1
|
Conway MA, Earl SK, Muir JB, Vu THY, Tollerud JO, Watanabe K, Taniguchi T, Fuhrer MS, Edmonds MT, Davis JA. Effects of Floquet Engineering on the Coherent Exciton Dynamics in Monolayer WS 2. ACS NANO 2023. [PMID: 37494826 DOI: 10.1021/acsnano.3c01318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Coherent optical manipulation of electronic bandstructures via Floquet Engineering is a promising means to control quantum systems on an ultrafast time scale. However, the ultrafast switching on/off of the driving field comes with questions regarding the limits of the Floquet formalism (which is defined for an infinite periodic drive) through the switching process and to what extent the transient changes can be driven adiabatically. Experimentally addressing these questions has been difficult, in large part due to the absence of an established technique to measure coherent dynamics through the duration of the pulse. Here, using multidimensional coherent spectroscopy we explicitly excite, control, and probe a coherent superposition of excitons in the K and K' valleys in monolayer WS2. With a circularly polarized, red-detuned pump pulse, the degeneracy of the K and K' excitons can be lifted, and the phase of the coherence rotated. We directly measure phase rotations greater than π during the 100 fs driving pulse and show that this can be described by a combination of the AC-Stark shift of excitons in one valley and the Bloch-Siegert shift of excitons in the opposite valley. Despite showing a smooth evolution of the phase that directly follows the intensity envelope of the nonresonant pump pulse, the process is not perfectly adiabatic. By measuring the magnitude of the macroscopic coherence as it evolves before, during, and after the nonresonant pump pulse we show that there is additional decoherence caused by power broadening in the presence of the nonresonant pump. This nonadiabaticity arises as a result of interactions with the otherwise adiabatic Floquet states and may be a problem for many applications, such as manipulating qubits in quantum information processing; however, these measurements also suggest ways such effects can be minimized or eliminated.
Collapse
Affiliation(s)
- Mitchell A Conway
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, 3122, Victoria, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Swinburne University of Technology, Hawthorn, 3122, Victoria, Australia
| | - Stuart K Earl
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, 3122, Victoria, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Swinburne University of Technology, Hawthorn, 3122, Victoria, Australia
| | - Jack B Muir
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, 3122, Victoria, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Swinburne University of Technology, Hawthorn, 3122, Victoria, Australia
| | - Thi-Hai-Yen Vu
- ARC Centre of Excellence in Future Low-Energy Electronics Technology, Monash University, Clayton, 3800, Victoria, Australia
- School of Physics and Astronomy, Monash University, Clayton, 3800, Victoria, Australia
| | - Jonathan O Tollerud
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, 3122, Victoria, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Swinburne University of Technology, Hawthorn, 3122, Victoria, Australia
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki 305-044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Michael S Fuhrer
- ARC Centre of Excellence in Future Low-Energy Electronics Technology, Monash University, Clayton, 3800, Victoria, Australia
- School of Physics and Astronomy, Monash University, Clayton, 3800, Victoria, Australia
| | - Mark T Edmonds
- ARC Centre of Excellence in Future Low-Energy Electronics Technology, Monash University, Clayton, 3800, Victoria, Australia
- ANFF-VIC Technology Fellow, Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Jeffrey A Davis
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, 3122, Victoria, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Swinburne University of Technology, Hawthorn, 3122, Victoria, Australia
| |
Collapse
|
2
|
Wigger D, Schall J, Deconinck M, Bart N, Mrowiński P, Krzykowski M, Gawarecki K, von Helversen M, Schmidt R, Bremer L, Bopp F, Reuter D, Wieck AD, Rodt S, Renard J, Nogues G, Ludwig A, Machnikowski P, Finley JJ, Reitzenstein S, Kasprzak J. Controlled Coherent Coupling in a Quantum Dot Molecule Revealed by Ultrafast Four-Wave Mixing Spectroscopy. ACS PHOTONICS 2023; 10:1504-1511. [PMID: 37215325 PMCID: PMC10197170 DOI: 10.1021/acsphotonics.3c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Indexed: 05/24/2023]
Abstract
Semiconductor quantum dot molecules are considered promising candidates for quantum technological applications due to their wide tunability of optical properties and coverage of different energy scales associated with charge and spin physics. While previous works have studied the tunnel-coupling of the different excitonic charge complexes shared by the two quantum dots by conventional optical spectroscopy, we here report on the first demonstration of a coherently controlled interdot tunnel-coupling focusing on the quantum coherence of the optically active trion transitions. We employ ultrafast four-wave mixing spectroscopy to resonantly generate a quantum coherence in one trion complex, transfer it to and probe it in another trion configuration. With the help of theoretical modeling on different levels of complexity, we give an instructive explanation of the underlying coupling mechanism and dynamical processes.
