heckbert DR. Polymer translocation into cavities: Effects of confinement geometry, crowding, and bending rigidity on the free energy. Phys Rev E 2019; 100:012504. [PMID: 31499877 DOI: 10.1103/physreve.100.012504] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 06/10/2023]
Abstract
Monte Carlo simulations are used to study the translocation of a polymer into a cavity. Modeling the polymer as a hard-sphere chain with a length up to N=601 monomers, we use a multiple-histogram method to measure the variation of the conformational free energy of the polymer with respect to the number of translocated monomers. The resulting free-energy functions are then used to obtain the confinement free energy for the translocated portion of the polymer. We characterize the confinement free energy for a flexible polymer in cavities with constant cross-sectional area A for various cavity shapes (cylindrical, rectangular, and triangular) as well as for tapered cavities with pyramidal and conical shape. The scaling of the free energy with cavity volume and translocated polymer subchain length is generally consistent with predictions from simple scaling arguments, with small deviations in the scaling exponents likely due to finite-size effects. The confinement free energy depends strongly on cavity shape anisometry and is a minimum for an isometric cavity shape with a length-to-width ratio of unity. Entropic depletion at the edges or vertices of the confining cavity are evident in the results for constant-A and pyramidal cavities. For translocation into infinitely long cones, the scaling of the free energy with taper angle is consistent with a theoretical prediction employing the blob model. We also examine the effects of polymer bending rigidity on the translocation free energy for cylindrical cavities. For isometric cavities, the observed scaling behavior is in partial agreement with theoretical predictions, with discrepancies arising from finite-size effects that prevent the emergence of well-defined scaling regimes. In addition, translocation into highly anisometric cylindrical cavities leads to a multistage folding process for stiff polymers. Finally, we examine the effects of crowding agents inside the cavity. We find that the confinement free energy increases with crowder density. At constant packing fraction the magnitude of this effect lessens with increasing crowder size for a crowder-to-monomer size ratio ≥1.
Collapse
Affiliation(s)
- James M Polson
- Department of Physics, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island, Canada C1A 4P3
| | - David R Heckbert
- Department of Physics, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island, Canada C1A 4P3
| |
Collapse
|
3
|
Qian W, Doi K, Kawano S. Effects of Polymer Length and Salt Concentration on the Transport of ssDNA in Nanofluidic Channels. Biophys J 2017; 112:838-849. [PMID: 28297643 PMCID: PMC5355498 DOI: 10.1016/j.bpj.2017.01.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 11/25/2022] Open
Abstract
Electrokinetic phenomena in micro/nanofluidic channels have attracted considerable attention because precise control of molecular transport in liquids is required to optically and electrically capture the behavior of single molecules. However, the detailed mechanisms of polymer transport influenced by electroosmotic flows and electric fields in micro/nanofluidic channels have not yet been elucidated. In this study, a Langevin dynamics simulation was used to investigate the electrokinetic transport of single-stranded DNA (ssDNA) in a cylindrical nanochannel, employing a coarse-grained bead-spring model that quantitatively reproduced the radius of gyration, diffusion coefficient, and electrophoretic mobility of the polymer. Using this practical scale model, transport regimes of ssDNA with respect to the ζ-potential of the channel wall, the ion concentration, and the polymer length were successfully characterized. It was found that the relationship between the radius of gyration of ssDNA and the channel radius is critical to the formation of deformation regimes in a narrow channel. We conclude that a combination of electroosmotic flow velocity gradients and electric fields due to electrically polarized channel surfaces affects the alignment of molecular conformations, such that the ssDNA is stretched/compressed at negative/positive ζ-potentials in comparatively low-concentration solutions. Furthermore, this work suggests the possibility of controlling the center-of-mass position by tuning the salt concentration. These results should be applicable to the design of molecular manipulation techniques based on liquid flows in micro/nanofluidic devices.
Collapse
Affiliation(s)
- Weixin Qian
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, Japan
| | - Kentaro Doi
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, Japan.
| | - Satoyuki Kawano
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, Japan.
