1
|
Tao Z, Qiu T, Bian X, Duston T, Bradbury N, Subotnik JE. A basis-free phase space electronic Hamiltonian that recovers beyond Born-Oppenheimer electronic momentum and current density. J Chem Phys 2025; 162:144111. [PMID: 40226852 DOI: 10.1063/5.0260731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/21/2025] [Indexed: 04/15/2025] Open
Abstract
We present a phase-space electronic Hamiltonian ĤPS (parameterized by both nuclear position X and momentum P) that boosts each electron into the moving frame of the nuclei that are closest in real space. The final form for the phase space Hamiltonian does not assume the existence of an atomic orbital basis, and relative to standard Born-Oppenheimer theory, the newly proposed one-electron operators can be expressed directly as functions of electronic and nuclear positions and momentum. We show that (i) quantum-classical dynamics along such a Hamiltonian maintains momentum conservation and that (ii) diagonalizing such a Hamiltonian can recover the electronic momentum and electronic current density reasonably well. In conjunction with other reports in the literature that such a phase-space approach can also recover vibrational circular dichroism spectra, we submit that the present phase-space approach offers a testable and powerful approach to post-BO electronic structure theory. Moreover, the approach is inexpensive and can be immediately applied to simulations of chiral induced spin selectivity experiments (where the transfer of angular momentum between nuclei and electrons is considered critical).
Collapse
Affiliation(s)
- Zhen Tao
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Tian Qiu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Xuezhi Bian
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Titouan Duston
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Nadine Bradbury
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Joseph E Subotnik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
2
|
Tao Z, Duston T, Pei Z, Shao Y, Rawlinson J, Littlejohn R, Subotnik JE. An electronic phase-space Hamiltonian approach for electronic current density and vibrational circular dichroism. J Chem Phys 2024; 161:204107. [PMID: 39588829 DOI: 10.1063/5.0233618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/17/2024] [Indexed: 11/27/2024] Open
Abstract
The Born-Oppenheimer framework stipulates that chemistry and physics occur on potential energy surfaces VBO(X) parameterized by a nuclear coordinate X, which are built by diagonalizing a BO Hamiltonian ĤBO(X). However, such a framework cannot recover many measurable chemical and physical features, including vibrational circular dichroism spectra. In this article, we show that a phase-space electronic Hamiltonian ĤPS(X,P), parameterized by both nuclear position X and momentum P, with a similar computational cost as solving ĤBO(X), can recover not just experimental vibrational circular dichroism signals but also a meaningful electronic current density that explains the features of the vibrational circular dichroism rotational strengths. Combined with earlier demonstrations that such Hamiltonians can also recover qualitatively correct electronic momenta with electronic densities that approximately satisfy a continuity equation, the data would suggest that, if one looks closely enough, chemistry in fact occurs on potential energy surfaces parameterized by both X and P, EPS(X, P). While the dynamical implications of such a phase-space electronic Hamiltonian are not yet known, we hypothesize that, by offering classical trajectories that explicitly offer nonzero electronic momentum while also conserving the total angular momentum (unlike Born-Oppenheimer theory), this new phase-space electronic structure Hamiltonian may well explain some fraction of the chiral-induced spin selectivity effect.
Collapse
Affiliation(s)
- Zhen Tao
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Titouan Duston
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Zheng Pei
- Department of Chemistry, The University of Oklahoma, Norman, Oklahoma 73104, USA
| | - Yihan Shao
- Department of Chemistry, The University of Oklahoma, Norman, Oklahoma 73104, USA
| | - Jonathan Rawlinson
- Department of Mathematics, Nottingham Trent University, Nottingham, United Kingdom
| | - Robert Littlejohn
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Joseph E Subotnik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
3
|
Qiu T, Bhati M, Tao Z, Bian X, Rawlinson J, Littlejohn RG, Subotnik JE. A simple one-electron expression for electron rotational factors. J Chem Phys 2024; 160:124102. [PMID: 38526113 DOI: 10.1063/5.0192083] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/14/2024] [Indexed: 03/26/2024] Open
Abstract
Within the context of fewest-switch surface hopping (FSSH) dynamics, one often wishes to remove the angular component of the derivative coupling between states J and K. In a previous set of papers, Shu et al. [J. Phys. Chem. Lett. 11, 1135-1140 (2020)] posited one approach for such a removal based on direct projection, while we isolated a second approach by constructing and differentiating a rotationally invariant basis. Unfortunately, neither approach was able to demonstrate a one-electron operatorÔ whose matrix element JÔK was the angular component of the derivative coupling. Here, we show that a one-electron operator can, in fact, be constructed efficiently in a semi-local fashion. The present results yield physical insight into designing new surface hopping algorithms and are of immediate use for FSSH calculations.