Collapse
Affiliation(s)
- Daniel Wigger
- Institute
of Theoretical Physics, Wrocław University
of Science and Technology, 50-370 Wrocław, Poland
- School
of Physics, Trinity College Dublin, Dublin 2, D02 PN40, Ireland
| | - Johannes Schall
- Institute
of Solid State Physics, Technische Universität
Berlin, 10623 Berlin, Germany
| | - Marielle Deconinck
- Institute
of Solid State Physics, Technische Universität
Berlin, 10623 Berlin, Germany
| | - Nikolai Bart
- Lehrstuhl
für Angewandte Festkörperphysik Ruhr-Universität
Bochum, 44780 Bochum, Germany
| | - Paweł Mrowiński
- Institute
of Theoretical Physics, Wrocław University
of Science and Technology, 50-370 Wrocław, Poland
- Laboratory
for Optical Spectroscopy of Nanostructures, Department of Experimental
Physics, Wrocław University of Technology, 50-370 Wrocław, Poland
| | - Mateusz Krzykowski
- Institute
of Theoretical Physics, Wrocław University
of Science and Technology, 50-370 Wrocław, Poland
| | - Krzysztof Gawarecki
- Institute
of Theoretical Physics, Wrocław University
of Science and Technology, 50-370 Wrocław, Poland
| | - Martin von Helversen
- Institute
of Solid State Physics, Technische Universität
Berlin, 10623 Berlin, Germany
| | - Ronny Schmidt
- Institute
of Solid State Physics, Technische Universität
Berlin, 10623 Berlin, Germany
| | - Lucas Bremer
- Institute
of Solid State Physics, Technische Universität
Berlin, 10623 Berlin, Germany
| | - Frederik Bopp
- Walter Schottky
Institut and Physik Department, Technische
Universität München, 85748 Garching, Germany
| | - Dirk Reuter
- Department
Physik, Universität Paderborn, 33098 Paderborn, Germany
| | - Andreas D. Wieck
- Lehrstuhl
für Angewandte Festkörperphysik Ruhr-Universität
Bochum, 44780 Bochum, Germany
| | - Sven Rodt
- Institute
of Solid State Physics, Technische Universität
Berlin, 10623 Berlin, Germany
| | - Julien Renard
- Université
Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Gilles Nogues
- Université
Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Arne Ludwig
- Lehrstuhl
für Angewandte Festkörperphysik Ruhr-Universität
Bochum, 44780 Bochum, Germany
| | - Paweł Machnikowski
- Institute
of Theoretical Physics, Wrocław University
of Science and Technology, 50-370 Wrocław, Poland
| | - Jonathan J. Finley
- Walter Schottky
Institut and Physik Department, Technische
Universität München, 85748 Garching, Germany
| | - Stephan Reitzenstein
- Institute
of Solid State Physics, Technische Universität
Berlin, 10623 Berlin, Germany
| | - Jacek Kasprzak
- Walter Schottky
Institut and Physik Department, Technische
Universität München, 85748 Garching, Germany
- Université
Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| |
Collapse
|
3
|
Anda A, Cole JH. Two-dimensional spectroscopy beyond the perturbative limit: The influence of finite pulses and detection modes. J Chem Phys 2021; 154:114113. [PMID: 33752354 DOI: 10.1063/5.0038550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Ultra-fast and multi-dimensional spectroscopy gives a powerful looking glass into the dynamics of molecular systems. In particular, two-dimensional electronic spectroscopy (2DES) provides a probe of coherence and the flow of energy within quantum systems, which is not possible with more conventional techniques. While heterodyne-detected (HD) 2DES is increasingly common, more recently fluorescence-detected (FD) 2DES offers new opportunities, including single-molecule experiments. However, in both techniques, it can be difficult to unambiguously identify the pathways that dominate the signal. Therefore, the use of numerically modeling of 2DES is vitally important, which, in turn, requires approximating the pulsing scheme to some degree. Here, we employ non-perturbative time evolution to investigate the effects of finite pulse width and amplitude on 2DES signals. In doing so, we identify key differences in the response of HD and FD detection schemes, as well as the regions of parameter space where the signal is obscured by unwanted artifacts in either technique. Mapping out parameter space in this way provides a guide to choosing experimental conditions and also shows in which limits the usual theoretical approximations work well and in which limits more sophisticated approaches are required.
