1
|
Zhu B, Zhang C, Wang J, Jia C, Lu T, Dai L, Chen T. Scaling Laws for Protein Folding under Confinement. J Phys Chem Lett 2024; 15:10138-10145. [PMID: 39340464 DOI: 10.1021/acs.jpclett.4c02098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Spatial confinement significantly affects protein folding. Without the confinement provided by chaperones, many proteins cannot fold correctly. However, the quantitative effect of confinement on protein folding remains elusive. In this study, we observed scaling laws between the variation in folding transition temperature and the size of confinement, (Tf - Tfbulk)/Tfbulk ∼ L-ν. The scaling exponent v is significantly influenced by both the protein's topology and folding cooperativity. Specifically, for a given protein, v can decrease as the folding cooperativity of the model increases, primarily due to the heightened sensitivity of the unfolded state energy to changes in cage size. For proteins with diverse topologies, variations in topological complexity influence scaling exponents in multiple ways. Notably, v exhibits a clear positive correlation with contact order and the proportion of nonlocal contacts, as this complexity significantly enhances the sensitivity of entropy loss in the unfolded state. Furthermore, we developed a novel scaling argument yielding 5/3 ≤ ν ≤ 10/3, consistent with the simulation results.
Collapse
Affiliation(s)
- Bin Zhu
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Chenxi Zhang
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Jiwei Wang
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Chuandong Jia
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Teng Lu
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100083, China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, P. R. China
| | - Tao Chen
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
- Key Laboratory of Polymer Processing Engineering (South China University of Technology), Ministry of Education, Guangzhou 510641, China
| |
Collapse
|
2
|
Goutham S, Kumari I, Pally D, Singh A, Ghosh S, Akhter Y, Bhat R. Mutually exclusive locales for N-linked glycans and disorder in human glycoproteins. Sci Rep 2020; 10:6040. [PMID: 32269229 PMCID: PMC7142085 DOI: 10.1038/s41598-020-61427-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 01/30/2020] [Indexed: 11/08/2022] Open
Abstract
Several post-translational protein modifications lie predominantly within regions of disorder: the biased localization has been proposed to expand the binding versatility of disordered regions. However, investigating a representative dataset of 500 human N-glycoproteins, we observed the sites of N-linked glycosylations or N-glycosites, to be predominantly present in the regions of predicted order. When compared with disordered stretches, ordered regions were not found to be enriched for asparagines, serines and threonines, residues that constitute the sequon signature for conjugation of N-glycans. We then investigated the basis of mutual exclusivity between disorder and N-glycosites on the basis of amino acid distribution: when compared with control ordered residue stretches without any N-glycosites, residue neighborhoods surrounding N-glycosites showed a depletion of bulky, hydrophobic and disorder-promoting amino acids and an enrichment for flexible and accessible residues that are frequently found in coiled structures. When compared with control disordered residue stretches without any N-glycosites, N-glycosite neighborhoods were depleted of charged, polar, hydrophobic and flexible residues and enriched for aromatic, accessible and order-promoting residues with a tendency to be part of coiled and β structures. N-glycosite neighborhoods also showed greater phylogenetic conservation among amniotes, compared with control ordered regions, which in turn were more conserved than disordered control regions. Our results lead us to propose that unique primary structural compositions and differential propensities for evolvability allowed for the mutual spatial exclusion of N-glycosite neighborhoods and disordered stretches.
Collapse
Affiliation(s)
- Shyamili Goutham
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Sciences, Bangalore, 560012, India
| | - Indu Kumari
- School of Earth and Environmental Sciences, Central University of Himachal Pradesh, District-Kangra, Shahpur, Himachal Pradesh, 176206, India
| | - Dharma Pally
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Sciences, Bangalore, 560012, India
| | - Alvina Singh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Sciences, Bangalore, 560012, India
| | - Sujasha Ghosh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Sciences, Bangalore, 560012, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Ramray Bhat
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Sciences, Bangalore, 560012, India.