Collapse
Affiliation(s)
- Tian Qiu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mansi Bhati
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Zhen Tao
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xuezhi Bian
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jonathan Rawlinson
- Department of Mathematics, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Robert G Littlejohn
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
4
|
Tao Z, Qiu T, Bhati M, Bian X, Duston T, Rawlinson J, Littlejohn RG, Subotnik JE. Practical phase-space electronic Hamiltonians for ab initio dynamics. J Chem Phys 2024; 160:124101. [PMID: 38526114 DOI: 10.1063/5.0192084] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/14/2024] [Indexed: 03/26/2024] Open
Abstract
Modern electronic structure theory is built around the Born-Oppenheimer approximation and the construction of an electronic Hamiltonian Ĥel(X) that depends on the nuclear position X (and not the nuclear momentum P). In this article, using the well-known theory of electron translation (Γ') and rotational (Γ″) factors to couple electronic transitions to nuclear motion, we construct a practical phase-space electronic Hamiltonian that depends on both nuclear position and momentum, ĤPS(X,P). While classical Born-Oppenheimer dynamics that run along the eigensurfaces of the operator Ĥel(X) can recover many nuclear properties correctly, we present some evidence that motion along the eigensurfaces of ĤPS(X,P) can better capture both nuclear and electronic properties (including the elusive electronic momentum studied by Nafie). Moreover, only the latter (as opposed to the former) conserves the total linear and angular momentum in general.
Collapse
Affiliation(s)
- Zhen Tao
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Tian Qiu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mansi Bhati
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xuezhi Bian
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Titouan Duston
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jonathan Rawlinson
- Department of Mathematics, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Robert G Littlejohn
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
5
|
Littlejohn R, Rawlinson J, Subotnik J. Diagonalizing the Born-Oppenheimer Hamiltonian via Moyal perturbation theory, nonadiabatic corrections, and translational degrees of freedom. J Chem Phys 2024; 160:114103. [PMID: 38501907 DOI: 10.1063/5.0192465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
This article describes a method for calculating higher order or nonadiabatic corrections in Born-Oppenheimer theory and its interaction with the translational degrees of freedom. The method uses the Wigner-Weyl correspondence to map nuclear operators into functions on the classical phase space and the Moyal star product to represent operator multiplication on those functions. These are explained in the body of the paper. The result is a power series in κ2, where κ = (m/M)1/4 is the usual Born-Oppenheimer parameter. The lowest order term is the usual Born-Oppenheimer approximation, while higher order terms are nonadiabatic corrections. These are needed in calculations of electronic currents, momenta, and densities. The separation of nuclear and electronic degrees of freedom takes place in the context of the exact symmetries (for an isolated molecule) of translations and rotations, and these, especially translations, are explicitly incorporated into our discussion. This article presents an independent derivation of the Moyal expansion in molecular Born-Oppenheimer theory. We show how electronic currents and momenta can be calculated within the framework of Moyal perturbation theory; we derive the transformation laws of the electronic Hamiltonian, the electronic eigenstates, and the derivative couplings under translations; we discuss in detail the rectilinear motion of the molecular center of mass in the Born-Oppenheimer representation; and we show how the elimination of the translational components of the derivative couplings leads to a unitary transformation that has the effect of exactly separating the translational degrees of freedom.