Collapse
Affiliation(s)
- André Anda
- ARC Centre of Excellence in Exciton Science and Chemical and Quantum Physics, School of Science, RMIT University, Melbourne, Australia
| | - Jared H Cole
- ARC Centre of Excellence in Exciton Science and Chemical and Quantum Physics, School of Science, RMIT University, Melbourne, Australia
| |
Collapse
|
4
|
Collini E, Gattuso H, Levine RD, Remacle F. Ultrafast fs coherent excitonic dynamics in CdSe quantum dots assemblies addressed and probed by 2D electronic spectroscopy. J Chem Phys 2021; 154:014301. [DOI: 10.1063/5.0031420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Elisabetta Collini
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
| | - Hugo Gattuso
- Theoretical Physical Chemistry, RU MOLSYS, University of Liège, Allée du 6 Août 11, B4000 Liège, Belgium
| | - R. D. Levine
- The Fritz Haber Research Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - F. Remacle
- Theoretical Physical Chemistry, RU MOLSYS, University of Liège, Allée du 6 Août 11, B4000 Liège, Belgium
- The Fritz Haber Research Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
5
|
AUTRY TRAVISM, MOODY GALAN, FRASER JAMES, MCDONALD COREY, MIRIN RP, SILVERMAN KEVIN. Single-scan acquisition of multiple multidimensional spectra. OPTICA 2019; 6:10.1364/optica.6.000735. [PMID: 39440276 PMCID: PMC11494713 DOI: 10.1364/optica.6.000735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/25/2019] [Indexed: 10/25/2024]
Abstract
Multidimensional coherent spectroscopy is a powerful tool for understanding the ultrafast dynamics of complex quantum systems. To fully characterize the nonlinear optical response of a system, multiple pulse sequences must be recorded and quantitatively compared. We present a new single-scan method that enables rapid and parallel acquisition of all unique pulse sequences corresponding to first- and third-order degenerate wave-mixing processes. Signals are recorded with shot-noise limited detection, enabling acquisition times of ~2 minutes with ~100 zs phase stability and ~8 orders of dynamic range, in a collinear geometry, on a single-pixel detector. We demonstrate this method using quantum well excitons, and quantitative analysis reveals new insights into the bosonic nature of excitons. This scheme may enable rapid and scalable analysis of unique chemical signatures, metrology of optical susceptibilities, nonperturbative coherent control, and the implementation of quantum information protocols using multidimensional spectroscopy.
Collapse
Affiliation(s)
- TRAVIS M. AUTRY
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - GALAN MOODY
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - JAMES FRASER
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
- Queen’s University, Kingston, Ontario ONK7L3N6, Canada
| | - COREY MCDONALD
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
- University of Colorado, Boulder, Colorado 80309, USA
| | - R. P. MIRIN
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - KEVIN SILVERMAN
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| |
Collapse
|
6
|
Jonas DM. Vibrational and Nonadiabatic Coherence in 2D Electronic Spectroscopy, the Jahn–Teller Effect, and Energy Transfer. Annu Rev Phys Chem 2018; 69:327-352. [DOI: 10.1146/annurev-physchem-052516-050602] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David M. Jonas
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| |
Collapse
|
7
|
Moody G, Cundiff ST. Advances in multi-dimensional coherent spectroscopy of semiconductor nanostructures. ADVANCES IN PHYSICS: X 2017; 2:641-674. [PMID: 28894306 PMCID: PMC5590666 DOI: 10.1080/23746149.2017.1346482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Multi-dimensional coherent spectroscopy (MDCS) has become an extremely versatile and sensitive technique for elucidating the structure, composition, and dynamics of condensed matter, atomic, and molecular systems. The appeal of MDCS lies in its ability to resolve both individual-emitter and ensemble-averaged dynamics of optically created excitations in disordered systems. When applied to semiconductors, MDCS enables unambiguous separation of homogeneous and inhomogeneous contributions to the optical linewidth, pinpoints the nature of coupling between resonances, and reveals signatures of many-body interactions. In this review, we discuss the implementation of MDCS to measure the nonlinear optical response of excitonic transitions in semiconductor nanostructures. Capabilities of the technique are illustrated with recent experimental studies that advance our understanding of optical decoherence and dissipation, energy transfer, and many-body phenomena in quantum dots and quantum wells, semiconductor microcavities, layered semiconductors, and photovoltaic materials.