| |
Collapse
|
3
|
Bigman LS, Levy Y. Stability Effects of Protein Mutations: The Role of Long-Range Contacts. J Phys Chem B 2018; 122:11450-11459. [DOI: 10.1021/acs.jpcb.8b07379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lavi S. Bigman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yaakov Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
4
|
Cheng C, Wu J, Liu G, Shi S, Chen T. Effects of Non-native Interactions on Frustrated Proteins Folding under Confinement. J Phys Chem B 2018; 122:7654-7667. [DOI: 10.1021/acs.jpcb.8b04147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Chenqian Cheng
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Jing Wu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Gaoyuan Liu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Suqing Shi
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Tao Chen
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| |
Collapse
|
5
|
Role of glycosylation in nucleating protein folding and stability. Biochem J 2017; 474:2333-2347. [PMID: 28673927 DOI: 10.1042/bcj20170111] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 12/17/2022]
Abstract
Glycosylation constitutes one of the most common, ubiquitous and complex forms of post-translational modification. It commences with the synthesis of the protein and plays a significant role in deciding its folded state, oligomerization and thus its function. Recent studies have demonstrated that N-linked glycans help proteins to fold as the stability and folding kinetics are altered with the removal of the glycans from them. Several studies have shown that it alters not only the thermodynamic stability but also the structural features of the folded proteins modulating their interactions and functions. Their inhibition and perturbations have been implicated in diseases from diabetes to degenerative disorders. The intent of this review is to provide insight into the recent advancements in the general understanding on the aspect of glycosylation driven stability of proteins that is imperative to their function and finally their role in health and disease states.
Collapse
|
6
|
Hernández-Cancel G, Suazo-Dávila D, Ojeda-Cruzado AJ, García-Torres D, Cabrera CR, Griebenow K. Graphene oxide as a protein matrix: influence on protein biophysical properties. J Nanobiotechnology 2015; 13:70. [PMID: 26482026 PMCID: PMC4617716 DOI: 10.1186/s12951-015-0134-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/08/2015] [Indexed: 11/22/2022] Open
Abstract
Background This study provides fundamental information on the influence of graphene oxide (GO) nanosheets and glycans on protein catalytic activity, dynamics, and thermal stability. We provide evidence of protein stabilization by glycans and how this strategy could be implemented when GO nanosheets is used as protein immobilization matrix. A series of bioconjugates was constructed using two different strategies: adsorbing or covalently attaching native and glycosylated bilirubin oxidase (BOD) to GO. Results Bioconjugate formation was followed by FT-IR, zeta-potential, and X-ray photoelectron spectroscopy measurements. Enzyme kinetic parameters (km and kcat) revealed that the substrate binding affinity was not affected by glycosylation and immobilization on GO, but the rate of enzyme catalysis was reduced. Structural analysis by circular dichroism showed that glycosylation did not affect the tertiary or the secondary structure of BOD. However, GO produced slight changes in the secondary structure. To shed light into the biophysical consequence of protein glycosylation and protein immobilization on GO nanosheets, we studied structural protein dynamical changes by FT-IR H/D exchange and thermal inactivation. Conclusions It was found that glycosylation caused a reduction in structural dynamics that resulted in an increase in thermostability and a decrease in the catalytic activity for both, glycoconjugate and immobilized enzyme. These results establish the usefulness of chemical glycosylation to modulate protein structural dynamics and stability to develop a more stable GO-protein matrix. Electronic supplementary material The online version of this article (doi:10.1186/s12951-015-0134-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Dámaris Suazo-Dávila
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR, 00931, USA.
| | - Axel J Ojeda-Cruzado
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR, 00931, USA.
| | - Desiree García-Torres
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR, 00931, USA.
| | - Carlos R Cabrera
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR, 00931, USA.
| | - Kai Griebenow
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR, 00931, USA.
