1
|
Galparsoro O, Martin-Barrios R, Ibañez-Almaguer PE, Márquez-Mijares M, Cremé JD, Silva-Solis Y, Rubayo-Soneira J, Crespos C, Larregaray P. Isotope effects in Eley-Rideal abstraction of hydrogen from tungsten surfaces: the role of dissipation. Phys Chem Chem Phys 2025; 27:3052-3060. [PMID: 39820239 DOI: 10.1039/d4cp04063e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Molecular dynamics simulations are performed to investigate the influence of isotope substitutions on the Eley-Rideal recombination dynamics of hydrogen isotopes from the (100) and (110) surfaces of tungsten. Dissipation of electrons and phonons is taken into account by, respectively, the local density friction approximation and the general Langevin oscillator, effective models which have been intensively used in recent years. As the coupling to surface phonons and electrons might be altered by the mass combination, the main objective of the paper is to assess the role of dissipation to the surface in the course of abstraction.
Collapse
Affiliation(s)
- Oihana Galparsoro
- Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Donostia-San Sebastián 20018, Spain.
| | | | - Paulo Enrique Ibañez-Almaguer
- Instituto Superior de Tecnologías y Ciencias Aplicadas (InSTEC), University of Havana. Ave. Salvador Allende 1110, Plaza de la Revolución, Havana 10400, Cuba
| | - Maykel Márquez-Mijares
- Instituto Superior de Tecnologías y Ciencias Aplicadas (InSTEC), University of Havana. Ave. Salvador Allende 1110, Plaza de la Revolución, Havana 10400, Cuba
| | | | | | - Jesús Rubayo-Soneira
- Instituto Superior de Tecnologías y Ciencias Aplicadas (InSTEC), University of Havana. Ave. Salvador Allende 1110, Plaza de la Revolución, Havana 10400, Cuba
| | - Cédric Crespos
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR5255, F-33400 Talence, France.
| | - Pascal Larregaray
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR5255, F-33400 Talence, France.
| |
Collapse
|
2
|
Bombín R, Díez Muiño R, Juaristi JI, Alducin M. Scattering of CO from Vacant-MoSe 2 with O Adsorbates: Is CO 2 Formed? THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:19661-19668. [PMID: 39600373 PMCID: PMC11587085 DOI: 10.1021/acs.jpcc.4c06306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
Using ab initio molecular dynamics (AIMD) simulations, based on density functional theory that also accounts for van der Waals interactions, we study the oxidation of gas-phase CO on MoSe2 with a Se vacancy and oxygen coverage of 0.125 ML. In the equilibrium configuration, one of the O atoms is adsorbed on the vacancy and the other one atop one Se atom. Recombination of the CO molecule with the second of these O atoms to form CO2 is a highly exothermic reaction, with an energy gain of around 3 eV. The likeliness of the CO oxidation reaction on this surface is next examined by calculating hundreds of AIMD trajectories for incidence energies that suffice to overcome the energy barriers in the entrance channel of the CO oxidative recombination. In spite of this, no CO2 formation event is obtained. In most of the calculated trajectories, the incoming CO molecule is directly reflected, and in some cases, mainly at low energies, the molecules remain trapped at the surface but without reacting. As an important conclusion, our AIMD simulations show that the recombination of CO molecules with adsorbed O atoms is a very unlikely reaction in this system, despite its large exothermicity.