Collapse
Affiliation(s)
- Galan Moody
- Applied Physics Division, National Institute of Standards & Technology, Boulder, CO, USA
| | | |
Collapse
|
8
|
Tollerud JO, Cundiff ST, Davis JA. Revealing and Characterizing Dark Excitons through Coherent Multidimensional Spectroscopy. PHYSICAL REVIEW LETTERS 2016; 117:097401. [PMID: 27610881 DOI: 10.1103/physrevlett.117.097401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Indexed: 06/06/2023]
Abstract
Dark excitons are of fundamental importance in a broad range of contexts but are difficult to study using conventional optical spectroscopy due to their weak interaction with light. We show how coherent multidimensional spectroscopy can reveal and characterize dark states. Using this approach, we identify parity-forbidden and spatially indirect excitons in InGaAs/GaAs quantum wells and determine details regarding lifetimes, homogeneous and inhomogeneous linewidths, broadening mechanisms, and coupling strengths. The observations of coherent coupling between these states and bright excitons hint at a role for a multistep process by which excitons in the barrier can relax into the quantum wells.
Collapse
Affiliation(s)
- Jonathan O Tollerud
- Centre for Quantum and Optical Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Steven T Cundiff
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jeffrey A Davis
- Centre for Quantum and Optical Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
9
|
Nuernberger P, Ruetzel S, Brixner T. Multidimensionale elektronische Spektroskopie photochemischer Reaktionen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Nuernberger P, Ruetzel S, Brixner T. Multidimensional Electronic Spectroscopy of Photochemical Reactions. Angew Chem Int Ed Engl 2015; 54:11368-86. [PMID: 26382095 DOI: 10.1002/anie.201502974] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 11/11/2022]
Abstract
Coherent multidimensional electronic spectroscopy can be employed to unravel various channels in molecular chemical reactions. This approach is thus not limited to analysis of energy transfer or charge transfer (i.e. processes from photophysics), but can also be employed in situations where the investigated system undergoes permanent structural changes (i.e. in photochemistry). Photochemical model reactions are discussed by using the example of merocyanine/spiropyran-based molecular switches, which show a rich variety of reaction channels, in particular ring opening and ring closing, cis-trans isomerization, coherent vibrational wave-packet motion, radical ion formation, and population relaxation. Using pump-probe, pump-repump-probe, coherent two-dimensional and three-dimensional, triggered-exchange 2D, and quantum-control spectroscopy, we gain intuitive pictures on which product emerges from which reactant and which reactive molecular modes are associated.
Collapse
Affiliation(s)
- Patrick Nuernberger
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum (Germany)
| | - Stefan Ruetzel
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg (Germany)
| | - Tobias Brixner
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg (Germany).
| |
Collapse
|
11
|
Wells TA, Muthike AK, Robinson JE, Chen PC. High resolution coherent three dimensional spectroscopy of NO2. J Chem Phys 2015; 142:212426. [PMID: 26049446 DOI: 10.1063/1.4917317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Expansion from coherent 2D spectroscopy to coherent 3D spectroscopy can provide significant advantages when studying molecules that have heavily perturbed energy levels. This paper illustrates such advantages by demonstrating how high resolution coherent 3D (HRC3D) spectroscopy can be used to study a portion of the visible spectrum of nitrogen dioxide. High resolution coherent 2D spectra usually contain rotational and vibrational patterns that are easy to analyze, but severe congestion and complexity preclude its effective use for many parts of the NO2 spectrum. HRC3D spectroscopy appears to be much more effective; multidimensional rotational and vibrational patterns produced by this new technique are easy to identify even in the presence of strong perturbations. A method for assigning peaks, which is based upon analyzing the resulting multidimensional patterns, has been developed. The higher level of multidimensionality is useful for reducing uncertainty in peak assignments, improving spectral resolution, providing simultaneous information on multiple levels and states, and predicting, verifying, and categorizing peaks.
