1
|
Absorption of pressurized methane in normal and supercooled p-xylene revealed via high-resolution neutron imaging. Sci Rep 2023; 13:136. [PMID: 36599907 DOI: 10.1038/s41598-022-27142-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Supercooling of liquids leads to peculiarities which are scarcely studied under high-pressure conditions. Here, we report the surface tension, solubility, diffusivity, and partial molar volume for normal and supercooled liquid solutions of methane with p-xylene. Liquid bodies of perdeuterated p-xylene (p-C8D10), and, for comparison, o-xylene (o-C8D10), were exposed to pressurized methane (CH4, up to 101 bar) at temperatures ranging 7.0-30.0 °C and observed at high spatial resolution (pixel size 20.3 μm) using a non-tactile neutron imaging method. Supercooling led to the increase of diffusivity and partial molar volume of methane. Solubility and surface tension were insensitive to supercooling, the latter substantially depended on methane pressure. Overall, neutron imaging enabled to reveal and quantify multiple phenomena occurring in supercooled liquid p-xylene solutions of methane under pressures relevant to the freeze-out in the production of liquefied natural gas.
Collapse
|
2
|
Vasisht VV, Del Gado E. Computational study of transient shear banding in soft jammed solids. Phys Rev E 2020; 102:012603. [PMID: 32795069 DOI: 10.1103/physreve.102.012603] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 05/29/2020] [Indexed: 11/07/2022]
Abstract
We have designed three-dimensional numerical simulations of a soft spheres model, with size polidispersity and in athermal conditions, to study the transient shear banding that occurs during yielding of jammed soft solids. We analyze the effects of different types of drag coefficients used in the simulations and compare the results obtained using Lees-Edwards periodic boundary conditions with the case in which the same model solid is confined between two walls. The specific damping mechanism and the different boundary conditions indeed modify the load curves and the velocity profiles in the transient regime. Nevertheless, we find that the presence of a stress overshoot and of a related transient banding phenomenon, for large enough samples, is a robust feature for overdamped systems, where their presence do not depend on the specific drag used and on the different boundary conditions.
Collapse
Affiliation(s)
- Vishwas V Vasisht
- Indian Institute of Technology Palakkad, Ahalia Integrated Campus, Kozhippara P.O. - Palakkad, Kerala 678557, India.,Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets, N.W., Washington, DC 20057, USA
| | - Emanuela Del Gado
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets, N.W., Washington, DC 20057, USA
| |
Collapse
|
3
|
Vasisht VV, Roberts G, Del Gado E. Emergence and persistence of flow inhomogeneities in the yielding and fluidization of dense soft solids. Phys Rev E 2020; 102:010604. [PMID: 32794923 DOI: 10.1103/physreve.102.010604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
In three-dimensional computer simulations of model non-Brownian jammed suspensions, we compute the time required to reach homogeneous flow upon yielding, by analyzing stresses and particle packing at different shear rates, with and without confinement. We show that the stress overshoot and persistent shear banding preceding the complete fluidization are controlled by the presence of overconstrained microscopic domains in the initial solids. Such domains, identifiable with icosahedrally packed regions in the model used, allow for stress accumulation during the shear startup. Their structural reorganization under deformation controls the emergence and the persistence of the shear banding.
Collapse
Affiliation(s)
- Vishwas Venkatesh Vasisht
- Indian Institute of Technology Palakkad, Ahalia Integrated Campus, Kozhippara P. O, Palakkad, Kerala 678557, India and Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets, N.W., Washington, DC 20057, USA
| | - Gabrielle Roberts
- Department of Physics, University of Chicago, 5720 South Ellis Avenue, Chicago, Illinois 60637, USA
| | - Emanuela Del Gado
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets, N.W., Washington, DC 20057, USA
| |
Collapse
|
4
|
Furukawa A. Growing length scale accompanying vitrification: A perspective based on nonsingular density fluctuations. Phys Rev E 2018; 97:022615. [PMID: 29548253 DOI: 10.1103/physreve.97.022615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Indexed: 11/07/2022]
Abstract
A model for describing growing length scale accompanying the vitrification is introduced, in which we assume that in a subsystem whose density is above a certain threshold value, ρ_{c}, due to steric constraints, particle rearrangements are highly suppressed for a sufficiently long time period (∼structural relaxation time). We regard such a subsystem as a glassy cluster. With this assumption and without introducing any complicated thermodynamic arguments, we predict that with compression (increasing average density ρ) at a fixed temperature T in supercooled states, the characteristic length of the clusters, ξ, diverges as ξ∼(ρ_{c}-ρ)^{-2/d}, where d is the spatial dimensionality. This ξ measures the average persistence length of the steric constraints in blocking the rearrangement motions and is determined by the subsystem density. Additionally, with decreasing T at a fixed ρ, the length scale diverges in the same manner as ξ∼(T-T_{c})^{-2/d}, for which ρ is identical to ρ_{c} at T=T_{c}. The exponent describing the diverging length scale is the same as the one predicted by some theoretical models and indeed has been observed in some simulations and experiments. However, the basic mechanism for this divergence is different; that is, we do not invoke thermodynamic anomalies associated with the thermodynamic phase transition as the origin of the growing length scale. We further present arguements for the cooperative properties of the structural relaxation based on the clusters.
