1
|
Zhang Z, Han Y, Chen WR, Do C. Diffusion characteristics of water molecules in a lamellar structure formed by triblock copolymers. Phys Chem Chem Phys 2022; 24:8015-8021. [PMID: 35315475 DOI: 10.1039/d2cp00207h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The distribution and diffusion of water molecules are playing important roles in determining self-assembly and transport properties of polymeric systems. Small-angle neutron scattering (SANS) experiments and molecular dynamics (MD) simulation have been applied to understand the distribution of water molecules and their dynamics in the lamellar membrane formed by Pluronic L62 block copolymers. Penetration of water molecules into the polyethylene oxide (PEO) layers of the membranes has been estimated using scattering length density (SLD) profiles obtained from SANS measurements, which agree well with the molecular distribution observed from MD simulations. The water diffusion coefficient at different regions of the lamellar membrane was further investigated using MD simulation. The diffusion characteristic shows a transition from normal to anomalous diffusion as the position of the water molecule changes from the bulk to PEO and to the polypropylene oxide (PPO) layer. We find that water molecules within the PEO or PPO layers follow subdiffusive dynamics, which can be interpreted by the model of fractional Brownian motion.
Collapse
Affiliation(s)
- Zhe Zhang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA. .,Forschungszentrum Jülich, Jülich Center for Neutron Science, Outstation at the Spallation Neutron Source (SNS), Oak Ridge National Laboratory, Oak Ridge Tennessee, 37831, USA
| | - Youngkyu Han
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Wei-Ren Chen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
2
|
Huang GR, Tung CH, Chang D, Lam CN, Do C, Shinohara Y, Chang SY, Wang Y, Hong K, Chen WR. Determining population densities in bimodal micellar solutions using contrast-variation small angle neutron scattering. J Chem Phys 2020; 153:184902. [PMID: 33187411 DOI: 10.1063/5.0024410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Self-assembly of amphiphilic polymers in water is of fundamental and practical importance. Significant amounts of free unimers and associated micellar aggregates often coexist over a wide range of phase regions. The thermodynamic and kinetic properties of the microphase separation are closely related to the relative population density of unimers and micelles. Although the scattering technique has been employed to identify the structure of micellar aggregates as well as their time-evolution, the determination of the population ratio of micelles to unimers remains a challenging problem due to their difference in scattering power. Here, using small-angle neutron scattering (SANS), we present a comprehensive structural study of amphiphilic n-dodecyl-PNIPAm polymers, which shows a bimodal size distribution in water. By adjusting the deuterium/hydrogen ratio of water, the intra-micellar polymer and water distributions are obtained from the SANS spectra. The micellar size and number density are further determined, and the population densities of micelles and unimers are calculated to quantitatively address the degree of micellization at different temperatures. Our method can be used to provide an in-depth insight into the solution properties of microphase separation, which are present in many amphiphilic systems.
Collapse
Affiliation(s)
- Guan-Rong Huang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Chi-Huan Tung
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Dongsook Chang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Christopher N Lam
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Yuya Shinohara
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Shou-Yi Chang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yangyang Wang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Wei-Ren Chen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
3
|
