1
|
Wittmann L, Gordiy I, Friede M, Helmich-Paris B, Grimme S, Hansen A, Bursch M. Extension of the D3 and D4 London dispersion corrections to the full actinides series. Phys Chem Chem Phys 2024; 26:21379-21394. [PMID: 39092890 DOI: 10.1039/d4cp01514b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Efficient dispersion corrections are an indispensable component of modern density functional theory, semi-empirical quantum mechanical, and even force field methods. In this work, we extend the well established D3 and D4 London dispersion corrections to the full actinides series, francium, and radium. To keep consistency with the existing versions, the original parameterization strategy of the D4 model was only slightly modified. This includes improved reference Hirshfeld atomic partial charges at the ωB97M-V/ma-def-TZVP level to fit the required electronegativity equilibration charge (EEQ) model. In this context, we developed a new actinide data set called AcQM, which covers the most common molecular actinide compound space. Furthermore, the efficient calculation of dynamic polarizabilities that are needed to construct CAB6 dispersion coefficients was implemented into the ORCA program package. The extended models are assessed for the computation of dissociation curves of actinide atoms and ions, geometry optimizations of crystal structure cutouts, gas-phase structures of small uranium compounds, and an example extracted from a small actinide complex protein assembly. We found that the novel parameterizations perform on par with the computationally more demanding density-dependent VV10 dispersion correction. With the presented extension, the excellent cost-accuracy ratio of the D3 and D4 models can now be utilized in various fields of computational actinide chemistry and, e.g., in efficient composite DFT methods such as r2SCAN-3c. They are implemented in our freely available standalone codes (dftd4, s-dftd3) and the D4 version will be also available in the upcoming ORCA 6.0 program package.
Collapse
Affiliation(s)
- Lukas Wittmann
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Igor Gordiy
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Marvin Friede
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Benjamin Helmich-Paris
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Markus Bursch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
- FACCTs GmbH, 50677, Köln, Germany
| |
Collapse
|
2
|
Liu R, Chen M. Characterization of the Hydrogen-Bond Network in High-Pressure Water by Deep Potential Molecular Dynamics. J Chem Theory Comput 2023; 19:5602-5608. [PMID: 37535904 DOI: 10.1021/acs.jctc.3c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The hydrogen-bond (H-bond) network of high-pressure water is investigated by neural-network-based molecular dynamics (MD) simulations with first-principles accuracy. The static structure factors (SSFs) of water at three densities, i.e., 1, 1.115, and 1.24 g/cm3, are directly evaluated from 512 water MD trajectories, which are in quantitative agreement with the experiments. We propose a new method to decompose the computed SSF and identify the changes in the SSF with respect to the changes in H-bond structures. We find that a larger water density results in a higher probability for one or two non-H-bonded water molecules to be inserted into the inner shell, explaining the changes in the tetrahedrality of water under pressure. We predict that the structure of the accepting end of water molecules is more easily influenced by the pressure than by the donating end. Our work sheds new light on explaining the SSF and H-bond properties in related fields.
Collapse
Affiliation(s)
- Renxi Liu
- HEDPS, CAPT, College of Engineering, Peking University, Beijing 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 90871, P. R. China
| | - Mohan Chen
- HEDPS, CAPT, College of Engineering, Peking University, Beijing 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 90871, P. R. China
- AI for Science Institute, Beijing 100080, P. R. China
| |
Collapse
|
3
|
Long Z, Tuckerman ME. Hydroxide Diffusion in Functionalized Cylindrical Nanopores as Idealized Models of Anion Exchange Membrane Environments: An Ab Initio Molecular Dynamics Study. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:2792-2804. [PMID: 36968146 PMCID: PMC10034739 DOI: 10.1021/acs.jpcc.2c05747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Anion exchange membranes (AEMs) have attracted significant interest for their applications in fuel cells and other electrochemical devices in recent years. Understanding water distributions and hydroxide transport mechanisms within AEMs is critical to improving their performance as concerns hydroxide conductivity. Recently, nanoconfined environments have been used to mimic AEM environments. Following this approach, we construct nanoconfined cylindrical pore structures using graphane nanotubes (GNs) functionalized with trimethylammonium cations as models of local AEM morphology. These structures were then used to investigate hydroxide transport using ab initio molecular dynamics (AIMD). The simulations showed that hydroxide transport is suppressed in these confined environments relative to the bulk solution although the mechanism is dominated by structural diffusion. One factor causing the suppressed hydroxide transport is the reduced proton transfer (PT) rates due to changes in hydroxide and water solvation patterns under confinement compared to bulk solution as well as strong interactions between hydroxide ions and the tethered cation groups.
Collapse
Affiliation(s)
- Zhuoran Long
- Department
of Chemistry, New York University, New York, New York10003, United States
| | - Mark E. Tuckerman
- Department
of Chemistry, New York University, New York, New York10003, United States
- Courant
Institute of Mathematical Science, New York
University, New York, New York10012, United States
- NYU-ECNU
Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai200062, China
| |
Collapse
|
4
|
Becker MR, Loche P, Netz RR. Electrokinetic, electrochemical, and electrostatic surface potentials of the pristine water liquid-vapor interface. J Chem Phys 2022; 157:240902. [PMID: 36586978 DOI: 10.1063/5.0127869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Although conceptually simple, the air-water interface displays rich behavior and is subject to intense experimental and theoretical investigations. Different definitions of the electrostatic surface potential as well as different calculation methods, each relevant for distinct experimental scenarios, lead to widely varying potential magnitudes and sometimes even different signs. Based on quantum-chemical density-functional-theory molecular dynamics (DFT-MD) simulations, different surface potentials are evaluated and compared to force-field (FF) MD simulations. As well explained in the literature, the laterally averaged electrostatic surface potential, accessible to electron holography, is dominated by the trace of the water molecular quadrupole moment, and using DFT-MD amounts to +4.35 V inside the water phase, very different from results obtained with FF water models which yield negative values of the order of -0.4 to -0.6 V. Thus, when predicting potentials within water molecules, as relevant for photoelectron spectroscopy and non-linear interface-specific spectroscopy, DFT simulations should be used. The electrochemical surface potential, relevant for ion transfer reactions and ion surface adsorption, is much smaller, less than 200 mV in magnitude, and depends specifically on the ion radius. Charge transfer between interfacial water molecules leads to a sizable surface potential as well. However, when probing electrokinetics by explicitly applying a lateral electric field in DFT-MD simulations, the electrokinetic ζ-potential turns out to be negligible, in agreement with predictions using continuous hydrodynamic models. Thus, interfacial polarization charges from intermolecular charge transfer do not lead to significant electrokinetic mobility at the pristine vapor-liquid water interface, even assuming these transfer charges are mobile in an external electric field.
Collapse
Affiliation(s)
| | - Philip Loche
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Roland R Netz
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
5
|
Liu R, Zhang C, Liang X, Liu J, Wu X, Chen M. Structural and Dynamic Properties of Solvated Hydroxide and Hydronium Ions in Water from Ab Initio Modeling. J Chem Phys 2022; 157:024503. [DOI: 10.1063/5.0094944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Predicting the asymmetric structure and dynamics of solvated hydroxide and hydronium in water has been a challenging task from ab initio molecular dynamics (AIMD). The difficulty mainly comes from a lack of accurate and efficient exchange-correlation functional in elucidating the amphiphilic nature and the ubiquitous proton transfer behaviors of the two ions. By adopting the strongly-constrained and appropriately normed (SCAN) meta-GGA functional in AIMD simulations, we systematically examine the amphiphilic properties, the solvation structures, the electronic structures, and the dynamic properties of the two water ions. In particular, we compare these results to those predicted by the PBE0-TS functional, which is an accurate yet computationally more expensive exchange-correlation functional. We demonstrate that the general-purpose SCAN functional provides a reliable choice in describing the two water ions. Specifically, in the SCAN picture of water ions, the appearance of the fourth and fifth hydrogen bonds near hydroxide stabilizes the pot-like shape solvation structure and suppresses the structural diffusion, while the hydronium stably donates three hydrogen bonds to its neighbors. We apply a detailed analysis of the proton transfer mechanism of the two ions and find the two ions exhibit substantially different proton transfer patterns. Our AIMD simulations indicate hydroxide diffuses slower than hydronium in water, which is consistent with the experiments.
