1
|
Tan Y, Wang Y, Luo C, Luan Z, Li J, Yuan D, Zhou X, Wang X, Yang X. Photodissociation dynamics of H2S+ via the A2A1 (0, 8, 0) state. J Chem Phys 2024; 161:194301. [PMID: 39545664 DOI: 10.1063/5.0235630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
The photodissociation dynamics of the hydrogen sulfide cation (H2S+) (X2B1) were investigated using the time-sliced velocity map ion imaging technique. S+ (4Su) product images were measured at four photolysis wavelengths around 393.70 nm, corresponding to the excitation of the H2S+ (X2B1) cation to the A2A1 (0, 8, 0) state. The raw images and the derived total kinetic energy releases (TKERs) spectra exhibited partial rotational resolution for the H2 products. A sensitive dependence on the photolysis wavelength was observed in the TKER spectra and anisotropy parameters. Within a narrow excitation energy range of ∼12 cm-1, the H2 products showed two distinct rotational excitations. Furthermore, clear differences in anisotropy parameters were observed. These phenomena indicate that the rotational excitation of the H2S+ ions plays a role in the non-adiabatic photodissociation dynamics.
Collapse
Affiliation(s)
- Yuxin Tan
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yaling Wang
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Chang Luo
- Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Zhiwen Luan
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jie Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Daofu Yuan
- Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoguo Zhou
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xingan Wang
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, Hefei 230088, China
| | - Xueming Yang
- Hefei National Laboratory, Hefei 230088, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Chen J, Zhang H, Zhou L, Hu X, Xie D. New accurate diabatic potential energy surfaces for the two lowest 1A'' states of H 2S and photodissociation dynamics in its first absorption band. Phys Chem Chem Phys 2023; 25:26032-26042. [PMID: 37750311 DOI: 10.1039/d3cp03026a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
In this work, state-to-state photodissociation dynamics of H2S in its first absorption band has been studied quantum mechanically with a new set of coupled potential energy surfaces (PESs) for the first two 1A'' excited states, which were developed at the explicitly correlated internally contracted multi-reference configuration interaction level with the cc-pVQZ-F12 basis set and a large active space. The calculated absorption spectrum, product state distributions, and angular distributions are in excellent agreement with available experimental data, validating the accuracy of the PESs and the non-adiabatic couplings. Detailed analysis of the dynamics reveals that there are strong non-adiabatic couplings between the bound 11B1 and dissociative 11A2 states around the Franck-Condon region, leading to very fast predissociation to ro-vibrationally cold SH(X̃) fragments, during which marginal angular anisotropy of the PESs is involved. This study provides quantitatively accurate characterization of the electronic structure and detailed fragmentation dynamics of this prototypical photodissociation system, which is desirable for improving astrochemical modelling.
Collapse
Affiliation(s)
- Junjie Chen
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hanzi Zhang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Linsen Zhou
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China.
| | - Xixi Hu
- Kuang Yaming Honors School, Institute for Brain Sciences, Nanjing University, Nanjing 210023, China.
- Hefei National Laboratory, Hefei 230088, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
3
|
Wang J, An F, Chen J, Hu X, Guo H, Xie D. Accurate Full-Dimensional Global Diabatic Potential Energy Matrix for the Two Lowest-Lying Electronic States of the H + O 2 ↔ HO + O Reaction. J Chem Theory Comput 2023; 19:2929-2938. [PMID: 37161259 DOI: 10.1021/acs.jctc.3c00291] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A new and more accurate diabatic potential energy matrix (DPEM) is developed for the two lowest-lying electronic states of HO2, covering both the strong interaction region and reaction asymptotes. The ab initio calculations were performed at the Davidson corrected multireference configuration interaction level with the augmented correlation-consistent polarized valence quintuple-zeta basis set (MRCI+Q/AV5Z). The accuracy of the electronic structure calculations is validated by excellent agreement with the experimental HO2 equilibrium geometry, fundamental vibrational frequencies, and H + O2 ↔ OH + O reaction energy. Through the combination of an electronic angular momentum-method and a configuration interaction vector-based method, the mixing angle between the first two 2A″ states of HO2 was successfully determined. Elements of the 2×2 DPEM were fit to neural networks with a proper account of the complete nuclear permutation inversion symmetry of HO2. The DPEM correctly predicted the properties of conical intersection seams at linear and T-shape geometries, thus providing a reliable platform for studying both the spectroscopy of HO2 and the nonadiabatic dynamics for the H + O2 ↔ OH + O reaction.