Wang Z, Faraone A, Yin P, Porcar L, Liu Y, Do C, Hong K, Chen WR. Dynamic Equivalence between Soft Star Polymers and Hard Spheres. ACS Macro Lett 2019; 8:1467-1473. [PMID: 35651190 DOI: 10.1021/acsmacrolett.9b00617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the dynamics of soft colloids, such as star polymers, dendrimers, and microgels, is of scientific and practical importance. It is known that the excluded volume effect plays a key role in colloidal dynamics. Here, we propose a condition of compressibility equivalence that provides a simple method to experimentally evaluate the excluded volume of soft colloids from a thermodynamic view. We apply this condition to survey the dynamics of a series of star polymer dispersions. It is found that, as the concentration increases, the slowing of the long-time self-diffusivity of the star polymer, normalized by the short-time self-diffusivity, can be mapped onto the hard-sphere behavior. This phenomenon reveals the dynamic equivalence between soft colloids and hard spheres, despite the apparent complexity of the interparticle interaction of the soft colloids. The methods for measuring the osmotic compressibility and the self-diffusivities of soft colloidal dispersions are also presented.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Engineering Physics and Key Laboratory of Particle and Radiation Imaging (Tsinghua University) of Ministry of Education, Tsinghua University, Beijing 100084, China.,Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Antonio Faraone
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6100, United States
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Lionel Porcar
- Institut Laue-Langevin, B.P. 156, F-38042 Grenoble CEDEX 9, France
| | - Yun Liu
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6100, United States
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Wei-Ren Chen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
4
|
Nikam R, Xu X, Ballauff M, Kanduč M, Dzubiella J. Charge and hydration structure of dendritic polyelectrolytes: molecular simulations of polyglycerol sulphate. SOFT MATTER 2018; 14:4300-4310. [PMID: 29780980 PMCID: PMC5977385 DOI: 10.1039/c8sm00714d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
Macromolecules based on dendritic or hyperbranched polyelectrolytes have been emerging as high potential candidates for biomedical applications. Here we study the charge and solvation structure of dendritic polyglycerol sulphate (dPGS) of generations 0 to 3 in aqueous sodium chloride solution by explicit-solvent molecular dynamics computer simulations. We characterize dPGS by calculating several important properties such as relevant dPGS radii, molecular distributions, the solvent accessible surface area, and the partial molecular volume. In particular, as the dPGS exhibits high charge renormalization effects, we address the challenges of how to obtain a well-defined effective charge and surface potential of dPGS for practical applications. We compare implicit- and explicit-solvent approaches in our all-atom simulations with the coarse-grained simulations from our previous work. We find consistent values for the effective electrostatic size (i.e., the location of the effective charge of a Debye-Hückel sphere) within all the approaches, deviating at most by the size of a water molecule. Finally, the excess chemical potential of water insertion into dPGS and its thermodynamic signature are presented and rationalized.
Collapse
Affiliation(s)
- Rohit Nikam
- Research Group Simulations of Energy Materials
, Helmholtz-Zentrum Berlin für Materialien und Energie
,
Hahn-Meitner-Platz 1
, D-14109 Berlin
, Germany
.
;
- Institut für Physik
, Humboldt-Universität zu Berlin
,
Newtonstr. 15
, D-12489 Berlin
, Germany
| | - Xiao Xu
- School of Chemical Engineering
, Nanjing University of Science and Technology
,
200 Xiao Ling Wei
, Nanjing 210094
, P. R. China
| | - Matthias Ballauff
- Institut für Physik
, Humboldt-Universität zu Berlin
,
Newtonstr. 15
, D-12489 Berlin
, Germany
- Soft Matter and Functional Materials
, Helmholtz-Zentrum Berlin für Materialien und Energie
,
Hahn-Meitner-Platz 1
, D-14109 Berlin
, Germany
- Multifunctional Biomaterials for Medicine
, Helmholtz Virtual Institute
,
Kantstr. 55
, D-14513 Teltow-Seehof
, Germany
| | - Matej Kanduč
- Research Group Simulations of Energy Materials
, Helmholtz-Zentrum Berlin für Materialien und Energie
,
Hahn-Meitner-Platz 1
, D-14109 Berlin
, Germany
.
;
| | - Joachim Dzubiella
- Research Group Simulations of Energy Materials
, Helmholtz-Zentrum Berlin für Materialien und Energie
,
Hahn-Meitner-Platz 1
, D-14109 Berlin
, Germany
.
;
- Physikalisches Institut
, Albert-Ludwigs-Universität Freiburg
,
Hermann-Herder Str. 3
, D-79104 Freiburg
, Germany
.
