1
|
Dias RS. Role of Protein Self-Association on DNA Condensation and Nucleoid Stability in a Bacterial Cell Model. Polymers (Basel) 2019; 11:E1102. [PMID: 31261873 PMCID: PMC6680993 DOI: 10.3390/polym11071102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 01/15/2023] Open
Abstract
Bacterial cells do not have a nuclear membrane that encompasses and isolates the genetic material. In addition, they do not possess histone proteins, which are responsible for the first levels of genome condensation in eukaryotes. Instead, there is a number of more or less specific nucleoid-associated proteins that induce DNA bridging, wrapping and bending. Many of these proteins self-assemble into oligomers. The crowded environment of cells is also believed to contribute to DNA condensation due to excluded volume effects. Ribosomes are protein-RNA complexes found in large concentrations in the cytosol of cells. They are overall negatively charged and some DNA-binding proteins have been reported to also bind to ribosomes. Here the effect of protein self-association on DNA condensation and stability of DNA-protein complexes is explored using Monte Carlo simulations and a simple coarse-grained model. The DNA-binding proteins are described as positively charged dimers with the same linear charge density as the DNA, described using a bead and spring model. The crowding molecules are simply described as hard-spheres with varying charge density. It was found that applying a weak attractive potential between protein dimers leads to their association in the vicinity of the DNA (but not in its absence), which greatly enhances the condensation of the model DNA. The presence of neutral crowding agents does not affect the DNA conformation in the presence or absence of protein dimers. For weakly self-associating proteins, the presence of negatively charged crowding particles induces the dissociation of the DNA-protein complex due to the partition of the proteins between the DNA and the crowders. Protein dimers with stronger association potentials, on the other hand, stabilize the nucleoid, even in the presence of highly charged crowders. The interactions between protein dimers and crowding agents are not completely prevented and a few crowding molecules typically bind to the nucleoid.
Collapse
Affiliation(s)
- Rita S Dias
- Department of Physics, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
2
|
Predicting the mechanism and rate of H-NS binding to AT-rich DNA. PLoS Comput Biol 2019; 15:e1006845. [PMID: 30845209 PMCID: PMC6424460 DOI: 10.1371/journal.pcbi.1006845] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/19/2019] [Accepted: 02/02/2019] [Indexed: 12/21/2022] Open
Abstract
Bacteria contain several nucleoid-associated proteins that organize their genomic DNA into the nucleoid by bending, wrapping or bridging DNA. The Histone-like Nucleoid Structuring protein H-NS found in many Gram-negative bacteria is a DNA bridging protein and can structure DNA by binding to two separate DNA duplexes or to adjacent sites on the same duplex, depending on external conditions. Several nucleotide sequences have been identified to which H-NS binds with high affinity, indicating H-NS prefers AT-rich DNA. To date, highly detailed structural information of the H-NS DNA complex remains elusive. Molecular simulation can complement experiments by modelling structures and their time evolution in atomistic detail. In this paper we report an exploration of the different binding modes of H-NS to a high affinity nucleotide sequence and an estimate of the associated rate constant. By means of molecular dynamics simulations, we identified three types of binding for H-NS to AT-rich DNA. To further sample the transitions between these binding modes, we performed Replica Exchange Transition Interface Sampling, providing predictions of the mechanism and rate constant of H-NS binding to DNA. H-NS interacts with the DNA through a conserved QGR motif, aided by a conserved arginine at position 93. The QGR motif interacts first with phosphate groups, followed by the formation of hydrogen bonds between acceptors in the DNA minor groove and the sidechains of either Q112 or R114. After R114 inserts into the minor groove, the rest of the QGR motif follows. Full insertion of the QGR motif in the minor groove is stable over several tens of nanoseconds, and involves hydrogen bonds between the bases and both backbone and sidechains of the QGR motif. The rate constant for the process of H-NS binding to AT-rich DNA resulting in full insertion of the QGR motif is in the order of 106 M−1s−1, which is rate limiting compared to the non-specific association of H-NS to the DNA backbone at a rate of 108 M−1s−1. The Histone-like Nucleoid Structuring protein (H-NS) occurs in enterobacteria, such as Salmonella typhimurium and Escherichia coli, and structures DNA by forming filaments along DNA duplexes. Several nucleotide sequences have been identified to which H-NS binds with high affinity. Yet, obtaining highly detailed structural information of the H-NS DNA complex has proven to be a major challenge, which has not been yet resolved. By employing molecular dynamics simulations we were able to provide high resolution insights into the mechanism of DNA binding by H-NS. We identified various ways in which H-NS can bind to DNA. In all binding events, a conserved region in the protein initiates the association of H-NS to DNA. Our results show that H-NS binds in the minor groove of AT-rich DNA via a series of intermediate steps. Using advanced molecular simulation methods we predicted that the process of H-NS binding to the DNA backbone to full insertion into the minor groove occurs in the order of a million times per second, which is slower than the non-specific association of H-NS to the DNA backbone.