Collapse
Affiliation(s)
- Robert Littlejohn
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Jonathan Rawlinson
- School of Mathematics, University of Manchester, Manchester, United Kingdom
| | - Joseph Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
6
|
Tao Z, Bian X, Wu Y, Rawlinson J, Littlejohn RG, Subotnik JE. Total angular momentum conservation in Ehrenfest dynamics with a truncated basis of adiabatic states. J Chem Phys 2024; 160:054104. [PMID: 38310474 DOI: 10.1063/5.0177778] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/18/2023] [Indexed: 02/05/2024] Open
Abstract
We show that standard Ehrenfest dynamics does not conserve linear and angular momentum when using a basis of truncated adiabatic states. However, we also show that previously proposed effective Ehrenfest equations of motion [M. Amano and K. Takatsuka, "Quantum fluctuation of electronic wave-packet dynamics coupled with classical nuclear motions," J. Chem. Phys. 122, 084113 (2005) and V. Krishna, "Path integral formulation for quantum nonadiabatic dynamics and the mixed quantum classical limit," J. Chem. Phys. 126, 134107 (2007)] involving the non-Abelian Berry force do maintain momentum conservation. As a numerical example, we investigate the Kramers doublet of the methoxy radical using generalized Hartree-Fock with spin-orbit coupling and confirm that angular momentum is conserved with the proper equations of motion. Our work makes clear some of the limitations of the Born-Oppenheimer approximation when using ab initio electronic structure theory to treat systems with unpaired electronic spin degrees of freedom, and we demonstrate that Ehrenfest dynamics can offer much improved, qualitatively correct results.
Collapse
Affiliation(s)
- Zhen Tao
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xuezhi Bian
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yanze Wu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jonathan Rawlinson
- Department of Mathematics, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Robert G Littlejohn
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
7
|
Morrigan L, Neville SP, Gregory M, Boguslavskiy AE, Forbes R, Wilkinson I, Lausten R, Stolow A, Schuurman MS, Hockett P, Makhija V. Ultrafast Molecular Frame Quantum Tomography. PHYSICAL REVIEW LETTERS 2023; 131:193001. [PMID: 38000424 DOI: 10.1103/physrevlett.131.193001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/05/2023] [Accepted: 10/03/2023] [Indexed: 11/26/2023]
Abstract
We develop and experimentally demonstrate a methodology for a full molecular frame quantum tomography (MFQT) of dynamical polyatomic systems. We exemplify this approach through the complete characterization of an electronically nonadiabatic wave packet in ammonia (NH_{3}). The method exploits both energy and time-domain spectroscopic data, and yields the lab frame density matrix (LFDM) for the system, the elements of which are populations and coherences. The LFDM fully characterizes electronic and nuclear dynamics in the molecular frame, yielding the time- and orientation-angle dependent expectation values of any relevant operator. For example, the time-dependent molecular frame electronic probability density may be constructed, yielding information on electronic dynamics in the molecular frame. In NH_{3}, we observe that electronic coherences are induced by nuclear dynamics which nonadiabatically drive electronic motions (charge migration) in the molecular frame. Here, the nuclear dynamics are rotational and it is nonadiabatic Coriolis coupling which drives the coherences. Interestingly, the nuclear-driven electronic coherence is preserved over longer timescales. In general, MFQT can help quantify entanglement between electronic and nuclear degrees of freedom, and provide new routes to the study of ultrafast molecular dynamics, charge migration, quantum information processing, and optimal control schemes.