| |
Collapse
|
4
|
Vollmer SC, de Haan HW. Translocation is a nonequilibrium process at all stages: Simulating the capture and translocation of a polymer by a nanopore. J Chem Phys 2016; 145:154902. [DOI: 10.1063/1.4964630] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
5
|
Bianco V, Malgaretti P. Non-monotonous polymer translocation time across corrugated channels: Comparison between Fick-Jacobs approximation and numerical simulations. J Chem Phys 2016. [DOI: 10.1063/1.4961697] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
6
|
The Semiflexible Polymer Translocation into Laterally Unbounded Region between Two Parallel Flat Membranes. Polymers (Basel) 2016; 8:polym8090332. [PMID: 30974609 PMCID: PMC6431992 DOI: 10.3390/polym8090332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/28/2016] [Accepted: 08/30/2016] [Indexed: 11/17/2022] Open
Abstract
Using the dynamic Monte Carlo method, we investigate dynamics of semiflexible polymer translocation through a nanopore into laterally unbounded region between two parallel flat membranes with separation R in presence of an electric field inside the pore. The average translocation time τ initially decreases rapidly with increase of R in the range of R < 10 and then almost keeps constant for R ≥ 10, and the decline range increases with increase of dimensionless bending stiffness κ. We mainly study the effect of chain length N, κ and electric field strength E on the translocation process for R = 5. The translocation dynamics is significantly altered in comparison to an unconfined environment. We find τ ~ Nα, where the exponent α increases with increase of E for small κ. α initially increases slowly with increase of E and then keeps constant for moderate κ. α decreases with increase of E for large κ. However, α decreases with increase of κ under various E. In addition, we find τ ~ κβ. β decreases with increase of N under various E. These behaviors are interpreted in terms of the probability distribution of translocation time and the waiting time of an individual monomer segment passing through the pore during translocation.
Collapse
|
7
|
Affiliation(s)
- Mingming Ding
- State Key
Laboratory of Polymer Physics and Chemistry, Changchun Institute of
Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Xiaozheng Duan
- State Key
Laboratory of Polymer Physics and Chemistry, Changchun Institute of
Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Yuyuan Lu
- State Key
Laboratory of Polymer Physics and Chemistry, Changchun Institute of
Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Tongfei Shi
- State Key
Laboratory of Polymer Physics and Chemistry, Changchun Institute of
Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| |
Collapse
|
8
|
Li Z, Guo H. A molecular dynamics simulation study of sucking a single polymer chain into nanopores: blockage and memory effects. POLYM INT 2015. [DOI: 10.1002/pi.4929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ziqi Li
- Beijing National Laboratory for Molecular Sciences, Joint Laboratory of Polymer Sciences and Materials, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Hongxia Guo
- Beijing National Laboratory for Molecular Sciences, Joint Laboratory of Polymer Sciences and Materials, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
9
|
Ding M, Duan X, Lu Y, Shi T. Effect of hydrodynamic interaction on flow-induced polymer translocation through a nanotube. Chem Res Chin Univ 2015. [DOI: 10.1007/s40242-015-5001-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Polson JM. Polymer translocation into and out of an ellipsoidal cavity. J Chem Phys 2015; 142:174903. [DOI: 10.1063/1.4919642] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- James M. Polson
- Department of Physics, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island C1A 4P3, Canada
| |
Collapse
|
11
|
Wang J, Wang Y, Luo K. Dynamics of polymer translocation through kinked nanopores. J Chem Phys 2015; 142:084901. [PMID: 25725751 DOI: 10.1063/1.4913468] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polymer translocation through nanopore has potential technological applications for DNA sequencing, where one challenge problem is to slow down translocation speed. Inspired by experimental findings that kinked nanopores exhibit a large reduction in translocation velocity compared with their straight counterparts, we investigate the dynamics of polymer translocation through kinked nanopores in two dimensions under an applied external field. With increasing the tortuosity of an array of nanopores, our analytical results show that the translocation probability decreases. Langevin dynamics simulation results support this prediction and further indicate that with increasing the tortuosity, translocation time shows a slow increase followed by a rapid increase after a critical tortuosity. This behavior demonstrates that kinked nanopores can effectively reduce translocation speed. These results are interpreted by the roles of the tortuosity for decreasing the effective nanopore diameter, increasing effective nanopore length, and greatly increasing the DNA-pore friction.
Collapse
Affiliation(s)
- Junfang Wang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yilin Wang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Kaifu Luo
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
12
|
Palyulin VV, Ala-Nissila T, Metzler R. Polymer translocation: the first two decades and the recent diversification. SOFT MATTER 2014; 10:9016-37. [PMID: 25301107 DOI: 10.1039/c4sm01819b] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Probably no other field of statistical physics at the borderline of soft matter and biological physics has caused such a flurry of papers as polymer translocation since the 1994 landmark paper by Bezrukov, Vodyanoy, and Parsegian and the study of Kasianowicz in 1996. Experiments, simulations, and theoretical approaches are still contributing novel insights to date, while no universal consensus on the statistical understanding of polymer translocation has been reached. We here collect the published results, in particular, the famous-infamous debate on the scaling exponents governing the translocation process. We put these results into perspective and discuss where the field is going. In particular, we argue that the phenomenon of polymer translocation is non-universal and highly sensitive to the exact specifications of the models and experiments used towards its analysis.