Collapse
Affiliation(s)
- Raúl Bombín
- Institut
des Sciences Moléculaires (ISM), Université de Bordeaux, 351 Cours de la Libération, 33405 Talence, France
| | - Ricardo Díez Muiño
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, 48009 Bilbao, Spain
| | - J. Iñaki Juaristi
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
- Departamento
de Polímeros y Materiales Avanzados: Física Química
y Tecnología, Facultad de Químicas
(UPV/EHU), Apartado 1072, 20080 Donostia-San Sebastián, Spain
- Centro
de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | - Maite Alducin
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
- Centro
de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
3
|
Michiels R, Gerrits N, Neyts E, Bogaerts A. Plasma Catalysis Modeling: How Ideal Is Atomic Hydrogen for Eley-Rideal? THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:11196-11209. [PMID: 39015417 PMCID: PMC11247482 DOI: 10.1021/acs.jpcc.4c02193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
Plasma catalysis is an emerging technology, but a lot of questions about the underlying surface mechanisms remain unanswered. One of these questions is how important Eley-Rideal (ER) reactions are, next to Langmuir-Hinshelwood reactions. Most plasma catalysis kinetic models predict ER reactions to be important and sometimes even vital for the surface chemistry. In this work, we take a critical look at how ER reactions involving H radicals are incorporated in kinetic models describing CO2 hydrogenation and NH3 synthesis. To this end, we construct potential energy surface (PES) intersections, similar to elbow plots constructed for dissociative chemisorption. The results of the PES intersections are in agreement with ab initio molecular dynamics (AIMD) findings in literature while being computationally much cheaper. We find that, for the reactions studied here, adsorption is more probable than a reaction via the hot atom (HA) mechanism, which in turn is more probable than a reaction via the ER mechanism. We also conclude that kinetic models of plasma-catalytic systems tend to overestimate the importance of ER reactions. Furthermore, as opposed to what is often assumed in kinetic models, the choice of catalyst will influence the ER reaction probability. Overall, the description of ER reactions is too much "ideal" in models. Based on our findings, we make a number of recommendations on how to incorporate ER reactions in kinetic models to avoid overestimation of their importance.
Collapse
Affiliation(s)
- Roel Michiels
- Research
group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk,Antwerp BE-2610, Belgium
| | - Nick Gerrits
- Research
group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk,Antwerp BE-2610, Belgium
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| | - Erik Neyts
- Research
group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk,Antwerp BE-2610, Belgium
| | - Annemie Bogaerts
- Research
group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk,Antwerp BE-2610, Belgium
| |
Collapse
|
4
|
Kang K, Shakouri K, Kroes GJ, Kleyn AW, Meyer J. Three-dimensional Langevin dynamics of N atom scattering from N-covered Ag(111). Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Jiang B, Guo H. Dynamics in reactions on metal surfaces: A theoretical perspective. J Chem Phys 2019; 150:180901. [PMID: 31091904 DOI: 10.1063/1.5096869] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent advances in theoretical characterization of reaction dynamics on metal surfaces are reviewed. It is shown that the widely available density functional theory of metals and their interactions with molecules have enabled first principles theoretical models for treating surface reaction dynamics. The new theoretical tools include methods to construct high-dimensional adiabatic potential energy surfaces, to characterize nonadiabatic processes within the electronic friction models, and to describe dynamics both quantum mechanically and classically. Three prototypical surface reactions, namely, dissociative chemisorption, Eley-Rideal reactions, and recombinative desorption, are surveyed with a focus on some representative examples. While principles governing gas phase reaction dynamics may still be applicable, the presence of the surface introduces a higher level of complexity due to strong interaction between the molecular species and metal substrate. Furthermore, most of these reactive processes are impacted by energy exchange with surface phonons and/or electron-hole pair excitations. These theoretical studies help to interpret and rationalize experimental observations and, in some cases, guide experimental explorations. Knowledge acquired in these fundamental studies is expected to impact many practical problems in a wide range of interfacial processes.