Collapse
Affiliation(s)
- Junyan Wang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feng An
- Research Center for Graph Computing, Zhejiang Lab, Hangzhou 311121, China
| | - Junjie Chen
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xixi Hu
- Kuang Yaming Honors School, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210023, China
- Hefei National Laboratory, Hefei 230088, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
4
|
Wu Y, Zhang Z, Zhang S, Luo Z, Zhao Y, Yang S, Li Z, Chang Y, Chen Z, Yu S, Yang X, Yuan K. Rotational state specific dissociation dynamics of D 2O via the C̃(010) state: The effect of bending vibrational excitation. J Chem Phys 2022; 156:214301. [DOI: 10.1063/5.0091762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The rotational state resolved photodissociation dynamics of D2O via the [Formula: see text](010) state has been investigated by using the D-atom Rydberg tagging time-of-flight technique combined with a tunable vacuum ultraviolet light source. The D-atom action spectrum of the [Formula: see text](010) ← [Formula: see text](000) band and the corresponding time-of-flight (TOF) spectra of D-atom photoproducts formed following the excitation of D2O to individual rotational transition have been measured. By comparison with the action spectrum of the [Formula: see text](000) ← [Formula: see text](000) band, the bending vibrational constant of the [Formula: see text] state for D2O can be determined to be v2 = 1041.37 ± 0.71 cm−1. From the TOF spectra, the product kinetic energy spectra, the vibrational state distributions of OD products, and the state resolved anisotropy parameters have been determined. The experimental results indicate a dramatic variation in the OD product state distributions for different rotational excitations. This illuminates that there are two distinctive coupling channels from the [Formula: see text](010) state to the low-lying electronic states: the homogeneous electronic coupling to the Ã1B1 state, resulting in vibrationally hot OD(X) products, and the Coriolis-type coupling to the [Formula: see text]1A1 state, producing vibrationally cold but rotationally hot OD(X) and OD(A) products. Furthermore, the three-body dissociation channel is confirmed, which is attributed to the [Formula: see text] → 1A2 or [Formula: see text] → Ã pathway. In comparison with the previous results of D2O photolysis via the [Formula: see text](000) state, it is found that the v2 vibration of the parent molecule enhances both the vibrational and rotational excitations of OD products.
Collapse
Affiliation(s)
- Yucheng Wu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhaoxue Zhang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Su’e Zhang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zijie Luo
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yarui Zhao
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Shuaikang Yang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhenxing Li
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yao Chang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhichao Chen
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Shengrui Yu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Guan Y, Xie C, Yarkony DR, Guo H. High-fidelity first principles nonadiabaticity: diabatization, analytic representation of global diabatic potential energy matrices, and quantum dynamics. Phys Chem Chem Phys 2021; 23:24962-24983. [PMID: 34473156 DOI: 10.1039/d1cp03008f] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Nonadiabatic dynamics, which goes beyond the Born-Oppenheimer approximation, has increasingly been shown to play an important role in chemical processes, particularly those involving electronically excited states. Understanding multistate dynamics requires rigorous quantum characterization of both electronic and nuclear motion. However, such first principles treatments of multi-dimensional systems have so far been rather limited due to the lack of accurate coupled potential energy surfaces and difficulties associated with quantum dynamics. In this Perspective, we review recent advances in developing high-fidelity analytical diabatic potential energy matrices for quantum dynamical investigations of polyatomic uni- and bi-molecular nonadiabatic processes, by machine learning of high-level ab initio data. Special attention is paid to methods of diabatization, high fidelity construction of multi-state coupled potential energy surfaces and property surfaces, as well as quantum mechanical characterization of nonadiabatic nuclear dynamics. To illustrate the tremendous progress made by these new developments, several examples are discussed, in which direct comparison with quantum state resolved measurements led to either confirmation of the observation or sometimes reinterpretation of the experimental data. The insights gained in these prototypical systems greatly advance our understanding of nonadiabatic dynamics in chemical systems.
Collapse
Affiliation(s)
- Yafu Guan
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | - Changjian Xie
- Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China.
| | - David R Yarkony
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, 87131, USA.
| |
Collapse
|
6
|
Luo Z, Chang Y, Zhao Y, Yang J, Chen Z, Cheng Y, Che L, Wu G, Yang X, Yuan K. Photodissociation Dynamics of H 2O via the Ẽ' ( 1B 2) Electronic State. J Phys Chem A 2021; 125:3622-3630. [PMID: 33891426 DOI: 10.1021/acs.jpca.1c01459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photodissociation dynamics of H2O via the Ẽ'1B2 state were studied using the high-resolution H atom photofragment translational spectroscopy method, in combination with the tunable vacuum ultraviolet free electron laser (VUV FEL). The measured translational energy spectra allow us to determine the respective quantum state population distributions for the nascent OH(X2Π) and OH(A2Σ+) photofragments. Analyses of the quantum state population distributions show both the ground and electronically excited OH fragments to be formed with moderate vibrational excitation but with highly rotational excitation. Unlike the dissociation via the lower-lying electronic states, where OH(X) is the major fragment, the OH(A) products are predominant via the Ẽ' state. These products are mainly ascribed to a fast dissociation on the B̃1A1 state surface after nonadiabatic transitions from the initial excited Ẽ' state to the B̃ state. Meanwhile, another dissociation pathway from the Ẽ' state to the 1B2 3pb2 state, followed by coupling to the 1A2 3pb2 state, is also observed, which yields the OH(X) + H and O(3P) + 2H products.