Collapse
Affiliation(s)
- Akira Furukawa
- Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
5
|
Mokshin AV, Galimzyanov BN. Kinetics of crystalline nuclei growth in glassy systems. Phys Chem Chem Phys 2017; 19:11340-11353. [DOI: 10.1039/c7cp00879a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports results for crystalline nuclei growth in glassy systems. The crystal growth laws rescaled onto the waiting times of critically-sized nuclei follow a unified dependence. The scaled crystal growth rate characteristics as functions of reduced temperature follow unified power-law dependencies.
Collapse
Affiliation(s)
- Anatolii V. Mokshin
- Institute of Physics
- Kazan Federal University
- 420008 Kazan
- Russia
- L. D. Landau Institute for Theoretical Physics
| | - Bulat N. Galimzyanov
- Institute of Physics
- Kazan Federal University
- 420008 Kazan
- Russia
- L. D. Landau Institute for Theoretical Physics
| |
Collapse
|
6
|
Ottinger HC. Irreversible dynamics, Onsager-Casimir symmetry, and an application to turbulence. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:042121. [PMID: 25375452 DOI: 10.1103/physreve.90.042121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Indexed: 06/04/2023]
Abstract
Irreversible contributions to the dynamics of nonequilibrium systems can be formulated in terms of dissipative, or irreversible, brackets. We discuss the structure of such irreversible brackets in view of a degeneracy implied by energy conservation, where we consider different types of symmetries of the bracket corresponding to the Onsager and Casimir symmetries of linear irreversible thermodynamics. Slip and turbulence provide important examples of antisymmetric irreversible brackets and offer guidance for the more general modeling of irreversible dynamics without entropy production. Conversely, turbulence modeling could benefit from elucidating thermodynamic structure. The examples suggest constructing antisymmetric irreversible brackets in terms of completely antisymmetric functions of three indices. Irreversible brackets without well-defined symmetry properties can arise for rare events, causing big configurational changes.
Collapse
Affiliation(s)
- Hans Christian Ottinger
- ETH Zürich, Department of Materials, Polymer Physics, HCI H 543, CH-8093 Zürich, Switzerland
| |
Collapse
|
7
|
Mosayebi M, Ilg P, Widmer-Cooper A, Del Gado E. Soft modes and nonaffine rearrangements in the inherent structures of supercooled liquids. PHYSICAL REVIEW LETTERS 2014; 112:105503. [PMID: 24679306 DOI: 10.1103/physrevlett.112.105503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Indexed: 06/03/2023]
Abstract
We find that the hierarchical organization of the potential energy landscape in a model supercooled liquid can be related to a change in the spatial distribution of soft normal modes. For groups of nearby minima, between which fast relaxation processes typically occur, the localization of the soft modes is very similar. The spatial distribution of soft regions changes, instead, for minima between which transitions relevant to structural relaxation occur. This may be the reason why the soft modes are able to predict spatial heterogeneities in the dynamics. Nevertheless, the very softest modes are only weakly correlated with dynamical heterogeneities and instead show higher statistical overlap with regions in the local minima that would undergo nonaffine rearrangements if subjected to a shear deformation. This feature of the supercooled liquid is reminiscent of the behavior of nonaffine deformations in amorphous solids, where the very softest modes identify the loci of plastic instabilities.