Collapse
Affiliation(s)
- Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
6
|
Zhou L, Jiang B, Alducin M, Guo H. Communication: Fingerprints of reaction mechanisms in product distributions: Eley-Rideal-type reactions between D and CD3/Cu(111). J Chem Phys 2018; 149:031101. [DOI: 10.1063/1.5039749] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Linsen Zhou
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Bin Jiang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Maite Alducin
- Centro de Física de Materiales Centro Mixto, CFM/MPC (CSIC-UPV/EHU), P. Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
7
|
Ree J, Ree J, Kim DH, Shin HK. Nitrogen Atom Abstraction of Nitrogen Chemisorbed on W(100) Surface. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jinkyue Ree
- Department of Chemistry Education; Chonnam National University; Gwangju 61186 South Korea
| | - Jongbaik Ree
- Department of Chemistry Education; Chonnam National University; Gwangju 61186 South Korea
| | - Do Hwan Kim
- Division of Science Education and Institute of Fusion Science; Chonbuk National University; Jeonju 54896 South Korea
| | - Hyung Kyu Shin
- Department of Chemistry; University of Nevada; Reno Nevada 89557 USA
| |
Collapse
|
8
|
Zhou L, Zhou X, Alducin M, Zhang L, Jiang B, Guo H. Ab initio molecular dynamics study of the Eley-Rideal reaction of H + Cl–Au(111) → HCl + Au(111): Impact of energy dissipation to surface phonons and electron-hole pairs. J Chem Phys 2018; 148:014702. [DOI: 10.1063/1.5016054] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Linsen Zhou
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Xueyao Zhou
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Maite Alducin
- Centro de Física de Materiales Centro Mixto, CSIC-UPV/EHU, P. Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| | - Liang Zhang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bin Jiang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
9
|
Galparsoro O, Busnengo HF, Martinez AE, Juaristi JI, Alducin M, Larregaray P. Energy dissipation to tungsten surfaces upon hot-atom and Eley–Rideal recombination of H2. Phys Chem Chem Phys 2018; 20:21334-21344. [DOI: 10.1039/c8cp03690j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adiabatic and nonadiabatic quasi-classical molecular dynamics simulations are performed to investigate the role of electron–hole pair excitations in hot-atom and Eley–Rideal H2 recombination mechanisms on H-covered W(100). The influence of the surface structure is analyzed by comparing with previous results for W(110).
Collapse
Affiliation(s)
| | - H. Fabio Busnengo
- Instituto de Física Rosario (IFIR)
- CONICET-UNR
- Esmeralda y Ocampo
- 2000 Rosario
- Argentina
| | - Alejandra E. Martinez
- Instituto de Física Rosario (IFIR)
- CONICET-UNR
- Esmeralda y Ocampo
- 2000 Rosario
- Argentina
| | - Joseba Iñaki Juaristi
- Donostia International Physics Center (DIPC)
- Paseo Manuel de Lardizabal 4
- 20018 Donostia-San Sebastián
- Spain
- Departamento de Física de Materiales
| | - Maite Alducin
- Donostia International Physics Center (DIPC)
- Paseo Manuel de Lardizabal 4
- 20018 Donostia-San Sebastián
- Spain
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU)
| | | |
Collapse
|
10
|
Galparsoro O, Busnengo HF, Juaristi JI, Crespos C, Alducin M, Larregaray P. Communication: Hot-atom abstraction dynamics of hydrogen from tungsten surfaces: The role of surface structure. J Chem Phys 2017; 147:121103. [DOI: 10.1063/1.4997127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Kang K, Kleyn AW, Gleeson MA. Kinetic analysis of interaction between N atoms and O-covered Ru(0001). J Chem Phys 2015; 143:164708. [PMID: 26520544 DOI: 10.1063/1.4934602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Eley-Rideal (ER) reactions involving neutral atoms heavier than hydrogen reacting with adsorbed atoms of similar mass were first observed in recent molecular beam experiments by Zaharia et al. [Phys. Rev. Lett. 113, 053201 (2014)]. Through analysis of two types of measurements, they obtained different estimations for the N-O ER reaction cross section, one of which is unexpectedly high. This was qualitatively accounted for by invoking a secondary effect whereby the presence of N adatoms on the surface acted to "shield" O adatoms from prompt recombinative desorption. We apply a rate equation model that includes two ER processes involving different adsorbed species (N-Oad and N-Nad) and an N-adsorption process to the full-beam exposure subset of the experimental data in order to study the reaction kinetics. Values for the individual reaction cross sections are derived. The measured N2 response can be well described by the model, but it is insufficient to completely describe the NO response. Modeling of different exposures is used to evaluate the qualitative picture presented by Zaharia et al.