Collapse
Affiliation(s)
- Vladimir V Palyulin
- Institute for Physics & Astronomy, University of Potsdam, D-14476 Potsdam-Golm, Germany.
| | | | | |
Collapse
|
13
|
Wang C, Chen YC, Zhang S, Luo MB. Translocation of Diblock Copolymer through Compound Channels: A Monte Carlo Simulation Study. Macromolecules 2014. [DOI: 10.1021/ma501308h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chao Wang
- Department
of Physics, Zhejiang University, Hangzhou 310027, China
- Department
of Physics, Taizhou University, Taizhou 318000, China
| | - Ying-Cai Chen
- Department
of Physics, Taizhou University, Taizhou 318000, China
| | - Shuang Zhang
- Department
of Physics, Zhejiang University, Hangzhou 310027, China
| | - Meng-Bo Luo
- Department
of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
14
|
Liu Z, Liu J, Xiao M, Wang R, Chen YL. Conformation-dependent translocation of a star polymer through a nanochannel. BIOMICROFLUIDICS 2014; 8:054107. [PMID: 25332744 PMCID: PMC4189700 DOI: 10.1063/1.4893637] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/11/2014] [Indexed: 06/04/2023]
Abstract
The translocation process of star polymers through a nanochannel is investigated by dissipative particle dynamics simulations. The translocation process is strongly influenced by the star arm arrangement as the polymer enters the channel, and a scaling relation between the translocation time [Formula: see text] and the total number of beads N tot is obtained. Qualitative agreements are found with predictions of the nucleation and growth model for linear block co-polymer translocation. In the intermediate stage where the center of the star polymer is at the channel entrance, the translocation time is found to have power law-dependence on the number of arms outside the channel and very weakly dependent on the number of arms in the channel. Increasing the total number of star arms also increases the star translocation time.
Collapse
Affiliation(s)
- Zhu Liu
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University , Nanjing 210093, China
| | - Jiannan Liu
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University , Nanjing 210093, China
| | - Mengying Xiao
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University , Nanjing 210093, China
| | - Rong Wang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University , Nanjing 210093, China
| | - Yeng-Long Chen
- Institute of Physics , Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
15
|
Qian W, Doi K, Uehara S, Morita K, Kawano S. Theoretical study of the transpore velocity control of single-stranded DNA. Int J Mol Sci 2014; 15:13817-32. [PMID: 25116683 PMCID: PMC4159826 DOI: 10.3390/ijms150813817] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/15/2014] [Accepted: 07/22/2014] [Indexed: 12/17/2022] Open
Abstract
The electrokinetic transport dynamics of deoxyribonucleic acid (DNA) molecules have recently attracted significant attention in various fields of research. Our group is interested in the detailed examination of the behavior of DNA when confined in micro/nanofluidic channels. In the present study, the translocation mechanism of a DNA-like polymer chain in a nanofluidic channel was investigated using Langevin dynamics simulations. A coarse-grained bead-spring model was developed to simulate the dynamics of a long polymer chain passing through a rectangular cross-section nanopore embedded in a nanochannel, under the influence of a nonuniform electric field. Varying the cross-sectional area of the nanopore was found to allow optimization of the translocation process through modification of the electric field in the flow channel, since a drastic drop in the electric potential at the nanopore was induced by changing the cross-section. Furthermore, the configuration of the polymer chain in the nanopore was observed to determine its translocation velocity. The competition between the strength of the electric field and confinement in the small pore produces various transport mechanisms and the results of this study thus represent a means of optimizing the design of nanofluidic devices for single molecule detection.
Collapse
Affiliation(s)
- Weixin Qian
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Kentaro Doi
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Satoshi Uehara
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Kaito Morita
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Satoyuki Kawano
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
16
|
Ikonen T. Driven polymer transport through a periodically patterned channel. J Chem Phys 2014; 140:234906. [PMID: 24952567 DOI: 10.1063/1.4883055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We study the driven transport of polymers in a periodically patterned channel using Langevin dynamics simulations in two dimensions. The channel walls are patterned with periodically alternating patches of attractive and non-attractive particles that act as trapping sites for the polymer. We find that the system shows rich dynamical behavior, observing giant diffusion, negative differential mobility, and several different transition mechanisms between the attractive patches. We also show that the channel can act as an efficient high-pass filter for polymers longer than a threshold length Nthr, which can be tuned by adjusting the length of the attractive patches and the driving force. Our findings suggest the possibility of fabricating polymer filtration devices based on patterned nanochannels.