Collapse
Affiliation(s)
| | | | | | | | - Xifan Wu
- Physics, Temple University, United States of America
| | - Mohan Chen
- College of Engineering, Peking University, China
| |
Collapse
|
6
|
Palos E, Lambros E, Swee S, Hu J, Dasgupta S, Paesani F. Assessing the Interplay between Functional-Driven and Density-Driven Errors in DFT Models of Water. J Chem Theory Comput 2022; 18:3410-3426. [PMID: 35506889 DOI: 10.1021/acs.jctc.2c00050] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigate the interplay between functional-driven and density-driven errors in different density functional approximations within density functional theory (DFT) and the implications of these errors for simulations of water with DFT-based data-driven potentials. Specifically, we quantify density-driven errors in two widely used dispersion-corrected functionals derived within the generalized gradient approximation (GGA), namely BLYP-D3 and revPBE-D3, and two modern meta-GGA functionals, namely strongly constrained and appropriately normed (SCAN) and B97M-rV. The effects of functional-driven and density-driven errors on the interaction energies are first assessed for the water clusters of the BEGDB dataset. Further insights into the nature of functional-driven errors are gained from applying the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA) to the interaction energies, which demonstrates that functional-driven errors are strongly correlated with the nature of the interactions. We discuss cases where density-corrected DFT (DC-DFT) models display higher accuracy than the original DFT models and cases where reducing the density-driven errors leads to larger deviations from the reference energies due to the presence of large functional-driven errors. Finally, molecular dynamics simulations are performed with data-driven many-body potentials derived from DFT and DC-DFT data to determine the effect that minimizing density-driven errors has on the description of liquid water. Besides rationalizing the performance of widely used DFT models of water, we believe that our findings unveil fundamental relations between the shortcomings of some common DFT approximations and the requirements for accurate descriptions of molecular interactions, which will aid the development of a consistent, DFT-based framework for the development of data-driven and machine-learned potentials for simulations of condensed-phase systems.
Collapse
Affiliation(s)
- Etienne Palos
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Eleftherios Lambros
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Steven Swee
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Jie Hu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Saswata Dasgupta
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.,Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States.,San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
7
|
Yang Y, Peltier CR, Zeng R, Schimmenti R, Li Q, Huang X, Yan Z, Potsi G, Selhorst R, Lu X, Xu W, Tader M, Soudackov AV, Zhang H, Krumov M, Murray E, Xu P, Hitt J, Xu L, Ko HY, Ernst BG, Bundschu C, Luo A, Markovich D, Hu M, He C, Wang H, Fang J, DiStasio RA, Kourkoutis LF, Singer A, Noonan KJT, Xiao L, Zhuang L, Pivovar BS, Zelenay P, Herrero E, Feliu JM, Suntivich J, Giannelis EP, Hammes-Schiffer S, Arias T, Mavrikakis M, Mallouk TE, Brock JD, Muller DA, DiSalvo FJ, Coates GW, Abruña HD. Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chem Rev 2022; 122:6117-6321. [PMID: 35133808 DOI: 10.1021/acs.chemrev.1c00331] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen energy-based electrochemical energy conversion technologies offer the promise of enabling a transition of the global energy landscape from fossil fuels to renewable energy. Here, we present a comprehensive review of the fundamentals of electrocatalysis in alkaline media and applications in alkaline-based energy technologies, particularly alkaline fuel cells and water electrolyzers. Anion exchange (alkaline) membrane fuel cells (AEMFCs) enable the use of nonprecious electrocatalysts for the sluggish oxygen reduction reaction (ORR), relative to proton exchange membrane fuel cells (PEMFCs), which require Pt-based electrocatalysts. However, the hydrogen oxidation reaction (HOR) kinetics is significantly slower in alkaline media than in acidic media. Understanding these phenomena requires applying theoretical and experimental methods to unravel molecular-level thermodynamics and kinetics of hydrogen and oxygen electrocatalysis and, particularly, the proton-coupled electron transfer (PCET) process that takes place in a proton-deficient alkaline media. Extensive electrochemical and spectroscopic studies, on single-crystal Pt and metal oxides, have contributed to the development of activity descriptors, as well as the identification of the nature of active sites, and the rate-determining steps of the HOR and ORR. Among these, the structure and reactivity of interfacial water serve as key potential and pH-dependent kinetic factors that are helping elucidate the origins of the HOR and ORR activity differences in acids and bases. Additionally, deliberately modulating and controlling catalyst-support interactions have provided valuable insights for enhancing catalyst accessibility and durability during operation. The design and synthesis of highly conductive and durable alkaline membranes/ionomers have enabled AEMFCs to reach initial performance metrics equal to or higher than those of PEMFCs. We emphasize the importance of using membrane electrode assemblies (MEAs) to integrate the often separately pursued/optimized electrocatalyst/support and membranes/ionomer components. Operando/in situ methods, at multiscales, and ab initio simulations provide a mechanistic understanding of electron, ion, and mass transport at catalyst/ionomer/membrane interfaces and the necessary guidance to achieve fuel cell operation in air over thousands of hours. We hope that this Review will serve as a roadmap for advancing the scientific understanding of the fundamental factors governing electrochemical energy conversion in alkaline media with the ultimate goal of achieving ultralow Pt or precious-metal-free high-performance and durable alkaline fuel cells and related technologies.
Collapse
Affiliation(s)
- Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Cheyenne R Peltier
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Roberto Schimmenti
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Qihao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Zhifei Yan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Georgia Potsi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ryan Selhorst
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mariel Tader
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hanguang Zhang
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Mihail Krumov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ellen Murray
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Pengtao Xu
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy Hitt
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Linxi Xu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hsin-Yu Ko
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brian G Ernst
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Colin Bundschu
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Aileen Luo
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Danielle Markovich
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Meixue Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Cheng He
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Robert A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Andrej Singer
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kevin J T Noonan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bryan S Pivovar
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Piotr Zelenay
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Enrique Herrero
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Juan M Feliu
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Jin Suntivich
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Emmanuel P Giannelis
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | | | - Tomás Arias
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joel D Brock
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Francis J DiSalvo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Center for Alkaline Based Energy Solutions (CABES), Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
8
|
Barbosa N, Pagliai M, Sinha S, Barone V, Alfè D, Brancato G. Enhancing the Accuracy of Ab Initio Molecular Dynamics by Fine Tuning of Effective Two-Body Interactions: Acetonitrile as a Test Case. J Phys Chem A 2021; 125:10475-10484. [PMID: 34843249 DOI: 10.1021/acs.jpca.1c07576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Grimme's dispersion-corrected density functional theory (DFT-D) methods have emerged among the most practical approaches to perform accurate quantum mechanical calculations on molecular systems ranging from small clusters to microscopic and mesoscopic samples, i.e., including hundreds or thousands of molecules. Moreover, DFT-D functionals can be easily integrated into popular ab initio molecular dynamics (MD) software packages to carry out first-principles condensed-phase simulations at an affordable computational cost. Here, starting from the well-established D3 version of the dispersion-correction term, we present a simple protocol to improve the accurate description of the intermolecular interactions of molecular clusters of growing size, considering acetonitrile as a test case. Optimization of the interaction energy was performed with reference to diffusion quantum Monte Carlo calculations, successfully reaching the same inherent accuracy of the latter (statistical error of ∼0.1 kcal/mol per molecule). The refined DFT-D3 model was then used to perform ab initio MD simulations of liquid acetonitrile, again showing significant improvements toward available experimental data with respect to the default correction.
Collapse
Affiliation(s)
- Nuno Barbosa
- Scuola Normale Superiore and CSGI, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Marco Pagliai
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Sourab Sinha
- Scuola Normale Superiore and CSGI, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore and CSGI, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.,Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| | - Dario Alfè
- Department of Earth Sciences, Thomas Young Center, University College London, 5 Gower Place, WC1E 6BS London, United Kingdom.,London Centre for Nanotechnology, Thomas Young Centre, University College London, 17-19 Gordon Street, WC1H 0AH London, United Kingdom.,Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II, Monte S. Angelo, 80126 Napoli, Italy
| | - Giuseppe Brancato
- Scuola Normale Superiore and CSGI, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.,Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| |
Collapse
|
9
|
Gámez F, Avilés-Moreno JR, Berden G, Oomens J, Martínez-Haya B. Proton in the ring: spectroscopy and dynamics of proton bonding in macrocycle cavities. Phys Chem Chem Phys 2021; 23:21532-21543. [PMID: 34549205 DOI: 10.1039/d1cp03033g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The proton bond is a paradigmatic quantum molecular interaction and a major driving force of supramolecular chemistry. The ring cavities of crown ethers provide an intriguing environment, promoting competitive proton sharing with multiple coordination anchors. This study shows that protons confined in crown ether cavities form dynamic bonds that migrate to varying pairs of coordinating atoms when allowed by the flexibility of the macrocycle backbone. Prototypic native crown ethers (12-crown-4, 15-crown-5 and 18-crown-6) and aza-crown ethers (cyclen, 1-aza-18-crown-6 and hexacyclen) are investigated. For each system, Infrared action spectroscopy experiments and ab initio Molecular Dynamics computations are employed to elucidate the structural effects associated with proton diffusion and its entanglement with the conformational and vibrational dynamics of the protonated host.