| |
Collapse
|
5
|
Freire JJ, Rubio AM. Binary Intermolecular Potential and Scattering Curves of PAMAM-EDA Dendrimers. MACROMOL THEOR SIMUL 2018. [DOI: 10.1002/mats.201800004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Juan J. Freire
- Departamento de Ciencias y Técnicas Fisicoquímicas; Facultad de Ciencias; Universidad Nacional de Educación a Distancia (UNED); Paseo Senda del Rey 9 28040 Madrid Spain
| | - Ana M. Rubio
- Departamento de Química Física; Facultad de Ciencias Químicas; Universidad Complutense; 28040 Madrid Spain
| |
Collapse
|
6
|
Perspectives on dendritic architectures and their biological applications: From core to cell. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:61-83. [PMID: 28564631 DOI: 10.1016/j.jphotobiol.2017.05.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 12/24/2022]
Abstract
The challenges of medicine today include the increasing stipulation for sensitive and effective systems that can improve the pathological responses with a simultaneous reduction in accumulation and drug side effects. The demand can be fulfilled through the advancements in nanomedicine that includes nanostructures and nanodevices for diagnosing, treating, and prevention of various diseases. In this respect, the nanoscience provides various novel techniques with carriers such as micelles, dendrimers, particles and vesicles for the transportation of active moieties. Further, an efficient way to improve these systems is through stimuli a responsive system that utilizes supramolecular hyperbranched structures to meet the above criteria. The stimuli-responsive dendritic architectures exhibit spatial, temporal, convenient, effective, safety and controlled drug release in response to specific trigger through electrostatic interactions plus π stacking. The stimuli-responsive systems are capable of sequestering the drug molecules underneath a predefined set of conditions and discharge them in a different environment through either exogenous or endogenous stimulus. The incorporation of photoresponsive moieties at various components of dendrimer such as core, branches or at the peripheral end exaggerates its significance in various allied fields of nanotechnology which includes sensors, photoswitch, electronic widgets and in drug delivery systems. This is due to the light instigated geometrical modifications at the core or at the surface molecules which generates huge conformational changes throughout the hyperbranched structure. Further, numerous synthetic methodologies have been investigated for utilization of dendrimers in therapeutic drug delivery and its applicability towards stimuli responsive systems such as photo-instigated, thermal-instigated, and pH-instigated hyperbranched structures and their advancement in the field of nanomedicine. This paper highlights the fascinating theoretical advances and principal mechanisms of dendrimer synthesis and their ability to capture light that strengthens its applicability from radiant energy to medical photonics.
Collapse
|
7
|
Impact of Dendrimer Terminal Group Chemistry on Blockage of the Anthrax Toxin Channel: A Single Molecule Study. Toxins (Basel) 2016; 8:toxins8110337. [PMID: 27854272 PMCID: PMC5127133 DOI: 10.3390/toxins8110337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022] Open
Abstract
Nearly all the cationic molecules tested so far have been shown to reversibly block K⁺ current through the cation-selective PA63 channels of anthrax toxin in a wide nM-mM range of effective concentrations. A significant increase in channel-blocking activity of the cationic compounds was achieved when multiple copies of positively charged ligands were covalently linked to multivalent scaffolds, such as cyclodextrins and dendrimers. Even though multivalent binding can be strong when the individual bonds are relatively weak, for drug discovery purposes we often strive to design multivalent compounds with high individual functional group affinity toward the respective binding site on a multivalent target. Keeping this requirement in mind, here we perform a single-channel/single-molecule study to investigate kinetic parameters of anthrax toxin PA63 channel blockage by second-generation (G2) poly(amido amine) (PAMAM) dendrimers functionalized with different surface ligands, including G2-NH₂, G2-OH, G2-succinamate, and G2-COONa. We found that the previously reported difference in IC50 values of the G2-OH/PA63 and G2-NH₂/PA63 binding was determined by both on- and off-rates of the reversible dendrimer/channel binding reaction. In 1 M KCl, we observed a decrease of about three folds in k o n and a decrease of only about ten times in t r e s with G2-OH compared to G2-NH₂. At the same time for both blockers, k o n and t r e s increased dramatically with transmembrane voltage increase. PAMAM dendrimers functionalized with negatively charged succinamate, but not carboxyl surface groups, still had some residual activity in inhibiting the anthrax toxin channels. At 100 mV, the on-rate of the G2-succinamate binding was comparable with that of G2-OH but showed weaker voltage dependence when compared to G2-OH and G2-NH₂. The residence time of G2-succinamate in the channel exhibited opposite voltage dependence compared to G2-OH and G2-NH₂, increasing with the cis-negative voltage increase. We also describe kinetics of the PA63 ion current modulation by two different types of the "imperfect" PAMAM dendrimers, the mixed-surface G2 75% OH 25% NH₂ dendrimer and G3-NH₂ dendron. At low voltages, both "imperfect" dendrimers show similar rate constants but significantly weaker voltage sensitivity when compared with the intact G2-NH₂ PAMAM dendrimer.