| |
Collapse
|
7
|
Pincus DL, Thirumalai D. Force-induced unzipping transitions in an athermal crowded environment. J Phys Chem B 2013; 117:13107-14. [PMID: 23789729 DOI: 10.1021/jp402922q] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using theoretical arguments and extensive Monte Carlo (MC) simulations of a coarse-grained three-dimensional off-lattice model of a β-hairpin, we demonstrate that the equilibrium critical force, Fc, needed to unfold the biopolymer increases nonlinearly with increasing volume fraction occupied by the spherical macromolecular crowding agent. Both scaling arguments and MC simulations show that the critical force increases as Fc ≈ φc(α). The exponent α is linked to the Flory exponent relating the size of the unfolded state of the biopolymer and the number of amino acids. The predicted power law dependence is confirmed in simulations of the dependence of the isothermal extensibility and the fraction of native contacts on φc. We also show using MC simulations that Fc is linearly dependent on the average osmotic pressure (P) exerted by the crowding agents on the β-hairpin. The highly significant linear correlation coefficient of 0.99657 between Fc and P makes it straightforward to predict the dependence of the critical force on the density of crowders. Our predictions are amenable to experimental verification using laser optical tweezers.
Collapse
Affiliation(s)
- David L Pincus
- Institute for Physical Science and Technology, University of Maryland , College Park, Maryland 20742, United States
| | | |
Collapse
|
8
|
Fonseca-Maldonado R, Vieira DS, Alponti JS, Bonneil E, Thibault P, Ward RJ. Engineering the pattern of protein glycosylation modulates the thermostability of a GH11 xylanase. J Biol Chem 2013; 288:25522-25534. [PMID: 23846692 DOI: 10.1074/jbc.m113.485953] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein glycosylation is a common post-translational modification, the effect of which on protein conformational and stability is incompletely understood. Here we have investigated the effects of glycosylation on the thermostability of Bacillus subtilis xylanase A (XynA) expressed in Pichia pastoris. Intact mass analysis of the heterologous wild-type XynA revealed two, three, or four Hex(8-16)GlcNAc2 modifications involving asparagine residues at positions 20, 25, 141, and 181. Molecular dynamics (MD) simulations of the XynA modified with various combinations of branched Hex9GlcNAc2 at these positions indicated a significant contribution from protein-glycan interactions to the overall energy of the glycoproteins. The effect of glycan content and glycosylation position on protein stability was evaluated by combinatorial mutagenesis of all six potential N-glycosylation sites. The majority of glycosylated enzymes expressed in P. pastoris presented increased thermostability in comparison with their unglycosylated counterparts expressed in Escherichia coli. Steric effects of multiple glycosylation events were apparent, and glycosylation position rather than the number of glycosylation events determined increases in thermostability. The MD simulations also indicated that clustered glycan chains tended to favor less stabilizing glycan-glycan interactions, whereas more dispersed glycosylation patterns favored stabilizing protein-glycan interactions.
Collapse
Affiliation(s)
- Raquel Fonseca-Maldonado
- From the Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo CEP 14049-900, Brazil
| | - Davi Serradella Vieira
- the Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo CEP 14049-901, Brazil
| | - Juliana Sanchez Alponti
- the Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo CEP 14049-901, Brazil
| | - Eric Bonneil
- the Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada, and
| | - Pierre Thibault
- the Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada, and
| | - Richard John Ward
- the Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo CEP 14049-901, Brazil,; the Laboratório Nacional de Ciência e Tecnologia do Bioetanol/Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo CEP 13083-970, Brazil.
| |
Collapse
|
9
|
Where soft matter meets living matter--protein structure, stability, and folding in the cell. Curr Opin Struct Biol 2013; 23:212-7. [PMID: 23474325 DOI: 10.1016/j.sbi.2013.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 02/08/2013] [Accepted: 02/13/2013] [Indexed: 01/06/2023]
Abstract
A protein is a biopolymer that self-assembles through the process of protein folding. A cell is a crowded space where the surrounding macromolecules of a protein can limit the number of ways of folding. These crowding macromolecules can also affect the shape and the size of a physically malleable, or 'soft, squishy', protein with regulatory purposes. In this review, we focus on the in silico approaches of coarse-grained molecular simulations that enable the investigation of protein folding in a cell-like environment. When these simulation results were compared with experimentally measured properties of a protein, such joint effort has yielded new ideas on the specific function of a protein in cells. We also highlighted the recent developments of computer modeling and simulations that encompass the importance of the shape of a macromolecule, the interactions between macromolecules, and the hydrodynamic interactions on the kinetics and thermodynamics of a protein in a high concentration of protein solution and in cytoplasmic environments.
Collapse
|