Collapse
Affiliation(s)
- Francisco Gámez
- Department of Physical Chemistry, Universidad de Granada, Avenida de la Fuente Nueva s/n, 18071, Granada, Spain
| | - Juan R Avilés-Moreno
- Department of Applied Physical Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Giel Berden
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525ED Nijmegen, The Netherlands
| | - Jos Oomens
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525ED Nijmegen, The Netherlands
| | - Bruno Martínez-Haya
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Ctra. de Utrera, km. 1, 41013 Seville, Spain.
| |
Collapse
|
10
|
Rosenberger D, Smith JS, Garcia AE. Modeling of Peptides with Classical and Novel Machine Learning Force Fields: A Comparison. J Phys Chem B 2021; 125:3598-3612. [DOI: 10.1021/acs.jpcb.0c10401] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- David Rosenberger
- Los Alamos National Laboratory, Theoretical Division, Chemistry and Physics of Materials Group, Los Alamos, 87545 New Mexico, United States
- Los Alamos National Laboratory, Theoretical Division, Center for Nonlinear Studies, Los Alamos, 87545 New Mexico, United States
| | - Justin S. Smith
- Los Alamos National Laboratory, Theoretical Division, Chemistry and Physics of Materials Group, Los Alamos, 87545 New Mexico, United States
| | - Angel E. Garcia
- Los Alamos National Laboratory, Theoretical Division, Center for Nonlinear Studies, Los Alamos, 87545 New Mexico, United States
| |
Collapse
|
11
|
Calio PB, Hocky GM, Voth GA. Minimal Experimental Bias on the Hydrogen Bond Greatly Improves Ab Initio Molecular Dynamics Simulations of Water. J Chem Theory Comput 2020; 16:5675-5684. [DOI: 10.1021/acs.jctc.0c00558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paul B. Calio
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Glen M. Hocky
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
12
|
Tang F, Ohto T, Sun S, Rouxel JR, Imoto S, Backus EHG, Mukamel S, Bonn M, Nagata Y. Molecular Structure and Modeling of Water-Air and Ice-Air Interfaces Monitored by Sum-Frequency Generation. Chem Rev 2020; 120:3633-3667. [PMID: 32141737 PMCID: PMC7181271 DOI: 10.1021/acs.chemrev.9b00512] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Indexed: 12/26/2022]
Abstract
From a glass of water to glaciers in Antarctica, water-air and ice-air interfaces are abundant on Earth. Molecular-level structure and dynamics at these interfaces are key for understanding many chemical/physical/atmospheric processes including the slipperiness of ice surfaces, the surface tension of water, and evaporation/sublimation of water. Sum-frequency generation (SFG) spectroscopy is a powerful tool to probe the molecular-level structure of these interfaces because SFG can specifically probe the topmost interfacial water molecules separately from the bulk and is sensitive to molecular conformation. Nevertheless, experimental SFG has several limitations. For example, SFG cannot provide information on the depth of the interface and how the orientation of the molecules varies with distance from the surface. By combining the SFG spectroscopy with simulation techniques, one can directly compare the experimental data with the simulated SFG spectra, allowing us to unveil the molecular-level structure of water-air and ice-air interfaces. Here, we present an overview of the different simulation protocols available for SFG spectra calculations. We systematically compare the SFG spectra computed with different approaches, revealing the advantages and disadvantages of the different methods. Furthermore, we account for the findings through combined SFG experiments and simulations and provide future challenges for SFG experiments and simulations at different aqueous interfaces.
Collapse
Affiliation(s)
- Fujie Tang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Tatsuhiko Ohto
- Graduate
School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shumei Sun
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Physical Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Jérémy R. Rouxel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Sho Imoto
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Ellen H. G. Backus
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Physical Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Yuki Nagata
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Physics, State Key Laboratory of Surface Physics and Key Laboratory
of Micro- and Nano-Photonic Structures (MOE), Fudan University, Shanghai 200433, China
| |
Collapse
|
13
|
Roy VP, Kubarych KJ. A simple lattice Monte Carlo simulation to model interfacial and crowded water rearrangements. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Bu YF, Zhao M, Chen Y, Gao W, Jiang Q. Effects of atomic species and interatomic distance on the interactions in one-dimensional nanomaterials. Phys Chem Chem Phys 2019; 21:25889-25895. [PMID: 31742307 DOI: 10.1039/c9cp04031e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Noncovalent van der Waals (vdW) interactions are significant for the constitution of nanomaterials; however, they are not well understood in one-dimensional materials. Herein, we employ density functional theory (DFT) methods to address this issue and find that the many-body effects of vdW interactions within the one-dimensional wires composed of atoms chosen from the second period (B, C, N, O, F) vary with the interatomic distance of the wires. Furthermore, the atomic species effectively regulate the transition threshold of the many-body effects of vdW interactions. In the case of the adsorption of n-heptane (C7H16) on the wires, the atomic species alters the interactions between the wires and the molecule by modulating the coupling vibration between wires and C7H16 molecules. Correspondingly, replacing a portion of Pb with Tl atoms could contribute to the stability of the organic-inorganic hybrid halide perovskites with one-dimensional structures. Our findings not only contribute to the understanding of vdW interactions in one-dimensional structures with second-period atoms (B, C, N, O, F) but also provide clues for improving the stability of perovskites with one-dimensional structures.
Collapse
Affiliation(s)
- Yi-Fan Bu
- School of Materials Science and Engineering, Jilin University, 130022, Changchun, P. R. China.
| | | | | | | | | |
Collapse
|
15
|
Daub CD, Halonen L. Ab Initio Molecular Dynamics Simulations of the Influence of Lithium Bromide Salt on the Deprotonation of Formic Acid in Aqueous Solution. J Phys Chem B 2019; 123:6823-6829. [PMID: 31310529 PMCID: PMC6750841 DOI: 10.1021/acs.jpcb.9b04618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The deprotonation of formic acid is investigated using metadynamics in tandem with Born-Oppenheimer molecular dynamics simulations. We compare our findings for formic acid in pure water with previous studies before examining formic acid in aqueous solutions of lithium bromide. We carefully consider different definitions for the collective variable(s) used to drive the metadynamics, emphasizing that the variables used must include all of the possible reactive atoms in the system, in this case carboxylate oxygens and water hydrogens. This ensures that all the various possible proton exchange events can be accommodated and the collective variable(s) can distinguish the protonated and deprotonated states, even over rather long ab initio simulation runs (ca. 200-300 ps). Our findings show that the formic acid deprotonation barrier and the free energy of the deprotonated state are higher in concentrated lithium bromide, in agreement with the available experimental data for acids in salt solution. We show that the presence of Br- in proximity to the formic acid hydroxyl group effectively inhibits deprotonation. Our study extends previous work on acid deprotonation in pure water and at air-water interfaces to more complex multicomponent systems of importance in atmospheric and marine chemistry.
Collapse
Affiliation(s)
- Christopher D Daub
- Department of Chemistry , University of Helsinki , P.O. Box 55, Helsinki FIN-00014 , Finland
| | - Lauri Halonen
- Department of Chemistry , University of Helsinki , P.O. Box 55, Helsinki FIN-00014 , Finland
| |
Collapse
|
16
|
Dodia M, Ohto T, Imoto S, Nagata Y. Structure and Dynamics of Water at the Water-Air Interface Using First-Principles Molecular Dynamics Simulations. II. NonLocal vs Empirical van der Waals Corrections. J Chem Theory Comput 2019; 15:3836-3843. [PMID: 31074989 PMCID: PMC6750744 DOI: 10.1021/acs.jctc.9b00253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
van der Waals (vdW) correction schemes
have been recognized to
be essential for an accurate description of liquid water in first-principles
molecular dynamics simulation. The description of the structure and
dynamics of water is governed by the type of the vdW corrections.