Collapse
|
8
|
Zhang Z, Ohl M, Diallo SO, Jalarvo NH, Hong K, Han Y, Smith GS, Do C. Dynamics of Water Associated with Lithium Ions Distributed in Polyethylene Oxide. PHYSICAL REVIEW LETTERS 2015; 115:198301. [PMID: 26588420 DOI: 10.1103/physrevlett.115.198301] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Indexed: 05/25/2023]
Abstract
The dynamics of water in polyethylene oxide (PEO)/LiCl solution has been studied with quasielastic neutron scattering experiments and molecular dynamics (MD) simulations. Two different time scales of water diffusion representing interfacial water and bulk water dynamics have been identified. The measured diffusion coefficient of interfacial water remained 5-10 times smaller than that of bulk water, but both were slowed by approximately 50% in the presence of Li(+). Detailed analysis of MD trajectories suggests that Li(+) is favorably found at the surface of the hydration layer, and the probability to find the caged Li(+) configuration formed by the PEO is lower than for the noncaged Li(+)-PEO configuration. In both configurations, however, the slowing down of water molecules is driven by reorienting water molecules and creating water-Li(+) hydration complexes. Performing the MD simulation with different ions (Na(+) and K(+)) revealed that smaller ionic radius of the ions is a key factor in disrupting the formation of PEO cages by allowing spaces for water molecules to come in between the ion and PEO.
Collapse
Affiliation(s)
- Zhe Zhang
- Biology and Soft-Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Forschungszentrum Jülich, Jülich Center for Neutron Science, Outstation at the Spallation Neutron Source (SNS), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Michael Ohl
- Forschungszentrum Jülich, Jülich Center for Neutron Science, Outstation at the Spallation Neutron Source (SNS), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Souleymane O Diallo
- Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Niina H Jalarvo
- Forschungszentrum Jülich, Jülich Center for Neutron Science, Outstation at the Spallation Neutron Source (SNS), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Kunlun Hong
- Center For Nanophase Materials Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Youngkyu Han
- Biology and Soft-Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Gregory S Smith
- Biology and Soft-Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Changwoo Do
- Biology and Soft-Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
9
|
Narsireddy A, Vijayashree K, Adimoolam MG, Manorama SV, Rao NM. Photosensitizer and peptide-conjugated PAMAM dendrimer for targeted in vivo photodynamic therapy. Int J Nanomedicine 2015; 10:6865-78. [PMID: 26604753 PMCID: PMC4639554 DOI: 10.2147/ijn.s89474] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Challenges in photodynamic therapy (PDT) include development of efficient near infrared-sensitive photosensitizers (5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphine [PS]) and targeted delivery of PS to the tumor tissue. In this study, a dual functional dendrimer was synthesized for targeted PDT. For targeting, a poly(amidoamine) dendrimer (G4) was conjugated with a PS and a nitrilotriacetic acid (NTA) group. A peptide specific to human epidermal growth factor 2 was expressed in Escherichia coli with a His-tag and was specifically bound to the NTA group on the dendrimer. Reaction conditions were optimized to result in dendrimers with PS and the NTA at a fractional occupancy of 50% and 15%, respectively. The dendrimers were characterized by nuclear magnetic resonance, matrix-assisted laser desorption/ionization, absorbance, and fluorescence spectroscopy. Using PS fluorescence, cell uptake of these particles was confirmed by confocal microscopy and fluorescence-activated cell sorting. PS-dendrimers are more efficient than free PS in PDT-mediated cell death assays in HER2 positive cells, SK-OV-3. Similar effects were absent in HER2 negative cell line, MCF-7. Compared to free PS, the PS-dendrimers have shown significant tumor suppression in a xenograft animal tumor model. Conjugation of a PS with dendrimers and with a targeting agent has enhanced photodynamic therapeutic effects of the PS.