Collapse
|
3
|
Winardhi RS, Yan J, Kenney LJ. H-NS Regulates Gene Expression and Compacts the Nucleoid: Insights from Single-Molecule Experiments. Biophys J 2016; 109:1321-9. [PMID: 26445432 DOI: 10.1016/j.bpj.2015.08.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/07/2015] [Accepted: 08/12/2015] [Indexed: 10/23/2022] Open
Abstract
A set of abundant nucleoid-associated proteins (NAPs) play key functions in organizing the bacterial chromosome and regulating gene transcription globally. Histone-like nucleoid structuring protein (H-NS) is representative of a family of NAPs that are widespread across bacterial species. They have drawn extensive attention due to their crucial function in gene silencing in bacterial pathogens. Recent rapid progress in single-molecule manipulation and imaging technologies has made it possible to directly probe DNA binding by H-NS, its impact on DNA conformation and topology, and its competition with other DNA-binding proteins at the single-DNA-molecule level. Here, we review recent findings from such studies, and provide our views on how these findings yield new insights into the understanding of the roles of H-NS family members in DNA organization and gene silencing.
Collapse
Affiliation(s)
- Ricksen S Winardhi
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Physics, National University of Singapore, Singapore
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Physics, National University of Singapore, Singapore.
| | - Linda J Kenney
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
4
|
Brackley CA, Johnson J, Kelly S, Cook PR, Marenduzzo D. Simulated binding of transcription factors to active and inactive regions folds human chromosomes into loops, rosettes and topological domains. Nucleic Acids Res 2016; 44:3503-12. [PMID: 27060145 PMCID: PMC4856988 DOI: 10.1093/nar/gkw135] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 01/12/2023] Open
Abstract
Biophysicists are modeling conformations of interphase chromosomes, often basing the strengths of interactions between segments distant on the genetic map on contact frequencies determined experimentally. Here, instead, we develop a fitting-free, minimal model: bivalent or multivalent red and green 'transcription factors' bind to cognate sites in strings of beads ('chromatin') to form molecular bridges stabilizing loops. In the absence of additional explicit forces, molecular dynamic simulations reveal that bound factors spontaneously cluster-red with red, green with green, but rarely red with green-to give structures reminiscent of transcription factories. Binding of just two transcription factors (or proteins) to active and inactive regions of human chromosomes yields rosettes, topological domains and contact maps much like those seen experimentally. This emergent 'bridging-induced attraction' proves to be a robust, simple and generic force able to organize interphase chromosomes at all scales.
Collapse
Affiliation(s)
- Chris A Brackley
- SUPA, School of Physics & Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - James Johnson
- SUPA, School of Physics & Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Peter R Cook
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Davide Marenduzzo
- SUPA, School of Physics & Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| |
Collapse
|
5
|
Joyeux M. Equilibration of complexes of DNA and H-NS proteins on charged surfaces: a coarse-grained model point of view. J Chem Phys 2015; 141:115102. [PMID: 25240378 DOI: 10.1063/1.4895819] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Histone-like Nucleoid Structuring protein (H-NS) is a nucleoid-associated protein, which is involved in both gene regulation and DNA compaction. Although it is a key player in genome organization by forming bridges between DNA duplexes, the precise structure of complexes of DNA and H-NS proteins is still not well understood. In particular, it is not clear whether the structure of DNA/H-NS complexes in the living cell is similar to that of complexes deposited on mica surfaces, which may be observed by AFM microscopy. A coarse-grained model, which helps getting more insight into this question, is described and analyzed in the present paper. This model is able of describing both the bridging of bacterial DNA by H-NS in the bulk and the deposition and equilibration of the complex on a charged surface. Simulations performed with the model reveal that a slight attraction between DNA and the charged surface is sufficient to let DNA/H-NS complexes reorganize from 3D coils to planar plasmids bridged by H-NS proteins similar to those observed by AFM microscopy. They furthermore highlight the antagonistic effects of the interactions between DNA and the surface. Indeed, increasing these interactions slows down the equilibration of naked plasmids on the surface but, on the other hand, enables a faster equilibration of DNA/H-NS complexes. Based on the distribution of the lifetimes of H-NS bridges and the time evolution of the number of trans-binding protein dimers during equilibration of the complexes on the surface, it is argued that the decrease of the equilibration time of the complex upon increase of the interaction strength between DNA and the surface is ascribable to the associated decrease of the probability to form new bridges between DNA and the proteins.