So far, two vdW correction schemes have been often used: empirical
vdW corrections and nonlocal vdW corrections. In this paper, we assess
the influence of the empirical vs nonlocal vdW correction schemes
on the structure and dynamics of water at the water–air interface.
Since the structure of water at the water–air interface is
established by a delicate balance of hydrogen bond formation and breaking,
the simulation at the water–air interface provides a unique
platform to testify as to the heterogeneous interaction of water.
We used the metrics [Ohto et al. J. Chem. Theory Comput., 2019, 15, 595−60230468702] which
are directly connected with the sum-frequency generation spectroscopic
measurement. We find that the overall performance of nonlocal vdW
methods is either similar or worse compared to the empirical vdW methods.
We also investigated the performance of the optB88-DRSLL functional,
which showed slightly less accuracy than the revPBE-D3 method. We
conclude that the revPBE-D3 method shows the best performance for
describing the interfacial water.
Collapse
Affiliation(s)
- Mayank Dodia
- Max Planck Institute for Polymer Research, Ackermannweg 10 , 55128 Mainz , Germany
| | - Tatsuhiko Ohto
- Graduate School of Engineering Science , Osaka University , 1-3 Machikaneyama , Toyonaka, Osaka 560-8531 , Japan
| | - Sho Imoto
- Max Planck Institute for Polymer Research, Ackermannweg 10 , 55128 Mainz , Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10 , 55128 Mainz , Germany
| |
Collapse
|
17
|
Biswas S, Mallik BS. Vibration Spectral Dynamics of Weakly Coordinating Water Molecules near an Anion: FPMD Simulations of an Aqueous Solution of Tetrafluoroborate. J Phys Chem B 2019; 123:2135-2146. [PMID: 30759344 DOI: 10.1021/acs.jpcb.9b00069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The extent to which the ions affect the nearby water molecules will decide the structure-making or breaking nature of those ions in aqueous solutions. The effects of a weakly coordinating anion on the structure, dynamics, and vibrational properties of water molecules are not so significant as compared to an anion capable of making strong ion-water hydrogen bonds. The present work deals with the first-principles molecular dynamics study of an aqueous solution of such a weakly coordinating anion, tetrafluoroborate (BF4-), using dispersion-corrected DFT-based first-principles molecular dynamics (FPMD) simulations. Various structural, dynamical, and spectral properties, such as radial distribution functions (RDFs), rotational dynamics, vibrational density of states (VDOS), hydrogen bond as well as dangling OH autocorrelation functions, and residence dynamics, were calculated to investigate the effects of the anion on nearby water molecules. The process of spectral diffusion was assessed through a time series wavelet transformation of trajectories obtained from FPMD simulations. The first ion-water solvation shell extends up to 5.5 Å, containing around 20 water molecules. The lifetime of the ion-water hydrogen bond is found to be 1.19 ps, whereas the water-water hydrogen bond lifetime is found to be 1.13 ps. Inside the solvation shell, the persistence time of dangling OH chromophores and the average frequency of OH modes inside the solvation shell are found to be more compared to bulk. Three time scales are found for solvation shell OH modes from the frequency-frequency correlation function. A very short time scale is found for the intact ion-water interaction; the short time scale is for the ion-water hydrogen bond, and the long time scale is for escape dynamics of water molecules from the ion solvation shell. From the mean squared displacement, it is found that solvation water molecules diffuse slower than the bulk. However, solvation shell water molecules show faster relaxation from the analysis of rotational anisotropy. Within the longer time scale of spectral diffusion, this process (which is related to various dynamics of the molecules) is not yet complete, as compared to fast anisotropic decay. This fact is similar to the experimental finding of spectral diffusion and anisotropy time scales in the aqueous solution of borohydride anion. The calculated results are also compared with available experimental data wherever possible.
Collapse
Affiliation(s)
- Sohag Biswas
- Department of Chemistry , Indian Institute of Technology Hyderabad , Kandi, Sangareddy , 502 285 Telangana , India
| | - Bhabani S Mallik
- Department of Chemistry , Indian Institute of Technology Hyderabad , Kandi, Sangareddy , 502 285 Telangana , India
| |
Collapse
|
18
|
Daub CD, Hänninen V, Halonen L. Ab Initio Molecular Dynamics Simulations of the Influence of Lithium Bromide on the Structure of the Aqueous Solution-Air Interface. J Phys Chem B 2019; 123:729-737. [PMID: 30605330 PMCID: PMC6727360 DOI: 10.1021/acs.jpcb.8b10552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We
present the results of ab initio molecular dynamics simulations
of the solution–air interface of aqueous lithium bromide (LiBr).
We find that, in agreement with the experimental data and previous
simulation results with empirical polarizable force field models,
Br– anions prefer to accumulate just below the first
molecular water layer near the interface, whereas Li+ cations
remain deeply buried several molecular layers from the interface,
even at very high concentration. The separation of ions has a profound
effect on the average orientation of water molecules in the vicinity
of the interface. We also find that the hydration number of Li+ cations in the center of the slab Nc,Li+–H2O ≈ 4.7 ±
0.3, regardless of the salt concentration. This estimate is consistent
with the recent experimental neutron scattering data, confirming that
results from nonpolarizable empirical models, which consistently predict
tetrahedral coordination of Li+ to four solvent molecules,
are incorrect. Consequently, disruption of the hydrogen bond network
caused by Li+ may be overestimated in nonpolarizable empirical
models. Overall, our results suggest that empirical models, in particular
nonpolarizable models, may not capture all of the properties of the
solution–air interface necessary to fully understand the interfacial
chemistry.
Collapse
Affiliation(s)
- Christopher D Daub
- Department of Chemistry , University of Helsinki , P.O. Box 55, Helsinki 00014 , Finland
| | - Vesa Hänninen
- Department of Chemistry , University of Helsinki , P.O. Box 55, Helsinki 00014 , Finland
| | - Lauri Halonen
- Department of Chemistry , University of Helsinki , P.O. Box 55, Helsinki 00014 , Finland
| |
Collapse
|
19
|
Ohto T, Dodia M, Imoto S, Nagata Y. Structure and Dynamics of Water at the Water–Air Interface Using First-Principles Molecular Dynamics Simulations within Generalized Gradient Approximation. J Chem Theory Comput 2018; 15:595-602. [DOI: 10.1021/acs.jctc.8b00567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tatsuhiko Ohto
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Mayank Dodia
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sho Imoto
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
20
|
Tsimpanogiannis IN, Moultos OA, Franco LFM, Spera MBDM, Erdős M, Economou IG. Self-diffusion coefficient of bulk and confined water: a critical review of classical molecular simulation studies. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1511903] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ioannis N. Tsimpanogiannis
- Environmental Research Laboratory, National Center for Scientific Research “Demokritos”, Aghia Paraskevi Attikis, Greece
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Aghia Paraskevi Attikis, Greece
| | - Othonas A. Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Luís F. M. Franco
- School of Chemical Engineering, University of Campinas, Campinas, Brazil
| | | | - Máté Erdős
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Ioannis G. Economou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Aghia Paraskevi Attikis, Greece
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, Qatar
| |
Collapse
|
21
|
Shi Y, Scheiber H, Khaliullin RZ. Contribution of the Covalent Component of the Hydrogen-Bond Network to the Properties of Liquid Water. J Phys Chem A 2018; 122:7482-7490. [PMID: 30157633 DOI: 10.1021/acs.jpca.8b06857] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yifei Shi
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A0B8, Canada
| | - Hayden Scheiber
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A0B8, Canada
| | - Rustam Z. Khaliullin
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A0B8, Canada
| |
Collapse
|
22
|
Abstract
We developed a novel neural network-based force field for water based on training with high-level ab initio theory. The force field was built based on an electrostatically embedded many-body expansion method truncated at binary interactions. The many-body expansion method is a common strategy to partition the total Hamiltonian of large systems into a hierarchy of few-body terms. Neural networks were trained to represent electrostatically embedded one-body and two-body interactions, which require as input only one and two water molecule calculations at the level of ab initio electronic structure method CCSD/aug-cc-pVDZ embedded in the molecular mechanics water environment, making it efficient as a general force field construction approach. Structural and dynamic properties of liquid water calculated with our force field show good agreement with experimental results. We constructed two sets of neural network based force fields: nonpolarizable and polarizable force fields. Simulation results show that the nonpolarizable force field using fixed TIP3P charges has already behaved well, since polarization effects and many-body effects are implicitly included due to the electrostatic embedding scheme. Our results demonstrate that the electrostatically embedded many-body expansion combined with neural network provides a promising and systematic way to build next-generation force fields at high accuracy and low computational costs, especially for large systems.