Collapse
Affiliation(s)
- Thresa A Wells
- Chemistry Department, Spelman College, Atlanta, Georgia 30314, USA
| | | | | | - Peter C Chen
- Chemistry Department, Spelman College, Atlanta, Georgia 30314, USA
| |
Collapse
|
12
|
Abstract
Optical multdimensional coherent spectroscopy has recently been the subject of significant activity. While two-dimensional spectroscopy is most common, it is possible to extend the method into three dimensions. This perspective reviews the different approaches to three-dimensional spectroscopy and the systems that have been studied with it. The advantages of adding an additional dimension are discussed and compared to the resulting experimental challenges.
Collapse
Affiliation(s)
- Steven T Cundiff
- JILA, National Institute of Standards and Technology & University of Colorado, Boulder, Colorado, 80309-0440 USA.
| |
Collapse
|
13
|
Strangfeld BR, Wells TA, Chen PC. Rotational and vibrational pattern interpretation for high-resolution coherent 3D spectroscopy. J Phys Chem A 2014; 118:6846-57. [PMID: 24945734 DOI: 10.1021/jp500725j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-resolution coherent multidimensional spectroscopy provides an alternative to conventional methods for generating rotationally resolved electronic spectra of gas phase molecules. In addition to revealing information such as the relationships among peaks, it can provide clearly recognizable patterns for spectra that otherwise appear patternless due to rotational congestion. Despite this improvement, high-resolution coherent 2D spectroscopy can still exhibit congestion problems; expansion to the second dimension is often not sufficient to prevent overlapping of peaks from different patterns. A new 3D version of the technique that provides improved resolution and selectivity to help address cases with severe congestion was recently demonstrated. The experimental design and interpretation of data for the 3D technique are significantly more complicated than that for the 2D version. The purpose of this paper is to provide important information needed to plan, run, and interpret results from high-resolution coherent 3D spectroscopy experiments.
Collapse
|
14
|
Testing for memory-free spectroscopic coordinates by 3D IR exchange spectroscopy. Proc Natl Acad Sci U S A 2014; 111:10462-7. [PMID: 25002483 DOI: 10.1073/pnas.1406967111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using 3D infrared (IR) exchange spectroscopy, the ultrafast hydrogen-bond forming and breaking (i.e., complexation) kinetics of phenol to benzene in a benzene/CCl4 mixture is investigated. By introducing a third time point at which the hydrogen-bonding state of phenol is measured (in comparison with 2D IR exchange spectroscopy), the spectroscopic method can serve as a critical test of whether the spectroscopic coordinate used to observe the exchange process is a memory-free, or Markovian, coordinate. For the system under investigation, the 3D IR results suggest that this is not the case. This conclusion is reconfirmed by accompanying molecular dynamics simulations, which furthermore reveal that the non-Markovian kinetics is caused by the heterogeneous structure of the mixed solvent.
Collapse
|
15
|
Tollerud JO, Hall CR, Davis JA. Isolating quantum coherence using coherent multi-dimensional spectroscopy with spectrally shaped pulses. OPTICS EXPRESS 2014; 22:6719-6733. [PMID: 24664021 DOI: 10.1364/oe.22.006719] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We demonstrate how spectral shaping in coherent multidimensional spectroscopy can isolate specific signal pathways and directly access quantitative details. By selectively exciting pathways involving a coherent superposition of exciton states we are able to identify, isolate and analyse weak coherent coupling between spatially separated excitons in an asymmetric double quantum well. Analysis of the isolated signal elucidates details of the coherent interactions between the spatially separated excitons. With a dynamic range exceeding 10(4) in electric field amplitude, this approach facilitates quantitative comparisons of different signal pathways and a comprehensive description of the electronic states and their interactions.
Collapse
|
16
|
Abstract
Coherent multidimensional electronic spectroscopy is commonly used to investigate photophysical phenomena such as light harvesting in photosynthesis in which the system returns back to its ground state after energy transfer. By contrast, we introduce multidimensional spectroscopy to study ultrafast photochemical processes in which the investigated molecule changes permanently. Exemplarily, the emergence in 2D and 3D spectra of a cross-peak between reactant and product reveals the cis-trans photoisomerization of merocyanine isomers. These compounds have applications in organic photovoltaics and optical data storage. Cross-peak oscillations originate from a vibrational wave packet in the electronically excited state of the photoproduct. This concept isolates the isomerization dynamics along different vibrational coordinates assigned by quantum-chemical calculations, and is applicable to determine chemical dynamics in complex photoreactive networks.