Collapse
Affiliation(s)
- Marc Joyeux
- Laboratoire Interdisciplinaire de Physique (CNRS UMR5588), Université Joseph Fourier Grenoble 1, BP 87, 38402 St Martin d'Hères, France
| |
Collapse
|
6
|
Ramisetty SK, Dias RS. Synergistic role of DNA-binding protein and macromolecular crowding on DNA condensation. An experimental and theoretical approach. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.04.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Cherstvy AG, Petrov EP. Modeling DNA condensation on freestanding cationic lipid membranes. Phys Chem Chem Phys 2014; 16:2020-37. [PMID: 24343177 DOI: 10.1039/c3cp53433b] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Motivated by recent experimental observations of a rapid spontaneous DNA coil-globule transition on freestanding cationic lipid bilayers, we propose simple theoretical models for DNA condensation on cationic lipid membranes. First, for a single DNA rod, we examine the conditions of full wrapping of a cylindrical DNA-like semi-flexible polyelectrolyte by an oppositely charged membrane. Then, for two parallel DNA rods, we self-consistently analyze the shape and the extent of the membrane enveloping them, focusing on membrane elastic deformations and the membrane-DNA embracing angle, which enables us to compute the membrane-mediated DNA-DNA interactions. We examine the effects of the membrane composition and its charge density, which are the experimentally tunable parameters. We show that membrane-driven rod-rod attraction is more pronounced for higher charge densities and for smaller surface tensions of the membrane. Thus, we demonstrate that for a long DNA chain adhered to a cationic lipid membrane, such membrane-induced DNA-DNA attraction can trigger compaction of DNA.
Collapse
Affiliation(s)
- Andrey G Cherstvy
- Institute for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany.
| | | |
Collapse
|
8
|
Giangrossi M, Wintraecken K, Spurio R, de Vries R. Probing the relation between protein-protein interactions and DNA binding for a linker mutant of the bacterial nucleoid protein H-NS. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:339-45. [PMID: 24275506 DOI: 10.1016/j.bbapap.2013.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/29/2013] [Accepted: 11/15/2013] [Indexed: 10/26/2022]
Abstract
We have investigated the relationship between oligomerization in solution and DNA binding for the bacterial nucleoid protein H-NS. This was done by comparing oligomerization and DNA binding of H-NS with that of a H-NS D68V-D71V linker mutant. The double linker mutation D68V-D71V, that makes the linker significantly more hydrophobic, leads to a dramatically enhanced and strongly temperature-dependent H-NS oligomerization in solution, as detected by dynamic light scattering. The DNA binding affinity of H-NS D68V-D71V for the hns promoter region is lower and has stronger temperature dependence than that of H-NS. DNase I footprinting experiments show that at high concentrations, regions protected by H-NS D68V-D71V are larger and less defined than for H-NS. In vitro transcription assays show that the enhanced protection also leads to enhanced transcriptional repression. Whereas the lower affinity of the H-NS D68V-D71V for DNA could be caused by competition between oligomerization in solution and oligomerization on DNA, the larger size of protected regions clearly confirms the notion that cooperative binding of H-NS to DNA is related to protein-protein interactions. These results emphasize the relative contributions of protein-protein interactions and substrate-dependent oligomerization in the control of gene repression operated by H-NS.