Collapse
Affiliation(s)
- Luna Morrigan
- Department of Chemistry and Physics, University of Mary Washington, Fredericksburg, Virginia 22401, USA
| | - Simon P Neville
- National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Margaret Gregory
- Department of Chemistry and Physics, University of Mary Washington, Fredericksburg, Virginia 22401, USA
| | - Andrey E Boguslavskiy
- Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Ruaridh Forbes
- Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Iain Wilkinson
- National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
- Institute for Electronic Structure Dynamics, Helmholtz-Zentrum für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Rune Lausten
- National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Albert Stolow
- National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
- Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- NRC-uOttawa Joint Centre for Extreme and Quantum Photonics (JCEP), Ottawa, Ontario K1A 0R6, Canada
| | - Michael S Schuurman
- National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Paul Hockett
- National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Varun Makhija
- Department of Chemistry and Physics, University of Mary Washington, Fredericksburg, Virginia 22401, USA
| |
Collapse
|
8
|
Athavale V, Bian X, Tao Z, Wu Y, Qiu T, Rawlinson J, Littlejohn RG, Subotnik JE. Surface hopping, electron translation factors, electron rotation factors, momentum conservation, and size consistency. J Chem Phys 2023; 159:114120. [PMID: 37728203 DOI: 10.1063/5.0160965] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/11/2023] [Indexed: 09/21/2023] Open
Abstract
For a system without spin-orbit coupling, the (i) nuclear plus electronic linear momentum and (ii) nuclear plus orbital electronic angular momentum are good quantum numbers. Thus, when a molecular system undergoes a nonadiabatic transition, there should be no change in the total linear or angular momentum. Now, the standard surface hopping algorithm ignores the electronic momentum and indirectly equates the momentum of the nuclear degrees of freedom to the total momentum. However, even with this simplification, the algorithm still does not conserve either the nuclear linear or the nuclear angular momenta. Here, we show that one way to address these failures is to dress the derivative couplings (i.e., the hopping directions) in two ways: (i) we disallow changes in the nuclear linear momentum by working in a translating basis (which is well known and leads to electron translation factors) and (ii) we disallow changes in the nuclear angular momentum by working in a basis that rotates around the center of mass [which is not well-known and leads to a novel, rotationally removable component of the derivative coupling that we will call electron rotation factors below, cf. Eq. (96)]. The present findings should be helpful in the short term as far as interpreting surface hopping calculations for singlet systems (without spin) and then developing the new surface hopping algorithm in the long term for systems where one cannot ignore the electronic orbital and/or spin angular momentum.
Collapse
Affiliation(s)
- Vishikh Athavale
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xuezhi Bian
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Zhen Tao
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yanze Wu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Tian Qiu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jonathan Rawlinson
- Department of Mathematics, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Robert G Littlejohn
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
9
|
Schürger P, Renziehausen K, Schaupp T, Barth I, Engel V. Time-Dependent Expectation Values from Integral Equations for Quantum Flux and Probability Densities. J Phys Chem A 2022; 126:8964-8975. [DOI: 10.1021/acs.jpca.2c05995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- P. Schürger
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Emil-Fischer-Strasse 42, 97074 Würzburg, Germany
| | - K. Renziehausen
- Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Theory Department, Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Saale), Germany
| | - T. Schaupp
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Emil-Fischer-Strasse 42, 97074 Würzburg, Germany
| | - I. Barth
- Theory Department, Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Saale), Germany
| | - V. Engel
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Emil-Fischer-Strasse 42, 97074 Würzburg, Germany
| |
Collapse
|
10
|
Resta R. Adiabatic electronic flux in molecules and in condensed matter. J Chem Phys 2022; 156:204118. [DOI: 10.1063/5.0087883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The theory of adiabatic electron transport in a correlated condensed-matter system is rooted in a seminal paper by Niu and Thouless [J. Phys A {\bf 17}, 2453 (1984)]; I adopt here an analogous logic in order to { retrieve the known expression for the adiabatic electronic flux in a molecular system [L. A. Nafie, J. Chem. Phys. {\bf 79}, 4950 (1983)]. Its derivation here is considerably simpler than those available in the current quantum-chemistry literature; it also explicitly identifies the adiabaticity parameter, in terms of which the adiabatic flux and the electron density are both exact to first order. It is shown that continuity equation is conserved to the same order. For the sake of completeness,} I also briefly outline the relevance of the macroscopic electronic flux to the physics of solids and liquids.