Collapse
|
17
|
Nardin G, Moody G, Singh R, Autry TM, Li H, Morier-Genoud F, Cundiff ST. Coherent excitonic coupling in an asymmetric double InGaAs quantum well arises from many-body effects. PHYSICAL REVIEW LETTERS 2014; 112:046402. [PMID: 24580472 DOI: 10.1103/physrevlett.112.046402] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Indexed: 06/03/2023]
Abstract
We study an asymmetric double InGaAs quantum well using optical two-dimensional coherent spectroscopy. The collection of zero-quantum, one-quantum, and two-quantum two-dimensional spectra provides a unique and comprehensive picture of the double well coherent optical response. Coherent and incoherent contributions to the coupling between the two quantum well excitons are clearly separated. An excellent agreement with density matrix calculations reveals that coherent interwell coupling originates from many-body interactions.
Collapse
Affiliation(s)
- Gaël Nardin
- JILA, University of Colorado and National Institute of Standards and Technology, Boulder, Colorado 80309-0440, USA
| | - Galan Moody
- JILA, University of Colorado and National Institute of Standards and Technology, Boulder, Colorado 80309-0440, USA and Department of Physics, University of Colorado, Boulder, Colorado 80309-0390, USA
| | - Rohan Singh
- JILA, University of Colorado and National Institute of Standards and Technology, Boulder, Colorado 80309-0440, USA and Department of Physics, University of Colorado, Boulder, Colorado 80309-0390, USA
| | - Travis M Autry
- JILA, University of Colorado and National Institute of Standards and Technology, Boulder, Colorado 80309-0440, USA and Department of Physics, University of Colorado, Boulder, Colorado 80309-0390, USA
| | - Hebin Li
- JILA, University of Colorado and National Institute of Standards and Technology, Boulder, Colorado 80309-0440, USA
| | - François Morier-Genoud
- Laboratory of Quantum Optoelectronics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Steven T Cundiff
- JILA, University of Colorado and National Institute of Standards and Technology, Boulder, Colorado 80309-0440, USA and Department of Physics, University of Colorado, Boulder, Colorado 80309-0390, USA
| |
Collapse
|
18
|
Nardin G, Autry TM, Silverman KL, Cundiff ST. Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure. OPTICS EXPRESS 2013; 21:28617-27. [PMID: 24514373 DOI: 10.1364/oe.21.028617] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Multidimensional Coherent Optical Photocurrent Spectroscopy (MD-COPS) is implemented using unstabilized interferometers. Photocurrent from a semiconductor sample is generated using a sequence of four excitation pulses in a collinear geometry. Each pulse is frequency shifted by a unique radio frequency through acousto-optical modulation; the Four-Wave Mixing (FWM) signal is then selected in the frequency domain. The interference of an auxiliary continuous wave laser, which is sent through the same interferometers as the excitation pulses, is used to synthesize reference frequencies for lock-in detection of the photocurrent FWM signal. This scheme enables the partial compensation of mechanical fluctuations in the setup, achieving sufficient phase stability without the need for active stabilization. The method intrinsically provides both the real and imaginary parts of the FWM signal as a function of inter-pulse delays. This signal is subsequently Fourier transformed to create a multi-dimensional spectrum. Measurements made on the excitonic resonance in a double InGaAs quantum well embedded in a p-i-n diode demonstrate the technique.
Collapse
|
19
|
Chen PC, Wells TA, Strangfeld BR. High-resolution coherent three-dimensional spectroscopy of Br2. J Phys Chem A 2013; 117:5981-6. [PMID: 23425525 DOI: 10.1021/jp3118049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In the past, high-resolution spectroscopy has been limited to small, simple molecules that yield relatively uncongested spectra. Larger and more complex molecules have a higher density of peaks and are susceptible to complications (e.g., effects from conical intersections) that can obscure the patterns needed to resolve and assign peaks. Recently, high-resolution coherent two-dimensional (2D) spectroscopy has been used to resolve and sort peaks into easily identifiable patterns for molecules where pattern-recognition has been difficult. For very highly congested spectra, however, the ability to resolve peaks using coherent 2D spectroscopy is limited by the bandwidth of instrumentation. In this article, we introduce and investigate high-resolution coherent three-dimensional spectroscopy (HRC3D) as a method for dealing with heavily congested systems. The resulting patterns are unlike those in high-resolution coherent 2D spectra. Analysis of HRC3D spectra could provide a means for exploring the spectroscopy of large and complex molecules that have previously been considered too difficult to study.
