Katsuki H, Ohmori K. Simultaneous manipulation and observation of multiple ro-vibrational eigenstates in solid para-hydrogen.
J Chem Phys 2016;
145:124316. [PMID:
27782629 DOI:
10.1063/1.4963223]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We have experimentally performed the coherent control of delocalized ro-vibrational wave packets (RVWs) of solid para-hydrogen (p-H2) by the wave packet interferometry (WPI) combined with coherent anti-Stokes Raman scattering (CARS). RVWs of solid p-H2 are delocalized in the crystal, and the wave function with wave vector k ∼ 0 is selectively excited via the stimulated Raman process. We have excited the RVW twice by a pair of femtosecond laser pulses with delay controlled by a stabilized Michelson interferometer. Using a broad-band laser pulse, multiple ro-vibrational states can be excited simultaneously. We have observed the time-dependent Ramsey fringe spectra as a function of the inter-pulse delay by a spectrally resolved CARS technique using a narrow-band probe pulse, resolving the different intermediate states. Due to the different fringe oscillation periods among those intermediate states, we can manipulate their amplitude ratio by tuning the inter-pulse delay on the sub-femtosecond time scale. The state-selective manipulation and detection of the CARS signal combined with the WPI is a general and efficient protocol for the control of the interference of multiple quantum states in various quantum systems.
Collapse