Collapse
Affiliation(s)
| | | | | | | | - Nalam M Rao
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
10
|
Eremin RA, Kholmurodov KT, Petrenko VI, Rosta L, Grigoryeva NA, Avdeev MV. On the microstructure of organic solutions of mono-carboxylic acids: Combined study by infrared spectroscopy, small-angle neutron scattering and molecular dynamics simulations. Chem Phys 2015. [DOI: 10.1016/j.chemphys.2015.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Geitner NK, Wang B, Andorfer RE, Ladner DA, Ke PC, Ding F. Structure-function relationship of PAMAM dendrimers as robust oil dispersants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:12868-12875. [PMID: 25279688 DOI: 10.1021/es5038194] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
PAMAM dendrimers have recently been investigated as efficient and biocompatible oil dispersants utilizing their encapsulation capacity; however, their high cationic charge density has been shown to be cytotoxic. It is therefore imperative to mitigate cationic charge-induced toxicity and understand the effects of such changes. Presented here is a synergistic experimental and computational approach to examine the effects of varying terminal surface charge on the capacity of dendrimers to disperse model liner, polycyclic aromatic, and hybrid hydrocarbons. Uncharged dendrimers collapse by forming intramolecular hydrogen bonds, which reduce the hosting capability. On the other hand, changing the surface charges from positive to negative greatly shifts the pKa of tertiary amines of the PAMAM dendrimer interior. As a result, the negatively charged dendrimers have a significant percentage of tertiary amines protonated, ∼30%. This unexpected change in the interior protonation state causes electrostatic interactions with the anionic terminal groups, leading to contraction and a marked decrease in hydrocarbon hosting capacity. The present work highlights the robust nature of dendrimer oil dispersion and also illuminates potentially unintended or unanticipated effects of varying dendrimer surface chemistry on their encapsulation or hosting efficacy, which is important for their environmental, industrial, and biomedical applications.
Collapse
Affiliation(s)
- Nicholas K Geitner
- Department of Physics and Astronomy and ‡Department of Environmental Engineering and Earth Sciences, Clemson University , Clemson, South Carolina 29634, United States
| | | | | | | | | | | |
Collapse
|
12
|
Zhang Z, Carrillo JMY, Ahn SK, Wu B, Hong K, Smith GS, Do C. Atomistic Structure of Bottlebrush Polymers: Simulations and Neutron Scattering Studies. Macromolecules 2014. [DOI: 10.1021/ma500613c] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | - Bin Wu
- Department
of Physics and Astronomy, Joint Institute for Neutron Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| | | | | | | |
Collapse
|
13
|
Drug-dendrimer supramolecular complexation studied from molecular dynamics simulations and NMR spectroscopy. Struct Chem 2014. [DOI: 10.1007/s11224-014-0424-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Ma C, Piccinin S, Fabris S. Interface structure and reactivity of water-oxidation Ru-polyoxometalate catalysts on functionalized graphene electrodes. Phys Chem Chem Phys 2014; 16:5333-41. [PMID: 24496469 DOI: 10.1039/c3cp54943g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We combine classical empirical potentials and density functional theory (DFT) calculations to characterize the catalyst/electrode interface of a promising device for artificial photosynthesis. This system consists of inorganic Ru-polyoxometalate (Ru-POM) molecules that are supported by a graphitic substrate functionalized with organic dendrimers. The experimental atomic-scale characterization of the active interface under working conditions is hampered by the complexity of its structure, composition, as well as by the presence of the electrolyte or solvent. We provide a detailed atomistic model of the electrode/catalyst interface and show that the catalyst anchoring is remarkably dependent on water solvation. A tight host-guest binding geometry between the surface dendrimers and the Ru-POM catalyst is predicted under vacuum conditions. The solvent destabilizes this geometry, leads to unfolding of the dendrimers and to their flattening on the graphitic surface. The Ru-POM catalyst binds to this organic interlayer through a stable electrostatic link between one POM termination and the charged terminations of the dendrimers. The calculated dynamics and mobility of the Ru-POM catalyst at the electrode surface are in fair agreement with the available high-resolution transmission electron microscopy data. In addition, we demonstrate that the high thermodynamic water-oxidation efficiency of the Ru-POM catalyst is not affected by the binding to the electrode, thus rationalizing the similar electrochemical performances measured for homogeneous and heterogeneous Ru-POM catalysts.