Collapse
Affiliation(s)
- Zijie Luo
- Department of Physics, School of Science, Dalian Maritime University, 1 Linghai Road, Dalian, Liaoning 116026, P. R. China.,State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Yao Chang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Yarui Zhao
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Jiayue Yang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Zhichao Chen
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Yi Cheng
- Department of Physics, School of Science, Dalian Maritime University, 1 Linghai Road, Dalian, Liaoning 116026, P. R. China
| | - Li Che
- Department of Physics, School of Science, Dalian Maritime University, 1 Linghai Road, Dalian, Liaoning 116026, P. R. China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| |
Collapse
|
7
|
Zhang L, Jiang B. A quantum wavepacket study of state-to-state photodissociation dynamics of HOBr/DOBr. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp1911214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Liang Zhang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, China
| | - Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
8
|
Xie C, Zhu X, Yarkony DR, Guo H. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. IV. Coupled diabatic potential energy matrices. J Chem Phys 2018; 149:144107. [DOI: 10.1063/1.5054310] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Changjian Xie
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Xiaolei Zhu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - David R. Yarkony
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
9
|
Lin GSM, Xie C, Xie D. Nonadiabatic Effect in Photodissociation Dynamics of Thiophenol via the 1ππ* State. J Phys Chem A 2018; 122:5375-5382. [DOI: 10.1021/acs.jpca.8b03460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guang-Shuang-Mu Lin
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Changjian Xie
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
10
|
Hu X, Zhou L, Xie D. State-to-state photodissociation dynamics of the water molecule. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1350] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xixi Hu
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering; Nanjing University; Nanjing China
| | - Linsen Zhou
- Department of Chemistry and Chemical Biology; University of New Mexico; Albuquerque NM USA
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering; Nanjing University; Nanjing China
| |
Collapse
|
11
|
Dawes R, Ndengué SA. Single- and multireference electronic structure calculations for constructing potential energy surfaces. INT REV PHYS CHEM 2016. [DOI: 10.1080/0144235x.2016.1195102] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Su S, Wang H, Chen Z, Yu S, Dai D, Yuan K, Yang X. Photodissociation dynamics of HOD via the B̃ ((1)A1) electronic state. J Chem Phys 2016; 143:184302. [PMID: 26567657 DOI: 10.1063/1.4935170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Photodissociation dynamics of HOD from the B̃ state has been studied using H/D atom Rydberg "tagging" time-of-flight technique. Both the OD + H and OH + D channels have been investigated. Product kinetic energy distributions, internal state distributions of the OD/OH product, as well as the OD/OH quantum state specific angular anisotropy parameters have been determined. Overall, the photodissociation dynamics of HOD via the B̃ state is qualitatively similar to that of the H2O and D2O, with quantitative differences arising probably from the change in masses. At different photolysis energies, similar rovibrational distributions and state-resolved angular distributions have been observed for the OH/OD(X) product, while remarkable differences have been observed in the rovibrational distributions and state-resolved angular distributions of the OH/OD(A) product.
Collapse
Affiliation(s)
- Shu Su
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Hongzhen Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhichao Chen
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Shengrui Yu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Dongxu Dai
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
13
|
Abstract
This Perspective addresses the use of coupled diabatic potential energy surfaces (PESs) together with rigorous quantum dynamics in full or reduced dimensional coordinate spaces to obtain accurate solutions to problems in nonadiabatic dynamics.