Collapse
Affiliation(s)
- Hao Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Weitao Yang
- Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
23
|
Machida M, Kato K, Shiga M. Nuclear quantum effects of light and heavy water studied by all-electron first principles path integral simulations. J Chem Phys 2018; 148:102324. [DOI: 10.1063/1.5000091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Masahiko Machida
- CCSE, Japan Atomic Energy Agency (JAEA), 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871, Japan
| | - Koichiro Kato
- Mizuho Information and Research Institute, Inc., 2-3, Kandanishiki-cho, Chiyoda-ku, Tokyo 101-8443, Japan
| | - Motoyuki Shiga
- CCSE, Japan Atomic Energy Agency (JAEA), 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871, Japan
| |
Collapse
|
24
|
Sharma B, Chandra A. Born-Oppenheimer Molecular Dynamics Simulations of a Bromate Ion in Water Reveal Its Dual Kosmotropic and Chaotropic Behavior. J Phys Chem B 2018; 122:2090-2101. [PMID: 29376361 DOI: 10.1021/acs.jpcb.7b09300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The solvation structure and dynamics of a bromate (BrO3-) ion in water are studied by means of Born-Oppenheimer molecular dynamics simulations at two different temperatures using the Becke-Lee-Yang-Parr functional with Grimme D3 dispersion corrections. The bromate ion possesses a pyramidal structure, and it has two types of solvation sites, namely, the bromine and oxygen atoms. We have looked at different radial and orientational distributions of water molecules around the bromate ion and also investigated their hydrogen bonding properties. The solvation structure of the bromate ion is also compared with that of the iodate (IO3-) ion, which is structurally rather similar to the bromate ion and was found to have some unusual solvation properties in water. It is found that the bromate ion follows a similar trend as that followed by the iodate ion as far as the solvation structure is concerned. However, the effect of the former on surrounding water is found to be much weaker than that of the latter. On the dynamical side, we have looked at diffusion, residence dynamics, and also the orientational and hydrogen bond relaxation of water molecules around the BrO3- ion and compared them with those of the bulk. Dynamical results are presented for both H2O and D2O around the BrO3- ion. Interpretation of the dynamical results in terms of structure-making (kosmotropic)/-breaking (chaotropic) properties of the BrO3- ion reveals that the bromine atom of this ion acts as a water structure breaker, whereas the three oxygens act as water structure makers. Thus, in spite of being a single ion, the bromate ion has dual characteristics and the experimentally observed kosmotropic ability of this ion is actually a trade-off between a chaotropic site (the bromine atom) and three kosmotropic sites (three oxygen atoms) that are present in the ion.
Collapse
Affiliation(s)
- Bikramjit Sharma
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208016, India
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208016, India
| |
Collapse
|
25
|
van Gunsteren WF, Daura X, Hansen N, Mark AE, Oostenbrink C, Riniker S, Smith LJ. Validation of Molecular Simulation: An Overview of Issues. Angew Chem Int Ed Engl 2017; 57:884-902. [PMID: 28682472 DOI: 10.1002/anie.201702945] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Indexed: 12/14/2022]
Abstract
Computer simulation of molecular systems enables structure-energy-function relationships of molecular processes to be described at the sub-atomic, atomic, supra-atomic, or supra-molecular level. To interpret results of such simulations appropriately, the quality of the calculated properties must be evaluated. This depends on the way the simulations are performed and on the way they are validated by comparison to values Qexp of experimentally observable quantities Q. One must consider 1) the accuracy of Qexp , 2) the accuracy of the function Q(rN ) used to calculate a Q-value based on a molecular configuration rN of N particles, 3) the sensitivity of the function Q(rN ) to the configuration rN , 4) the relative time scales of the simulation and experiment, 5) the degree to which the calculated and experimental properties are equivalent, and 6) the degree to which the system simulated matches the experimental conditions. Experimental data is limited in scope and generally corresponds to averages over both time and space. A critical analysis of the various factors influencing the apparent degree of (dis)agreement between simulations and experiment is presented and illustrated using examples from the literature. What can be done to enhance the validation of molecular simulation is also discussed.
Collapse
Affiliation(s)
- Wilfred F van Gunsteren
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093, Zurich, Switzerland
| | - Xavier Daura
- Institute of Biotechnology and Biomedicine, Universitat Autonoma de Barcelona, UAB, 08193, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies, ICREA, 08010, Barcelona, Spain
| | - Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569, Stuttgart, Germany
| | - Alan E Mark
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Sereina Riniker
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093, Zurich, Switzerland
| | - Lorna J Smith
- Department of Chemistry, Inorganic Chemistry, Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| |
Collapse
|
26
|
van Gunsteren WF, Daura X, Hansen N, Mark AE, Oostenbrink C, Riniker S, Smith LJ. Validierung von molekularen Simulationen: eine Übersicht verschiedener Aspekte. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wilfred F. van Gunsteren
- Laboratorium für Physikalische Chemie; Eidgenössische Technische Hochschule Zürich; 8093 Zürich Schweiz
| | - Xavier Daura
- Institute of Biotechnology and Biomedicine; Universitat Autònoma de Barcelona; Spanien
- Catalan Institution for Research and Advanced Studies, ICREA; Barcelona Spanien
| | - Niels Hansen
- Institut für Technische Thermodynamik und Thermische Verfahrenstechnik; Universität Stuttgart; Deutschland
| | - Alan E. Mark
- School of Chemistry and Molecular Biosciences; University of Queensland; St. Lucia Australien
| | - Chris Oostenbrink
- Institut für Molekulare Modellierung und Simulation; Universität für Bodenkultur Wien; Österreich
| | - Sereina Riniker
- Laboratorium für Physikalische Chemie; Eidgenössische Technische Hochschule Zürich; 8093 Zürich Schweiz
| | - Lorna J. Smith
- Inorganic Chemistry Laboratory; Department of Chemistry; University of Oxford; Großbritannien
| |
Collapse
|
27
|
Kayal A, Chandra A. Orientational order and dynamics of interfacial water near a hexagonal boron-nitride sheet: An ab initio molecular dynamics study. J Chem Phys 2017; 147:164704. [DOI: 10.1063/1.4991594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Abhijit Kayal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
28
|
Galib M, Duignan TT, Misteli Y, Baer MD, Schenter GK, Hutter J, Mundy CJ. Mass density fluctuations in quantum and classical descriptions of liquid water. J Chem Phys 2017; 146:244501. [DOI: 10.1063/1.4986284] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Mirza Galib
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Timothy T. Duignan
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Yannick Misteli
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Marcel D. Baer
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Gregory K. Schenter
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Jürg Hutter
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Christopher J. Mundy
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| |
Collapse
|
29
|
Mao Y, Shao Y, Dziedzic J, Skylaris CK, Head-Gordon T, Head-Gordon M. Performance of the AMOEBA Water Model in the Vicinity of QM Solutes: A Diagnosis Using Energy Decomposition Analysis. J Chem Theory Comput 2017; 13:1963-1979. [PMID: 28430427 DOI: 10.1021/acs.jctc.7b00089] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The importance of incorporating solvent polarization effects into the modeling of solvation processes has been well-recognized, and therefore a new generation of hybrid quantum mechanics/molecular mechanics (QM/MM) approaches that accounts for this effect is desirable. We present a fully self-consistent, mutually polarizable QM/MM scheme using the AMOEBA force field, in which the total energy of the system is variationally minimized with respect to both the QM electronic density and the MM induced dipoles. This QM/AMOEBA model is implemented through the Q-Chem/LibEFP code interface and then applied to the evaluation of solute-solvent interaction energies for various systems ranging from the water dimer to neutral and ionic solutes (NH3, NH4+, CN-) surrounded by increasing numbers of water molecules (up to 100). In order to analyze the resulting interaction energies, we also utilize an energy decomposition analysis (EDA) scheme which identifies contributions from permanent electrostatics, polarization, and van der Waals (vdW) interaction for the interaction between the QM solute and the solvent molecules described by AMOEBA. This facilitates a component-wise comparison against full QM calculations where the corresponding energy components are obtained via a modified version of the absolutely localized molecular orbitals (ALMO)-EDA. The results show that the present QM/AMOEBA model can yield reasonable solute-solvent interaction energies for neutral and cationic species, while further scrutiny reveals that this accuracy highly relies on the delicate balance between insufficiently favorable permanent electrostatics and softened vdW interaction. For anionic solutes where the charge penetration effect becomes more pronounced, the QM/MM interface turns out to be unbalanced. These results are consistent with and further elucidate our findings in a previous study using a slightly different QM/AMOEBA model ( Dziedzic et al. J. Chem. Phys. 2016 , 145 , 124106 ). The implications of these results for further refinement of this model are also discussed.