Collapse
Affiliation(s)
- Changru Ma
- SISSA, Scuola Internazionale Superiore degli Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy.
| | | | | |
Collapse
|
15
|
Tian WD, Ma YQ. Theoretical and computational studies of dendrimers as delivery vectors. Chem Soc Rev 2013; 42:705-27. [PMID: 23114420 DOI: 10.1039/c2cs35306g] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It is a great challenge for nanomedicine to develop novel dendrimers with maximum therapeutic potential and minimum side-effects for drug and gene delivery. As delivery vectors, dendrimers must overcome lots of barriers before delivering the bio-agents to the target in the cell. Extensive experimental investigations have been carried out to elucidate the physical and chemical properties of dendrimers and explore their behaviors when interacting with biomolecules, such as gene materials, proteins, and lipid membranes. As a supplement of the experimental techniques, it has been proved that computer simulations could facilitate the progress in understanding the delivery process of bioactive molecules. The structures of dendrimers in dilute solutions have been intensively investigated by monomer-resolved simulations, coarse-grained simulations, and atom-resolved simulations. Atomistic simulations have manifested that the hydrophobic interactions, hydrogen-bond interactions, and electrostatic attraction play critical roles in the formation of dendrimer-drug complexes. Multiscale simulations and statistical field theories have uncovered some physical mechanisms involved in the dendrimer-based gene delivery systems. This review will focus on the current status and perspective of theoretical and computational contributions in this field in recent years. (275 references).
Collapse
Affiliation(s)
- Wen-de Tian
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | | |
Collapse
|
16
|
Eremin RA, Kholmurodov K, Petrenko VI, Rosta L, Avdeev MV. Effect of the solute–solvent interface on small-angle neutron scattering from organic solutions of short alkyl chain molecules as revealed by molecular dynamics simulation. J Appl Crystallogr 2013. [DOI: 10.1107/s002188981205131x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The problem of describing the experimental small-angle neutron scattering (SANS) from diluted solutions of saturated monocarboxylic acids with short chain lengths (myristic and stearic acids) in deuterated decalin is considered. The method of classical molecular dynamics simulation (MDS) is used to obtain the atomic number density distributions, and, as a consequence, the scattering length density (SLD) distribution in the solute–solvent interface area (about 1 nm around the acid molecules), assuming the acid molecules to be rigid and non-associated in the solutions. MDS is performed for solutions in a parallelepiped cell of 5.5 × 5.3 × 5.3 nm (one acid molecule per cell) under normal conditions. The time averaging of the obtained distributions is done over 2 ns (after the system thermalization). It is shown that a specific short-range ordering organization of the solvent molecules in the vicinity of the acid molecules has a significant effect on the scattering, which is mainly determined by a relatively large ratio between the effective size of the solvent molecule and the cross-section diameter of the acid molecule. Various approximations to the simulated SLD distributions, based on the cylinder-type symmetry of the acid molecules, are probed to achieve the best consistency with the experimental SANS curves by varying the residual incoherent background.
Collapse
|
17
|
Ibrahim A, Koval D, Kašička V, Faye C, Cottet H. Effective Charge Determination of Dendrigraft Poly-l-lysine by Capillary Isotachophoresis. Macromolecules 2012. [DOI: 10.1021/ma302125f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Amal Ibrahim
- Institut des
Biomolécules
Max Mousseron, UMR 5247 CNRS, Université de Montpellier 1 and Université de Montpellier 2, place Eugène
Bataillon CC 1706, 34095 Montpellier Cedex 5, France
| | - Dušan Koval
- Institute of Organic Chemistry
and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry
and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Clément Faye
- COLCOM, Cap Alpha Avenue de l’Europe, Clapiers 34940 Montpellier,
France
| | - Hervé Cottet
- Institut des
Biomolécules
Max Mousseron, UMR 5247 CNRS, Université de Montpellier 1 and Université de Montpellier 2, place Eugène
Bataillon CC 1706, 34095 Montpellier Cedex 5, France
| |
Collapse
|
18
|
Wu B, Chen WR, Egami T, Li X, Liu Y, Wang Y, Do C, Porcar L, Hong K, Liu L, Smith GS, Smith SC. Molecular dynamics and neutron scattering study of the dependence of polyelectrolyte dendrimer conformation on counterion behavior. J Chem Phys 2012; 137:064902. [DOI: 10.1063/1.4742190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|