Collapse
Affiliation(s)
- Hua Guo
- Department of Chemistry and Chemical Biology
- University of New Mexico
- Albuquerque
- USA
| | | |
Collapse
|
14
|
Han SY, Zhou LS, Xie DQ. State to State Photodissociation Dynamics of Vibrationally Excited D2O in B Band. CHINESE J CHEM PHYS 2015. [DOI: 10.1063/1674-0068/28/cjcp1506138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
15
|
Zhou L, Xie D. Full-Dimensional Quantum Dynamics of Vibrational Mediated Photodissociation of HOD in Its B Band. J Phys Chem A 2015. [DOI: 10.1021/acs.jpca.5b05029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Linsen Zhou
- Institute
of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic
Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Daiqian Xie
- Institute
of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic
Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Synergetic
Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
16
|
Zhou L, Xie D, Guo H. Signatures of non-adiabatic dynamics in the fine-structure state distributions of the OH(X̃/Ã) products in the B-band photodissociation of H2O. J Chem Phys 2015; 142:124317. [DOI: 10.1063/1.4915536] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Linsen Zhou
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, China
| | - Daiqian Xie
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
17
|
Zhou L, Xie D, Sun Z, Guo H. Product fine-structure resolved photodissociation dynamics: the A band of H2O. J Chem Phys 2014; 140:024310. [PMID: 24437880 DOI: 10.1063/1.4861230] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The photodissociation dynamics of H2O in its first absorption band is investigated on an accurate potential energy surface based on a large number of high-level ab initio points. Several ro-vibrational states of the parent molecule are considered. Different from most previous theoretical studies, the spin-orbit and Λ-doublet populations of the open-shell OH fragment are reported from full-dimensional wave packet calculations. The populations of the two spin-orbit manifolds are in most cases close to the statistical limit, but the Λ-doublet is dominated by the A(") component, thanks largely to the fast in-plane dissociation of H2O(Ã(1)A('')). Comparisons with experimental data and a Franck-Condon model are generally very good, although some discrepancies exist.
Collapse
Affiliation(s)
- Linsen Zhou
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
18
|
Lin GSM, Zhou L, Xie D. Theoretical Study of the State-to-State Photodissociation Dynamics of the Vibrationally Excited Water Molecule in the B Band. J Phys Chem A 2014; 118:9220-7. [DOI: 10.1021/jp503062s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guang-Shuang-Mu Lin
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Linsen Zhou
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
- Synergetic
Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
19
|
Xie C, Ma J, Zhu X, Zhang DH, Yarkony DR, Xie D, Guo H. Full-Dimensional Quantum State-to-State Nonadiabatic Dynamics for Photodissociation of Ammonia in its A-Band. J Phys Chem Lett 2014; 5:1055-1060. [PMID: 26274448 DOI: 10.1021/jz500227d] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- Changjian Xie
- †Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jianyi Ma
- ‡Department of Chemistry and Chemical Biology, University of New Mexico, Clark Hall 101, Albuquerque, New Mexico 87131, United States
- §Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiaolei Zhu
- ∥Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Dong Hui Zhang
- ⊥State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, China
| | - David R Yarkony
- ∥Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Daiqian Xie
- †Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- #Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hua Guo
- ‡Department of Chemistry and Chemical Biology, University of New Mexico, Clark Hall 101, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
20
|
Zhou L, Lin GSM, Xie D. State to state photodissociation dynamics of D2O in the B band. J Chem Phys 2013; 139:114303. [DOI: 10.1063/1.4820792] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Xie C, Hu X, Zhou L, Xie D, Guo H. Ab initio determination of potential energy surfaces for the first two UV absorption bands of SO2. J Chem Phys 2013; 139:014305. [DOI: 10.1063/1.4811840] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
22
|
Zhou L, Jiang B, Xie D, Guo H. State-to-State Photodissociation Dynamics of H2O in the B-band: Competition between Two Coexisting Nonadiabatic Pathways. J Phys Chem A 2012; 117:6940-7. [DOI: 10.1021/jp310546g] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Linsen Zhou
- Institute of Theoretical and
Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Bin Jiang
- Institute of Theoretical and
Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Department of Chemistry
and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Daiqian Xie
- Institute of Theoretical and
Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hua Guo
- Department of Chemistry
and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
23
|
Jiang B, Xie D, Guo H. State-to-state photodissociation dynamics of triatomic molecules: H2O in the B band. J Chem Phys 2012; 136:034302. [PMID: 22280755 DOI: 10.1063/1.3676725] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
State-to-state photodissociation dynamics of H(2)O in its B band has been investigated quantum mechanically on a new set of non-adiabatically coupled potential energy surfaces for the lowest two (1)A' states of H(2)O, which are developed at the internally contracted multi-reference configuration interaction level with the aug-cc-pVQZ basis set. Quantum dynamical calculations carried out using the Chebyshev propagator yield absorption spectra, product state distributions, branching ratios, and differential cross sections, which are in reasonably good agreement with the latest experimental results. Particular focus is placed here on the dependence of various dynamical observables on the photon energy. Detailed analyses of the dynamics have assigned the diffuse structure in absorption spectrum to short-time recurring dynamics near the HOH conical intersection. The non-adiabatic dissociation to the ground state OH product via the HOH conical intersection is facile, direct, fast, and produces rotationally hot OH(X̃) products. On the other hand, the adiabatic channel on the excited state leading to the OH(Ã) product is dominated by long-lived resonances, which depend sensitively on the potential energy surfaces.
Collapse
Affiliation(s)
- Bin Jiang
- Key Laboratory of Mesoscopic Chemistry, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | | | | |
Collapse
|