Collapse
Affiliation(s)
- Peter C Chen
- Chemistry Department, Spelman College, Atlanta, Georgia 30314, USA.
| | | | | |
Collapse
|
20
|
Zhang Z, Wells KL, Seidel MT, Tan HS. Fifth-order three-dimensional electronic spectroscopy using a pump-probe configuration. J Phys Chem B 2013; 117:15369-85. [PMID: 23808641 DOI: 10.1021/jp4046403] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present the theoretical details and experimental demonstration of fifth-order three-dimensional (3D) electronic spectroscopy using a pump-probe beam geometry. This is achieved using a pulse shaper and appropriate phase cycling schemes. We show how 8-step and 27-step phase cycling schemes can measure purely absorptive 3D spectra as well as 3D spectra for the individual fifth-order processes that contribute to the purely absorptive spectrum. 3D spectra as a function of two separate controllable waiting time periods can be obtained. The peak shapes and positions of the peaks in the experimental measurement correspond well to theory.
Collapse
Affiliation(s)
- Zhengyang Zhang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, Singapore 637371
| | | | | | | |
Collapse
|
21
|
Perakis F, Borek JA, Hamm P. Three-dimensional infrared spectroscopy of isotope-diluted ice Ih. J Chem Phys 2013; 139:014501. [DOI: 10.1063/1.4812216] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
22
|
Turner DB, Dinshaw R, Lee KK, Belsley MS, Wilk KE, Curmi PMG, Scholes GD. Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis. Phys Chem Chem Phys 2012; 14:4857-74. [PMID: 22374579 DOI: 10.1039/c2cp23670b] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent measurements using two-dimensional electronic spectroscopy (2D ES) have shown that the initial dynamic response of photosynthetic proteins can involve quantum coherence. We show how electronic coherence can be differentiated from vibrational coherence in 2D ES. On that basis we conclude that both electronic and vibrational coherences are observed in the phycobiliprotein light-harvesting complex PC645 from Chroomonas sp. CCMP270 at ambient temperature. These light-harvesting antenna proteins of the cryptophyte algae are suspended in the lumen, where the pH drops significantly under sustained illumination by sunlight. Here we measured 2D ES of PC645 at increasing levels of acidity to determine if the change in pH affects the quantum coherence; quantitative analysis reveals that the dynamics are insensitive to the pH change.
Collapse
Affiliation(s)
- Daniel B Turner
- Department of Chemistry, Institute for Optical Sciences, and Centre for Quantum Information and Quantum Control, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Richards GH, Wilk KE, Curmi PMG, Quiney HM, Davis JA. Coherent Vibronic Coupling in Light-Harvesting Complexes from Photosynthetic Marine Algae. J Phys Chem Lett 2012; 3:272-277. [PMID: 26698327 DOI: 10.1021/jz201600f] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Observations of long-lived coherences in photosynthetic light-harvesting complexes utilize short pulses with broad spectral bandwidths to coherently excite multiple transitions and coherent superpositions. In order to identify the role that such quantum effects might play in efficient energy transfer, however, an alternative approach is required. We have developed a technique for two-color photon echo spectroscopy to selectively excite the pathway of interest and measure its evolution in the absence of any other excitation. We use this technique to excite a coherence pathway in phycocyanin-645 from cryptophyte algae and measure the dynamics of this coherence. A decoherence time of 500 fs was measured, and clear signatures for strong coupling between the electronic states and phonon modes were observed, allowing coherent coupling between otherwise nonresonant transitions. This provides detailed experimental evidence of the long-lived coherences and the nature of the quantum mechanical interactions between electronic states and phonon modes in phycocyanin-645 from cryptophyte marine algae.
Collapse
Affiliation(s)
| | - K E Wilk
- School of Physics and Centre for Applied Medical Research, St. Vincents Hospital, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - P M G Curmi
- School of Physics and Centre for Applied Medical Research, St. Vincents Hospital, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - H M Quiney
- School of Physics and ARC Centre of Excellence for Coherent X-Ray Science, The University of Melbourne , Victoria 3010, Australia
| | | |
Collapse
|