Collapse
Affiliation(s)
- Mara Giangrossi
- University of Camerino, School of Biosciences and Biotechnologies, 62032 Camerino, MC, Italy
| | - Kathelijne Wintraecken
- Lab. Phys. Chem. Colloid Sci., Wageningen University, Dreijenplein 4, 6703 HB Wageningen, The Netherlands
| | - Roberto Spurio
- University of Camerino, School of Biosciences and Biotechnologies, 62032 Camerino, MC, Italy
| | - Renko de Vries
- Lab. Phys. Chem. Colloid Sci., Wageningen University, Dreijenplein 4, 6703 HB Wageningen, The Netherlands.
| |
Collapse
|
9
|
Zhou S. Density functional analysis of like-charged attraction between two similarly charged cylinder polyelectrolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:12490-12501. [PMID: 24020499 DOI: 10.1021/la402860r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A systematic theoretical investigation is performed for electrostatic potential of mean force (EPMF) between two similarly charged rods (modeling DNA) immersed in a primitive model electrolyte solution. Two scientific anomalies are disclosed: (i) although a like-charge attraction (LCA) generally becomes stronger with bulk electrolyte concentration, the opposite effect unexpectedly occurs if the two rod surfaces involved are sufficiently charged and (2) contrary to what is often asserted, that the presence of multivalent counterion is necessary to induce the LCA, it is found that the univalent counterion induces the LCA solely only if bulk electrolyte concentration rises sufficiently and the rod surface charge quantities are high. On the basis of the system energetics calculated first by a classical density functional theory in three-dimensional space, a hydrogen-bonding style mechanism is advanced to reveal the origin of the LCA, and by appealing to fairly common-sense concepts such as bond energy, bond length, number of hydrogen bonds formed, and counterion single-layer saturation adsorption capacity, the present mechanism successfully explains the scientific anomalies and effects of counterion and co-ion diameters in eliciting the LCA first investigated in this work. To add weight to the hydrogen-bonding style mechanism, a theoretical investigation is further performed regarding the effects of the rod surface charge density, co-ion valence, relative permittivity of the medium, temperature, nonelectrostatic interion interactions, and rod diameter in modifying the EPMF, and several novel phenomena are first confirmed, which is self-consistently explained by the present hydrogen-bonding style mechanism.
Collapse
Affiliation(s)
- Shiqi Zhou
- School of Physics and Electronics, Central South University , Changsha, Hunan 410083, China
| |
Collapse
|
10
|
Joyeux M, Vreede J. A model of H-NS mediated compaction of bacterial DNA. Biophys J 2013; 104:1615-22. [PMID: 23561538 DOI: 10.1016/j.bpj.2013.02.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/24/2013] [Accepted: 02/12/2013] [Indexed: 12/26/2022] Open
Abstract
The histone-like nucleoid structuring protein (H-NS) is a nucleoid-associated protein, which is involved in both gene regulation and DNA compaction. H-NS can bind to DNA in two different ways: in trans, by binding to two separate DNA duplexes, or in cis, by binding to different sites on the same duplex. Based on scanning force microscopy imaging and optical trap-driven unzipping assays, it has recently been suggested that DNA compaction may result from the antagonistic effects of H-NS binding to DNA in trans and cis configurations. To get more insight into the compaction mechanism, we constructed a coarse-grained model description of the compaction of bacterial DNA by H-NS. These simulations highlight the fact that DNA compaction indeed results from the subtle equilibrium between several competing factors, which include the deformation dynamics of the plasmid and the several binding modes of protein dimers to DNA, i.e., dangling configurations, cis- and trans-binding. In particular, the degree of compaction is extremely sensitive to the difference in binding energies of the cis and trans configurations. Our simulations also point out that the conformations of the DNA-protein complexes are significantly different in bulk and in planar conditions, suggesting that conformations observed on mica surfaces may differ significantly from those that prevail in living cells.
Collapse
Affiliation(s)
- Marc Joyeux
- Laboratoire Interdisciplinaire de Physique, Centre National de la Recherche Scientifique UMR5588, Université Joseph Fourier Grenoble 1, St. Martin d'Hères, France.
| | | |
Collapse
|
11
|
Nonspecific bridging-induced attraction drives clustering of DNA-binding proteins and genome organization. Proc Natl Acad Sci U S A 2013; 110:E3605-11. [PMID: 24003126 DOI: 10.1073/pnas.1302950110] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular dynamics simulations are used to model proteins that diffuse to DNA, bind, and dissociate; in the absence of any explicit interaction between proteins, or between templates, binding spontaneously induces local DNA compaction and protein aggregation. Small bivalent proteins form into rows [as on binding of the bacterial histone-like nucleoid-structuring protein (H-NS)], large proteins into quasi-spherical aggregates (as on nanoparticle binding), and cylinders with eight binding sites (representing octameric nucleosomal cores) into irregularly folded clusters (like those seen in nucleosomal strings). Binding of RNA polymerase II and a transcription factor (NFκB) to the appropriate sites on four human chromosomes generates protein clusters analogous to transcription factories, multiscale loops, and intrachromosomal contacts that mimic those found in vivo. We suggest that this emergent behavior of clustering is driven by an entropic bridging-induced attraction that minimizes bending and looping penalties in the template.