Collapse
Affiliation(s)
- Timo Ikonen
- VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Finland and Department of Applied Physics, Aalto University School of Science, P.O. Box 11000, FI-00076 Aalto, Finland
| |
Collapse
|
17
|
Zhang K, Luo K. Polymer translocation into a confined space: Influence of the chain stiffness and the shape of the confinement. J Chem Phys 2014; 140:094902. [DOI: 10.1063/1.4867239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Chen Y, Luo K. Dynamics of polymer translocation through a nanopore induced by different sizes of crowding agents. J Chem Phys 2013; 138:204903. [DOI: 10.1063/1.4807088] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Pestryaev EM. Molecular-dynamics study of chain reptation in a gel. POLYMER SCIENCE SERIES A 2013. [DOI: 10.1134/s0965545x13050052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
A theoretical study on entropy-driven polymer translocation through a finite-sized nanochannel. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.02.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Piguet F, Foster DP. Translocation of short and long polymers through an interacting pore. J Chem Phys 2013; 138:084902. [DOI: 10.1063/1.4792716] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
22
|
Wang C, Chen YC, Sun LZ, Luo MB. Simulation on the translocation of polymer through compound channels. J Chem Phys 2013; 138:044903. [DOI: 10.1063/1.4789019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Zhang K, Luo K. Dynamics of polymer translocation into a circular nanocontainer through a nanopore. J Chem Phys 2012; 136:185103. [DOI: 10.1063/1.4712618] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
24
|
Edmonds CM, Hudiono YC, Ahmadi AG, Hesketh PJ, Nair S. Polymer translocation in solid-state nanopores: Dependence of scaling behavior on pore dimensions and applied voltage. J Chem Phys 2012; 136:065105. [DOI: 10.1063/1.3682777] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Bandpass filtering of DNA elastic modes using confinement and tension. Biophys J 2012; 102:96-100. [PMID: 22225802 DOI: 10.1016/j.bpj.2011.11.4014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/17/2011] [Accepted: 11/23/2011] [Indexed: 12/16/2022] Open
Abstract
During a variety of biological and technological processes, biopolymers are simultaneously subject to both confinement and external forces. Although significant efforts have gone into understanding the physics of polymers that are only confined, or only under tension, little work has been done to explore the effects of the interplay of force and confinement. Here, we study the combined effects of stretching and confinement on a polymer's configurational freedom. We measure the elastic response of long double-stranded DNA molecules that are partially confined to thin, nanofabricated slits. We account for the data through a model in which the DNA's short-wavelength transverse elastic modes are cut off by applied force and the DNA's bending stiffness, whereas long-wavelength modes are cut off by confinement. Thus, we show that confinement and stretching combine to permit tunable bandpass filtering of the elastic modes of long polymers.
Collapse
|
26
|
Abdolvahab RH, Metzler R, Ejtehadi MR. First passage time distribution of chaperone driven polymer translocation through a nanopore: Homopolymer and heteropolymer cases. J Chem Phys 2011; 135:245102. [DOI: 10.1063/1.3669427] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
27
|
Cohen JA, Chaudhuri A, Golestanian R. Active polymer translocation through flickering pores. PHYSICAL REVIEW LETTERS 2011; 107:238102. [PMID: 22182129 DOI: 10.1103/physrevlett.107.238102] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Indexed: 05/31/2023]
Abstract
Single file translocation of a homopolymer through an active channel under the presence of a driving force is studied using Langevin dynamics simulation. It is shown that a channel with sticky walls and oscillating width could lead to significantly more efficient translocation as compared to a static channel that has a width equal to the mean width of the oscillating pore. The gain in translocation exhibits a strong dependence on the stickiness of the pore, which could allow the polymer translocation process to be highly selective.
Collapse
Affiliation(s)
- Jack A Cohen
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, United Kingdom.
| | | | | |
Collapse
|
28
|
Li X, Li X, Deng M, Liang H. Effects of Electrostatic Interactions on the Translocation of Polymers Through a Narrow Pore Under Different Solvent Conditions: A Dissipative Particle Dynamics Simulation Study. MACROMOL THEOR SIMUL 2011. [DOI: 10.1002/mats.201100079] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Sun LZ, Cao WP, Luo MB. Translocation properties of copolymer (A(n)B(m))(l) through an interacting pore. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:041912. [PMID: 22181180 DOI: 10.1103/physreve.84.041912] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/04/2011] [Indexed: 05/31/2023]
Abstract
The translocation of a copolymer (A(n)B(m))(l) through an interacting pore was investigated by Monte Carlo simulation on a three-dimensional cubic lattice. Interactions between monomer A and pore ɛ(A) and between monomer B and pore ɛ(B) were considered. The difference between two translocation orientations, orientation A with monomer A entering the pore first and orientation B with monomer B first, was studied. Both the orientation probability and translocation time are dependent on monomer-pore interactions, block length, and fractions of monomers. The separation of different copolymers using translocation was also discussed. The results were explained qualitatively from the view of the free energy landscape of the copolymer translocation.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | | | | |
Collapse
|