Collapse
Affiliation(s)
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Jacek Dziedzic
- School of Chemistry, University of Southampton , Highfield, Southampton SO17 1BJ, U.K.,Faculty of Applied Physics and Mathematics, Gdańsk University of Technology , Gdańsk 80-233, Poland
| | - Chris-Kriton Skylaris
- School of Chemistry, University of Southampton , Highfield, Southampton SO17 1BJ, U.K
| | | | - Martin Head-Gordon
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
30
|
Hermann J, DiStasio RA, Tkatchenko A. First-Principles Models for van der Waals Interactions in Molecules and Materials: Concepts, Theory, and Applications. Chem Rev 2017; 117:4714-4758. [PMID: 28272886 DOI: 10.1021/acs.chemrev.6b00446] [Citation(s) in RCA: 298] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Noncovalent van der Waals (vdW) or dispersion forces are ubiquitous in nature and influence the structure, stability, dynamics, and function of molecules and materials throughout chemistry, biology, physics, and materials science. These forces are quantum mechanical in origin and arise from electrostatic interactions between fluctuations in the electronic charge density. Here, we explore the conceptual and mathematical ingredients required for an exact treatment of vdW interactions, and present a systematic and unified framework for classifying the current first-principles vdW methods based on the adiabatic-connection fluctuation-dissipation (ACFD) theorem (namely the Rutgers-Chalmers vdW-DF, Vydrov-Van Voorhis (VV), exchange-hole dipole moment (XDM), Tkatchenko-Scheffler (TS), many-body dispersion (MBD), and random-phase approximation (RPA) approaches). Particular attention is paid to the intriguing nature of many-body vdW interactions, whose fundamental relevance has recently been highlighted in several landmark experiments. The performance of these models in predicting binding energetics as well as structural, electronic, and thermodynamic properties is connected with the theoretical concepts and provides a numerical summary of the state-of-the-art in the field. We conclude with a roadmap of the conceptual, methodological, practical, and numerical challenges that remain in obtaining a universally applicable and truly predictive vdW method for realistic molecular systems and materials.
Collapse
Affiliation(s)
- Jan Hermann
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6, 14195 Berlin, Germany
| | - Robert A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Alexandre Tkatchenko
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6, 14195 Berlin, Germany.,Physics and Materials Science Research Unit, University of Luxembourg , L-1511 Luxembourg, Luxembourg
| |
Collapse
|
31
|
Pham TA, Ogitsu T, Lau EY, Schwegler E. Structure and dynamics of aqueous solutions from PBE-based first-principles molecular dynamics simulations. J Chem Phys 2016; 145:154501. [DOI: 10.1063/1.4964865] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Tuan Anh Pham
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | - Tadashi Ogitsu
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | - Edmond Y. Lau
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | - Eric Schwegler
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| |
Collapse
|
32
|
Borah S, Kumar PP. Ab initio molecular dynamics study of Se(iv) species in aqueous environment. Phys Chem Chem Phys 2016; 18:26755-26763. [PMID: 27711537 DOI: 10.1039/c6cp04725d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An ab initio molecular dynamics investigation is carried out on various water-borne Se(iv) species, H2SeO3, HSeO3- and SeO32-, in aqueous environment. Consistent with the reported acid dissociation constants, in neutral solution H2SeO3 exchanges protons with the surrounding water molecules establishing a dynamic equilibrium with HSeO3-. The SeO32- species is found to be stable only in basic environment, which is emulated in the present simulation through introducing a hydroxide ion, OH-, in the system. The hydration structure, hydrogen bonding and spectroscopic signatures of the species are comprehensively analyzed. The influence of the solute's hydration structure on the structural and dynamic response of the solvent is discussed. The correlation between the strength as well as the number of hydrogen bonds accepted by the solute on its vibrational properties are analyzed.
Collapse
Affiliation(s)
- Sangkha Borah
- Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | - P Padma Kumar
- Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
33
|
Albaugh A, Bradshaw RT, Demerdash O, Dziedzic J, Mao Y, Margul DT, Swails J, Boateng HA, Case DA, Eastman P, Essex JW, Head-Gordon M, Pande VS, Ponder J, Shao Y, Skylaris C, Todorov IT, Tuckerman ME, Zeng Q, Head-Gordon T. Advanced Potential Energy Surfaces for Molecular Simulation. J Phys Chem B 2016; 120:9811-32. [PMID: 27513316 PMCID: PMC9113031 DOI: 10.1021/acs.jpcb.6b06414] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Advanced potential energy surfaces are defined as theoretical models that explicitly include many-body effects that transcend the standard fixed-charge, pairwise-additive paradigm typically used in molecular simulation. However, several factors relating to their software implementation have precluded their widespread use in condensed-phase simulations: the computational cost of the theoretical models, a paucity of approximate models and algorithmic improvements that can ameliorate their cost, underdeveloped interfaces and limited dissemination in computational code bases that are widely used in the computational chemistry community, and software implementations that have not kept pace with modern high-performance computing (HPC) architectures, such as multicore CPUs and modern graphics processing units (GPUs). In this Feature Article we review recent progress made in these areas, including well-defined polarization approximations and new multipole electrostatic formulations, novel methods for solving the mutual polarization equations and increasing the MD time step, combining linear-scaling electronic structure methods with new QM/MM methods that account for mutual polarization between the two regions, and the greatly improved software deployment of these models and methods onto GPU and CPU hardware platforms. We have now approached an era where multipole-based polarizable force fields can be routinely used to obtain computational results comparable to state-of-the-art density functional theory while reaching sampling statistics that are acceptable when compared to that obtained from simpler fixed partial charge force fields.
Collapse
Affiliation(s)
- Alex Albaugh
- Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
| | - Richard T. Bradshaw
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Omar Demerdash
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Jacek Dziedzic
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
- Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Poland
| | - Yuezhi Mao
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Daniel T. Margul
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Jason Swails
- Department of Chemistry and Chemical Biology and BioMaPS Institute, Rutgers University, Piscataway, New Jersey 08854-8066, United States
| | - Henry A. Boateng
- Department of Mathematics, Bates College, 2 Andrews Road, Lewiston, ME 04240
| | - David A. Case
- Department of Chemistry and Chemical Biology and BioMaPS Institute, Rutgers University, Piscataway, New Jersey 08854-8066, United States
| | - Peter Eastman
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Jonathan W. Essex
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | | | - Vijay S. Pande
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Jay Ponder
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, 63130
| | - Yihan Shao
- Q-Chem Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588
| | - Chris Skylaris
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Illian T. Todorov
- STFC Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD, UK
| | - Mark E. Tuckerman
- Department of Chemistry, New York University, New York, NY 10003, USA
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10003, USA
- NYU-ECNU, Center for Computational Chemistry at NYU, Shanghai, Shanghai 200062, China
| | - Qiao Zeng
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Teresa Head-Gordon
- Department of Chemistry, University of California, Berkeley, CA 94720
- Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
- Bioengineering, University of California, Berkeley, CA 94720
| |
Collapse
|
34
|
Abstract
Whereas the interactions between water molecules are dominated by strongly directional hydrogen bonds (HBs), it was recently proposed that relatively weak, isotropic van der Waals (vdW) forces are essential for understanding the properties of liquid water and ice. This insight was derived from ab initio computer simulations, which provide an unbiased description of water at the atomic level and yield information on the underlying molecular forces. However, the high computational cost of such simulations prevents the systematic investigation of the influence of vdW forces on the thermodynamic anomalies of water. Here, we develop efficient ab initio-quality neural network potentials and use them to demonstrate that vdW interactions are crucial for the formation of water's density maximum and its negative volume of melting. Both phenomena can be explained by the flexibility of the HB network, which is the result of a delicate balance of weak vdW forces, causing, e.g., a pronounced expansion of the second solvation shell upon cooling that induces the density maximum.