Collapse
Affiliation(s)
- Raffaele Resta
- Istituto Officina dei Materiali, CNR, Istituto Officina dei Materiali Consiglio Nazionale delle Ricerche, Italy
| |
Collapse
|
11
|
Hanasaki K, Takatsuka K. On the molecular electronic flux: Role of nonadiabaticity and violation of conservation. J Chem Phys 2021; 154:164112. [PMID: 33940814 DOI: 10.1063/5.0049821] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Analysis of electron flux within and in between molecules is crucial in the study of real-time dynamics of molecular electron wavepacket evolution such as those in attosecond laser chemistry and ultrafast chemical reaction dynamics. We here address two mutually correlated issues on the conservation law of molecular electronic flux, which serves as a key consistency condition for electron dynamics. The first one is about a close relation between "weak" nonadiabaticity and the electron dynamics in low-energy chemical reactions. We show that the electronic flux in adiabatic reactions can be consistently reproduced by taking account of nonadiabaticity. Such nonadiabaticity is usually weak in the sense that it does not have a major effect on nuclear dynamics, whereas it plays an important role in electronic dynamics. Our discussion is based on a nonadiabatic extension of the electronic wavefunction similar in idea to the complete adiabatic formalism developed by Nafie [J. Chem. Phys. 79, 4950 (1983)], which has also recently been reformulated by Patchkovskii [J. Chem. Phys. 137, 084109 (2012)]. We give straightforward proof of the theoretical assertion presented by Nafie using a time-dependent mixed quantum-classical framework and a standard perturbation expansion. Explicitly taking account of the flux conservation, we show that the nonadiabatically induced flux realizes the adiabatic time evolution of the electronic density. In other words, the divergence of the nonadiabatic flux equals the time derivative of the electronic density along an adiabatic time evolution of the target molecule. The second issue is about the accurate computationability of the flux. The calculation of flux needs an accurate representation of the (relative) quantum phase, in addition to the amplitude factor, of a total wavefunction and demands special attention for practical calculations. This paper is the first one to approach this issue directly and show how the difficulties arise explicitly. In doing so, we reveal that a number of widely accepted truncation techniques for static property calculations are potential sources of numerical flux non-conservation. We also theoretically propose alternative strategies to realize better flux conservation.
Collapse
Affiliation(s)
- Kota Hanasaki
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| |
Collapse
|
12
|
Hermann G, Pohl V, Dixit G, Tremblay JC. Probing Electronic Fluxes via Time-Resolved X-Ray Scattering. PHYSICAL REVIEW LETTERS 2020; 124:013002. [PMID: 31976697 DOI: 10.1103/physrevlett.124.013002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/18/2019] [Indexed: 06/10/2023]
Abstract
The current flux density is a vector field that can be used to describe theoretically how electrons flow in a system out of equilibrium. In this work, we unequivocally demonstrate that the signal obtained from time-resolved x-ray scattering does not only map the time evolution of the electronic charge distribution, but also encodes information about the associated electronic current flux density. We show how the electronic current flux density qualitatively maps the distribution of electronic momenta and reveals the underlying mechanism of ultrafast charge migration processes, while also providing quantitative information about the timescales of electronic coherences.
Collapse
Affiliation(s)
- Gunter Hermann
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- QoD Technologies GmbH, Altensteinstraße 40, 14195 Berlin, Germany
| | - Vincent Pohl
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- QoD Technologies GmbH, Altensteinstraße 40, 14195 Berlin, Germany
| | - Gopal Dixit
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Jean Christophe Tremblay
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany
- Laboratoire de Physique et Chimie Théoriques, CNRS-Université de Lorraine, UMR 7019, ICPM, 1 Bd Arago, 57070 Metz, France
| |
Collapse
|
13
|
Eich FG, Agostini F. The adiabatic limit of the exact factorization of the electron-nuclear wave function. J Chem Phys 2016; 145:054110. [DOI: 10.1063/1.4959962] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- F. G. Eich
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | - Federica Agostini
- Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany
| |
Collapse
|
14
|
Hermann G, Liu C, Manz J, Paulus B, Pérez-Torres JF, Pohl V, Tremblay JC. Multidirectional Angular Electronic Flux during Adiabatic Attosecond Charge Migration in Excited Benzene. J Phys Chem A 2016; 120:5360-9. [DOI: 10.1021/acs.jpca.6b01948] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Gunter Hermann
- Freie Universität Berlin, Institut für
Chemie und Biochemie, Takustrasse 3, 14195 Berlin, Germany
| | - ChunMei Liu
- Freie Universität Berlin, Institut für