Collapse
Affiliation(s)
- Kai Kang
- Center of Interface Dynamics for Sustainability, China Academy of Engineering Physics, Chengdu, Sichuan 610200, China
| | - A W Kleyn
- Center of Interface Dynamics for Sustainability, China Academy of Engineering Physics, Chengdu, Sichuan 610200, China
| | - M A Gleeson
- FOM Institute DIFFER (Dutch Institute For Fundamental Energy Research), P.O. Box 6336, 5600 HH Eindhoven, The Netherlands
| |
Collapse
|
12
|
Angular distributions and rovibrational excitation of N2 molecules recombined on N-covered Ag(111) by the Eley–Rideal mechanism. Catal Today 2015. [DOI: 10.1016/j.cattod.2014.06.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Zaharia T, Kleyn AW, Gleeson MA. Eley-rideal reactions with N atoms at Ru(0001): formation of NO and N(2). PHYSICAL REVIEW LETTERS 2014; 113:053201. [PMID: 25126916 DOI: 10.1103/physrevlett.113.053201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Indexed: 06/03/2023]
Abstract
Forward-directed NO molecules with large translational energies are formed upon exposure of an O-covered Ru(0001) surface to a nitrogen (N+N_{2}) beam. This is an unequivocal experimental demonstration of the Eley-Rideal reaction for a "heavy" (i.e., nonhydrogenated) neutral system. The time dependence of prompt NO formation exhibits an exceptionally fast decay as a consequence of shifting reaction pathways and probabilities over the course of the exposure. Prompt production shuts down as the O coverage decreases due to competition from more favorable Eley-Rideal production of N_{2}.
Collapse
Affiliation(s)
- Teodor Zaharia
- Materials innovation institute (M2i), P.O. Box 5008, 2600 GA Delft, The Netherlands and FOM Institute DIFFER (Dutch Institute For Fundamental Energy Research), P.O. Box 1207, 3430 BE Nieuwegein, The Netherlands
| | - Aart W Kleyn
- FOM Institute DIFFER (Dutch Institute For Fundamental Energy Research), P.O. Box 1207, 3430 BE Nieuwegein, The Netherlands and Van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Michael A Gleeson
- FOM Institute DIFFER (Dutch Institute For Fundamental Energy Research), P.O. Box 1207, 3430 BE Nieuwegein, The Netherlands
| |
Collapse
|
14
|
Pétuya R, Larrégaray P, Crespos C, Busnengo HF, Martínez AE. Dynamics of H2 Eley-Rideal abstraction from W(110): Sensitivity to the representation of the molecule-surface potential. J Chem Phys 2014; 141:024701. [DOI: 10.1063/1.4885139] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- R. Pétuya
- Université de Bordeaux, ISM, CNRS UMR 5255, 33405 Talence Cedex, France
- CNRS, ISM, UMR5255, F-33400 Talence, France
| | - P. Larrégaray
- Université de Bordeaux, ISM, CNRS UMR 5255, 33405 Talence Cedex, France
- CNRS, ISM, UMR5255, F-33400 Talence, France
| | - C. Crespos
- Université de Bordeaux, ISM, CNRS UMR 5255, 33405 Talence Cedex, France
- CNRS, ISM, UMR5255, F-33400 Talence, France
| | - H. F. Busnengo
- Instituto de Física Rosario (IFIR) CONICET-UNR. Ocampo y Esmeralda (2000) Rosario, Argentina
| | - A. E. Martínez
- Instituto de Física Rosario (IFIR) CONICET-UNR. Ocampo y Esmeralda (2000) Rosario, Argentina
| |
Collapse
|
15
|
Quintas-Sánchez E, Crespos C, Larrégaray P, Rayez JC, Martin-Gondre L, Rubayo-Soneira J. Surface temperature effects on the dynamics of N2 Eley-Rideal recombination on W(100). J Chem Phys 2013; 138:024706. [PMID: 23320712 DOI: 10.1063/1.4774024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Quasiclassical trajectories simulations are performed to study the influence of surface temperature on the dynamics of a N atom colliding a N-preadsorbed W(100) surface under normal incidence. A generalized Langevin surface oscillator scheme is used to allow energy transfer between the nitrogen atoms and the surface. The influence of the surface temperature on the N(2) formed molecules via Eley-Rideal recombination is analyzed at T = 300, 800, and 1500 K. Ro-vibrational distributions of the N(2) molecules are only slightly affected by the presence of the thermal bath whereas kinetic energy is rather strongly decreased when going from a static surface model to a moving surface one. In terms of reactivity, the moving surface model leads to an increase of atomic trapping cross section yielding to an increase of the so-called hot atoms population and a decrease of the direct Eley-Rideal cross section. The energy exchange between the surface and the nitrogen atoms is semi-quantitatively interpreted by a simple binary collision model.
Collapse
|