Collapse
|
35
|
Köster A, Spura T, Rutkai G, Kessler J, Wiebeler H, Vrabec J, Kühne TD. Assessing the accuracy of improved force-matched water models derived fromAb initiomolecular dynamics simulations. J Comput Chem 2016; 37:1828-38. [DOI: 10.1002/jcc.24398] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 04/08/2016] [Accepted: 04/14/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Andreas Köster
- Thermodynamics and Energy Technology; Department of Mechanical Engineering, University of Paderborn; Warburger Str. 100 Paderborn D-33098 Germany
| | - Thomas Spura
- Dynamics of Condensed Matter, Department of Chemistry; University of Paderborn; Warburger Str. 100 Paderborn D-33098 Germany
| | - Gábor Rutkai
- Thermodynamics and Energy Technology; Department of Mechanical Engineering, University of Paderborn; Warburger Str. 100 Paderborn D-33098 Germany
| | - Jan Kessler
- Dynamics of Condensed Matter, Department of Chemistry; University of Paderborn; Warburger Str. 100 Paderborn D-33098 Germany
| | - Hendrik Wiebeler
- Dynamics of Condensed Matter, Department of Chemistry; University of Paderborn; Warburger Str. 100 Paderborn D-33098 Germany
| | - Jadran Vrabec
- Thermodynamics and Energy Technology; Department of Mechanical Engineering, University of Paderborn; Warburger Str. 100 Paderborn D-33098 Germany
| | - Thomas D. Kühne
- Dynamics of Condensed Matter, Department of Chemistry; University of Paderborn; Warburger Str. 100 Paderborn D-33098 Germany
| |
Collapse
|
36
|
Christensen A, Kubař T, Cui Q, Elstner M. Semiempirical Quantum Mechanical Methods for Noncovalent Interactions for Chemical and Biochemical Applications. Chem Rev 2016; 116:5301-37. [PMID: 27074247 PMCID: PMC4867870 DOI: 10.1021/acs.chemrev.5b00584] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Indexed: 12/28/2022]
Abstract
Semiempirical (SE) methods can be derived from either Hartree-Fock or density functional theory by applying systematic approximations, leading to efficient computational schemes that are several orders of magnitude faster than ab initio calculations. Such numerical efficiency, in combination with modern computational facilities and linear scaling algorithms, allows application of SE methods to very large molecular systems with extensive conformational sampling. To reliably model the structure, dynamics, and reactivity of biological and other soft matter systems, however, good accuracy for the description of noncovalent interactions is required. In this review, we analyze popular SE approaches in terms of their ability to model noncovalent interactions, especially in the context of describing biomolecules, water solution, and organic materials. We discuss the most significant errors and proposed correction schemes, and we review their performance using standard test sets of molecular systems for quantum chemical methods and several recent applications. The general goal is to highlight both the value and limitations of SE methods and stimulate further developments that allow them to effectively complement ab initio methods in the analysis of complex molecular systems.
Collapse
Affiliation(s)
- Anders
S. Christensen
- Department
of Chemistry and Theoretical Chemistry Institute, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Tomáš Kubař
- Institute of Physical
Chemistry & Center for Functional Nanostructures and Institute of Physical
Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Qiang Cui
- Department
of Chemistry and Theoretical Chemistry Institute, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Marcus Elstner
- Institute of Physical
Chemistry & Center for Functional Nanostructures and Institute of Physical
Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| |
Collapse
|
37
|
Haghighi H, Higham J, Henchman RH. Parameter-Free Hydrogen-Bond Definition to Classify Protein Secondary Structure. J Phys Chem B 2016; 120:8566-70. [PMID: 27067825 DOI: 10.1021/acs.jpcb.6b02571] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hasti Haghighi
- Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Jonathan Higham
- Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Richard H. Henchman
- Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
38
|
Gillan MJ, Alfè D, Michaelides A. Perspective: How good is DFT for water? J Chem Phys 2016; 144:130901. [DOI: 10.1063/1.4944633] [Citation(s) in RCA: 478] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Michael J. Gillan
- London Centre for Nanotechnology, Gordon St., London WC1H 0AH, United Kingdom
- Thomas Young Centre, University College London, London WC1H 0AH, United Kingdom
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - Dario Alfè
- London Centre for Nanotechnology, Gordon St., London WC1H 0AH, United Kingdom
- Thomas Young Centre, University College London, London WC1H 0AH, United Kingdom
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
- Department of Earth Sciences, University College London, London WC1E 6BT, United Kingdom
| | - Angelos Michaelides
- London Centre for Nanotechnology, Gordon St., London WC1H 0AH, United Kingdom
- Thomas Young Centre, University College London, London WC1H 0AH, United Kingdom
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
39
|
Marsalek O, Markland TE. Ab initio molecular dynamics with nuclear quantum effects at classical cost: Ring polymer contraction for density functional theory. J Chem Phys 2016; 144:054112. [DOI: 10.1063/1.4941093] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ondrej Marsalek
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Thomas E. Markland
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
40
|
Fischer M. Water adsorption in SAPO-34: elucidating the role of local heterogeneities and defects using dispersion-corrected DFT calculations. Phys Chem Chem Phys 2015; 17:25260-71. [PMID: 26352329 DOI: 10.1039/c5cp04189a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chabazite-type silicoaluminophosphate SAPO-34 is a promising adsorbent for applications in thermal energy storage using water adsorption-desorption cycles. In order to develop a microscopic understanding of the impact of local heterogeneities and defects on the water adsorption properties, the interaction of different models of SAPO-34 with water was studied using dispersion-corrected density-functional theory (DFT-D) calculations. In addition to SAPO-34 with isolated silicon atoms, the calculations considered models incorporating two types of heterogeneities (silicon islands, aluminosilicate domains), and two defect-containing (partially and fully desilicated) systems. DFT-D optimisations were performed for systems with small amounts of adsorbed water, in which all H2O molecules can interact with framework protons, and systems with large amounts of adsorbed water (30 H2O molecules per unit cell). At low loadings, the host-guest interaction energy calculated for SAPO-34 with isolated Si atoms amounts to approximately -90 kJ mol(-1). While the presence of local heterogeneities leads to the creation of some adsorption sites that are energetically slightly more favourable, the interaction strength is drastically reduced in systems with defects. At high water loadings, energies in the range of -70 kJ mol(-1) are obtained for all models. The DFT-D interaction energies are in good agreement with experimentally measured heats of water adsorption. A detailed analysis of the equilibrium structures was used to gain insights into the binding modes at low coverages, and to assess the extent of framework deprotonation and changes in the coordination environment of aluminium atoms at high water loadings.
Collapse
Affiliation(s)
- Michael Fischer
- Fachgebiet Kristallographie, Fachbereich Geowissenschaften, Universität Bremen, Klagenfurter Straße 2, 28359 Bremen, Germany.
| |
Collapse
|
41
|
Del Ben M, Hutter J, VandeVondele J. Probing the structural and dynamical properties of liquid water with models including non-local electron correlation. J Chem Phys 2015; 143:054506. [PMID: 26254660 DOI: 10.1063/1.4927325] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Water is a ubiquitous liquid that displays a wide range of anomalous properties and has a delicate structure that challenges experiment and simulation alike. The various intermolecular interactions that play an important role, such as repulsion, polarization, hydrogen bonding, and van der Waals interactions, are often difficult to reproduce faithfully in atomistic models. Here, electronic structure theories including all these interactions at equal footing, which requires the inclusion of non-local electron correlation, are used to describe structure and dynamics of bulk liquid water. Isobaric-isothermal (NpT) ensemble simulations based on the Random Phase Approximation (RPA) yield excellent density (0.994 g/ml) and fair radial distribution functions, while various other density functional approximations produce scattered results (0.8-1.2 g/ml). Molecular dynamics simulation in the microcanonical (NVE) ensemble based on Møller-Plesset perturbation theory (MP2) yields dynamical properties in the condensed phase, namely, the infrared spectrum and diffusion constant. At the MP2 and RPA levels of theory, ice is correctly predicted to float on water, resolving one of the anomalies as resulting from a delicate balance between van der Waals and hydrogen bonding interactions. For several properties, obtaining quantitative agreement with experiment requires correction for nuclear quantum effects (NQEs), highlighting their importance, for structure, dynamics, and electronic properties. A computed NQE shift of 0.6 eV for the band gap and absorption spectrum illustrates the latter. Giving access to both structure and dynamics of condensed phase systems, non-local electron correlation will increasingly be used to study systems where weak interactions are of paramount importance.