Collapse
|
12
|
Cherstvy AG, Teif VB. Structure-driven homology pairing of chromatin fibers: the role of electrostatics and protein-induced bridging. J Biol Phys 2013; 39:363-85. [PMID: 23860914 PMCID: PMC3689366 DOI: 10.1007/s10867-012-9294-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/11/2012] [Indexed: 11/26/2022] Open
Abstract
Chromatin domains formed in vivo are characterized by different types of 3D organization of interconnected nucleosomes and architectural proteins. Here, we quantitatively test a hypothesis that the similarities in the structure of chromatin fibers (which we call "structural homology") can affect their mutual electrostatic and protein-mediated bridging interactions. For example, highly repetitive DNA sequences in heterochromatic regions can position nucleosomes so that preferred inter-nucleosomal distances are preserved on the surfaces of neighboring fibers. On the contrary, the segments of chromatin fiber formed on unrelated DNA sequences have different geometrical parameters and lack structural complementarity pivotal for stable association and cohesion. Furthermore, specific functional elements such as insulator regions, transcription start and termination sites, and replication origins are characterized by strong nucleosome ordering that might induce structure-driven iterations of chromatin fibers. We propose that shape-specific protein-bridging interactions facilitate long-range pairing of chromatin fragments, while for closely-juxtaposed fibers electrostatic forces can in addition yield fine-tuned structure-specific recognition and pairing. These pairing effects can account for some features observed for mitotic and inter-phase chromatins.
Collapse
Affiliation(s)
- A G Cherstvy
- Institute for Physics and Astronomy, University of Potsdam, 14476, Potsdam-Golm, Germany.
| | | |
Collapse
|
13
|
Spiriti J, van der Vaart A. DNA Bending through Roll Angles Is Independent of Adjacent Base Pairs. J Phys Chem Lett 2012; 3:3029-3033. [PMID: 26292244 DOI: 10.1021/jz301227y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We have studied DNA bending for a wide range of DNA sequences by two-dimensional adaptive umbrella sampling simulations on adjacent roll angles. Calculated free energy surfaces are largely additive and can be well approximated by the sum of the one-dimensional free energy surfaces. Cooperativity between adjacent roll angles was found to be negligible: less than 1.0 kcal/mol and a small fraction of the overall bending energy. Our calculations validate the assumptions underlying many popular coarse-grained models for DNA bending, and demonstrate their theoretical validity for investigating DNA bending.
Collapse
Affiliation(s)
- Justin Spiriti
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue CHE 205, Tampa, Florida 33620, United States
| | - Arjan van der Vaart
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue CHE 205, Tampa, Florida 33620, United States
| |
Collapse
|
14
|
Lim CJ, Whang YR, Kenney LJ, Yan J. Gene silencing H-NS paralogue StpA forms a rigid protein filament along DNA that blocks DNA accessibility. Nucleic Acids Res 2011; 40:3316-28. [PMID: 22187157 PMCID: PMC3333869 DOI: 10.1093/nar/gkr1247] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nucleoid-associated proteins are bacterial proteins that are responsible for chromosomal DNA compaction and global gene regulation. One such protein is Escherichia coli Histone-like nucleoid structuring protein (H-NS) which functions as a global gene silencer. Whereas the DNA-binding mechanism of H-NS is well-characterized, its paralogue, StpA which is also able to silence genes is less understood. Here we show that StpA is similar to H-NS in that it is able to form a rigid filament along DNA. In contrast to H-NS, the StpA filament interacts with a naked DNA segment to cause DNA bridging which results in simultaneous stiffening and bridging of DNA. DNA accessibility is effectively blocked after the formation of StpA filament on DNA, suggesting rigid filament formation is the important step in promoting gene silencing. We also show that >1 mM magnesium promotes higher order DNA condensation, suggesting StpA may also play a role in chromosomal DNA packaging.
Collapse
Affiliation(s)
- Ci Ji Lim
- NUS Graduate school for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore, 119077, Singapore
| | | | | | | |
Collapse
|