Collapse
Affiliation(s)
- Majid Mosayebi
- ETH Zürich, Department of Materials, Polymer Physics, CH-8093 Zürich, Switzerland
| | - Patrick Ilg
- ETH Zürich, Department of Materials, Polymer Physics, CH-8093 Zürich, Switzerland
| | | | - Emanuela Del Gado
- ETH Zürich, Department of Civil, Environmental and Geomatic Engineering, CH-8093 Zürich, Switzerland
| |
Collapse
|
8
|
Leocmach M, Russo J, Tanaka H. Importance of many-body correlations in glass transition: An example from polydisperse hard spheres. J Chem Phys 2013; 138:12A536. [DOI: 10.1063/1.4769981] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Malins A, Eggers J, Royall CP, Williams SR, Tanaka H. Identification of long-lived clusters and their link to slow dynamics in a model glass former. J Chem Phys 2013; 138:12A535. [DOI: 10.1063/1.4790515] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
Malins A, Eggers J, Tanaka H, Royall CP. Lifetimes and lengthscales of structural motifs in a model glassformer. Faraday Discuss 2013; 167:405-23. [DOI: 10.1039/c3fd00078h] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Tanaka H. Importance of many-body orientational correlations in the physical description of liquids. Faraday Discuss 2013; 167:9-76. [DOI: 10.1039/c3fd00110e] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Ozawa M, Kuroiwa T, Ikeda A, Miyazaki K. Jamming transition and inherent structures of hard spheres and disks. PHYSICAL REVIEW LETTERS 2012; 109:205701. [PMID: 23215507 DOI: 10.1103/physrevlett.109.205701] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Indexed: 06/01/2023]
Abstract
Recent studies show that volume fractions φ(J) at the jamming transition of frictionless hard spheres and disks are not uniquely determined but exist over a continuous range. Motivated by this observation, we numerically investigate the dependence of φ(J) on the initial configurations of the parent fluid equilibrated at a volume fraction φ(eq), before compressing to generate a jammed packing. We find that φ(J) remains constant when φ(eq) is small but sharply increases as φ(eq) exceeds the dynamic transition point which the mode-coupling theory predicts. We carefully analyze configurational properties of both jammed packings and parent fluids and find that, while all jammed packings remain isostatic, the increase of φ(J) is accompanied with subtle but distinct changes of local orders, a static length scale, and an exponent of the finite-size scaling. These results are consistent with the scenario of the random first-order transition theory of the glass transition.
Collapse
Affiliation(s)
- Misaki Ozawa
- Institute of Physics, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8571, Japan
| | | | | | | |
Collapse
|
13
|
Tanaka H. Bond orientational order in liquids: Towards a unified description of water-like anomalies, liquid-liquid transition, glass transition, and crystallization: Bond orientational order in liquids. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2012; 35:113. [PMID: 23104614 DOI: 10.1140/epje/i2012-12113-y] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 09/28/2012] [Indexed: 06/01/2023]
Abstract
There are at least three fundamental states of matter, depending upon temperature and pressure: gas, liquid, and solid (crystal). These states are separated by first-order phase transitions between them. In both gas and liquid phases a complete translational and rotational symmetry exist, whereas in a solid phase both symmetries are broken. In intermediate phases between liquid and solid, which include liquid crystal and plastic crystal phases, only one of the two symmetries is preserved. Among the fundamental states of matter, the liquid state is the most poorly understood. We argue that it is crucial for a better understanding of liquids to recognize that a liquid generally has the tendency to have a local structural order and its presence is intrinsic and universal to any liquid. Such structural ordering is a consequence of many-body correlations, more specifically, bond angle correlations, which we believe are crucial for the description of the liquid state. We show that this physical picture may naturally explain difficult unsolved problems associated with the liquid state, such as anomalies of water-type liquids (water, Si, Ge, ...), liquid-liquid transition, liquid-glass transition, crystallization and quasicrystal formation, in a unified manner. In other words, we need a new order parameter representing a low local free-energy configuration, which is a bond orientational order parameter in many cases, in addition to a density order parameter for the physical description of these phenomena. Here we review our two-order-parameter model of liquid and consider how transient local structural ordering is linked to all of the above-mentioned phenomena. The relationship between these phenomena is also discussed.
Collapse
Affiliation(s)
- Hajime Tanaka
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8505, Tokyo, Japan.
| |
Collapse
|