Collapse
Affiliation(s)
- Mauro Del Ben
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jürg Hutter
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Joost VandeVondele
- Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich, Switzerland
| |
Collapse
|
42
|
Ikeda T, Boero M. Role of van der Waals corrections in first principles simulations of alkali metal ions in aqueous solutions. J Chem Phys 2015; 143:194510. [DOI: 10.1063/1.4935932] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
43
|
Christensen AS, Elstner M, Cui Q. Improving intermolecular interactions in DFTB3 using extended polarization from chemical-potential equalization. J Chem Phys 2015; 143:084123. [PMID: 26328834 PMCID: PMC4552706 DOI: 10.1063/1.4929335] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/10/2015] [Indexed: 11/14/2022] Open
Abstract
Semi-empirical quantum mechanical methods traditionally expand the electron density in a minimal, valence-only electron basis set. The minimal-basis approximation causes molecular polarization to be underestimated, and hence intermolecular interaction energies are also underestimated, especially for intermolecular interactions involving charged species. In this work, the third-order self-consistent charge density functional tight-binding method (DFTB3) is augmented with an auxiliary response density using the chemical-potential equalization (CPE) method and an empirical dispersion correction (D3). The parameters in the CPE and D3 models are fitted to high-level CCSD(T) reference interaction energies for a broad range of chemical species, as well as dipole moments calculated at the DFT level; the impact of including polarizabilities of molecules in the parameterization is also considered. Parameters for the elements H, C, N, O, and S are presented. The Root Mean Square Deviation (RMSD) interaction energy is improved from 6.07 kcal/mol to 1.49 kcal/mol for interactions with one charged species, whereas the RMSD is improved from 5.60 kcal/mol to 1.73 for a set of 9 salt bridges, compared to uncorrected DFTB3. For large water clusters and complexes that are dominated by dispersion interactions, the already satisfactory performance of the DFTB3-D3 model is retained; polarizabilities of neutral molecules are also notably improved. Overall, the CPE extension of DFTB3-D3 provides a more balanced description of different types of non-covalent interactions than Neglect of Diatomic Differential Overlap type of semi-empirical methods (e.g., PM6-D3H4) and PBE-D3 with modest basis sets.
Collapse
Affiliation(s)
- Anders S Christensen
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, USA
| | - Marcus Elstner
- Theoretische Chemische Biologie, Universität Karlsruhe, Kaiserstr. 12, 76131 Karlsruhe, Germany
| | - Qiang Cui
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, USA
| |
Collapse
|
44
|
Tirler AO, Passler PP, Rode BM. The lanthanoid hydration properties beyond the ‘Gadolinium Break’: Dysprosium (III) and holmium (III), an ab initio quantum mechanical molecular dynamics study. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.06.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Bankura A, Santra B, DiStasio RA, Swartz CW, Klein ML, Wu X. A systematic study of chloride ion solvation in water using van der Waals inclusive hybrid density functional theory. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1059959] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Arindam Bankura
- Institute for Computational Molecular Science and Department of Chemistry, Temple University , Philadelphia, PA, USA
| | - Biswajit Santra
- Department of Chemistry, Princeton University , Princeton, NJ, USA
| | | | - Charles W. Swartz
- Institute for Computational Molecular Science and Department of Chemistry, Temple University , Philadelphia, PA, USA
| | - Michael L. Klein
- Institute for Computational Molecular Science and Department of Chemistry, Temple University , Philadelphia, PA, USA
| | - Xifan Wu
- Department of Physics, Temple University , Philadelphia, PA, USA
| |
Collapse
|
46
|
Affiliation(s)
- Biswajit Santra
- Department of Chemistry, Princeton University , Princeton, NJ, USA
| | | | - Fausto Martelli
- Department of Chemistry, Princeton University , Princeton, NJ, USA
| | - Roberto Car
- Department of Chemistry, Princeton University , Princeton, NJ, USA
- Department of Physics, Princeton University , Princeton, NJ, USA
- Princeton Institute for the Science and Technology of Materials, Princeton University , Princeton, NJ, USA
- Program in Applied and Computational Mathematics, Princeton University , Princeton, NJ, USA
| |
Collapse
|
47
|
DiStasio RA, Santra B, Li Z, Wu X, Car R. The individual and collective effects of exact exchange and dispersion interactions on the ab initio structure of liquid water. J Chem Phys 2015; 141:084502. [PMID: 25173016 DOI: 10.1063/1.4893377] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we report the results of a series of density functional theory (DFT) based ab initio molecular dynamics (AIMD) simulations of ambient liquid water using a hierarchy of exchange-correlation (XC) functionals to investigate the individual and collective effects of exact exchange (Exx), via the PBE0 hybrid functional, non-local van der Waals/dispersion (vdW) interactions, via a fully self-consistent density-dependent dispersion correction, and an approximate treatment of nuclear quantum effects, via a 30 K increase in the simulation temperature, on the microscopic structure of liquid water. Based on these AIMD simulations, we found that the collective inclusion of Exx and vdW as resulting from a large-scale AIMD simulation of (H2O)128 significantly softens the structure of ambient liquid water and yields an oxygen-oxygen structure factor, SOO(Q), and corresponding oxygen-oxygen radial distribution function, gOO(r), that are now in quantitative agreement with the best available experimental data. This level of agreement between simulation and experiment demonstrated herein originates from an increase in the relative population of water molecules in the interstitial region between the first and second coordination shells, a collective reorganization in the liquid phase which is facilitated by a weakening of the hydrogen bond strength by the use of a hybrid XC functional, coupled with a relative stabilization of the resultant disordered liquid water configurations by the inclusion of non-local vdW/dispersion interactions. This increasingly more accurate description of the underlying hydrogen bond network in liquid water also yields higher-order correlation functions, such as the oxygen-oxygen-oxygen triplet angular distribution, POOO(θ), and therefore the degree of local tetrahedrality, as well as electrostatic properties, such as the effective molecular dipole moment, that are in much better agreement with experiment.
Collapse
Affiliation(s)
- Robert A DiStasio
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Biswajit Santra
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Zhaofeng Li
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Xifan Wu
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Roberto Car
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
48
|
Zen A, Luo Y, Mazzola G, Guidoni L, Sorella S. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo. J Chem Phys 2015; 142:144111. [PMID: 25877566 DOI: 10.1063/1.4917171] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.
Collapse
Affiliation(s)
- Andrea Zen
- Dipartimento di Fisica, “La Sapienza” - Università di Roma, piazzale Aldo Moro 5, 00185 Rome, Italy
- London Centre for Nanotechnology, University College London, London WC1E 6BT, United Kingdom
| | - Ye Luo
- SISSA–International School for Advanced Studies, Via Bonomea 26, 34136 Trieste, Italy
- Democritos Simulation Center CNR–IOM Istituto Officina dei Materiali, 34151 Trieste, Italy
| | - Guglielmo Mazzola
- SISSA–International School for Advanced Studies, Via Bonomea 26, 34136 Trieste, Italy
- Democritos Simulation Center CNR–IOM Istituto Officina dei Materiali, 34151 Trieste, Italy
| | - Leonardo Guidoni
- Dipartimento di Fisica, “La Sapienza” - Università di Roma, piazzale Aldo Moro 5, 00185 Rome, Italy
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’ Aquila, via Vetoio, 67100 L’ Aquila, Italy
| | - Sandro Sorella
- SISSA–International School for Advanced Studies, Via Bonomea 26, 34136 Trieste, Italy
- Democritos Simulation Center CNR–IOM Istituto Officina dei Materiali, 34151 Trieste, Italy
| |
Collapse
|
49
|
Gillan MJ. Many-body exchange-overlap interactions in rare gases and water. J Chem Phys 2014; 141:224106. [DOI: 10.1063/1.4903240] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
50
|
Spura T, John C, Habershon S, Kühne TD. Nuclear quantum effects in liquid water from path-integral simulations using anab initioforce-matching approach. Mol Phys 2014. [DOI: 10.1080/00268976.2014.981231] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|