Chemie und Biochemie, Takustrasse 3, 14195 Berlin, Germany
| | - Jörn Manz
- Freie Universität Berlin, Institut für
Chemie und Biochemie, Takustrasse 3, 14195 Berlin, Germany
- State
Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute
of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative
Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Beate Paulus
- Freie Universität Berlin, Institut für
Chemie und Biochemie, Takustrasse 3, 14195 Berlin, Germany
| | - Jhon Fredy Pérez-Torres
- Freie Universität Berlin, Institut für
Chemie und Biochemie, Takustrasse 3, 14195 Berlin, Germany
| | - Vincent Pohl
- Freie Universität Berlin, Institut für
Chemie und Biochemie, Takustrasse 3, 14195 Berlin, Germany
| | - Jean Christophe Tremblay
- Freie Universität Berlin, Institut für
Chemie und Biochemie, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
15
|
Schild A, Agostini F, Gross EKU. Electronic Flux Density beyond the Born–Oppenheimer Approximation. J Phys Chem A 2016; 120:3316-25. [DOI: 10.1021/acs.jpca.5b12657] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Axel Schild
- Max-Planck Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
| | - Federica Agostini
- Max-Planck Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
| | - E. K. U. Gross
- Max-Planck Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
| |
Collapse
|
16
|
Bredtmann T, Manz J, Zhao JM. Concerted Electronic and Nuclear Fluxes During Coherent Tunnelling in Asymmetric Double-Well Potentials. J Phys Chem A 2016; 120:3142-54. [PMID: 26799383 DOI: 10.1021/acs.jpca.5b11295] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The quantum theory of concerted electronic and nuclear fluxes (CENFs) during coherent periodic tunnelling from reactants (R) to products (P) and back to R in molecules with asymmetric double-well potentials is developed. The results are deduced from the solution of the time-dependent Schrödinger equation as a coherent superposition of two eigenstates; here, these are the two states of the lowest tunnelling doublet. This allows the periodic time evolutions of the resulting electronic and nuclear probability densities (EPDs and NPDs) as well as the CENFs to be expressed in terms of simple sinusodial functions. These analytical results reveal various phenomena during coherent tunnelling in asymmetric double-well potentials, e.g., all EPDs and NPDs as well as all CENFs are synchronous. Distortion of the symmetric reference to a system with an asymmetric double-well potential breaks the spatial symmetry of the EPDs and NPDs, but, surprisingly, the symmetry of the CENFs is conserved. Exemplary application to the Cope rearrangement of semibullvalene shows that tunnelling of the ideal symmetric system can be suppressed by asymmetries induced by rather small external electric fields. The amplitude for the half tunnelling, half nontunnelling border is as low as 0.218 × 10(-8) V/cm. At the same time, the delocalized eigenstates of the symmetric reference, which can be regarded as Schrödinger's cat-type states representing R and P with equal probabilities, get localized at one or the other minima of the asymmetric double-well potential, representing either R or P.
Collapse
Affiliation(s)
| | - Jörn Manz
- Freie Universität Berlin , Institut für Chemie und Biochemie, 14195 Berlin, Germany
| | | |
Collapse
|
17
|
Liu C, Manz J, Yang Y. Staircase patterns of nuclear fluxes during coherent tunneling in excited doublets of symmetric double well potentials. Phys Chem Chem Phys 2016; 18:5048-55. [DOI: 10.1039/c5cp06935a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Step-by-step flux for one-by-one transfers of the lobes of the density, from the reactant (left) to the product (right) in the excited tunneling doublet.
Collapse
Affiliation(s)
- ChunMei Liu
- State Key Laboratory of Quantum Optics and Quantum Optics Devices
- Institute of Laser Spectroscopy
- Shanxi University
- Taiyuan 030006
- China
| | - Jörn Manz
- State Key Laboratory of Quantum Optics and Quantum Optics Devices
- Institute of Laser Spectroscopy
- Shanxi University
- Taiyuan 030006
- China
| | - Yonggang Yang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices
- Institute of Laser Spectroscopy
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
18
|
Scherrer A, Agostini F, Sebastiani D, Gross EKU, Vuilleumier R. Nuclear velocity perturbation theory for vibrational circular dichroism: An approach based on the exact factorization of the electron-nuclear wave function. J Chem Phys 2015; 143:074106. [DOI: 10.1063/1.4928578] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Arne Scherrer
- Martin-Luther-University Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle, Germany
- UMR 8640 ENS-CNRS-UPMC, Département de Chimie, 24 rue Lhomond, École Normale Supérieure, 75005 Paris, France
- UPMC Université Paris 06, 4, Place Jussieu, 75005 Paris, France
| | - Federica Agostini
- Max-Planck-Institute of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany
| | - Daniel Sebastiani
- Martin-Luther-University Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle, Germany
| | - E. K. U. Gross
- Max-Planck-Institute of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany
| | - Rodolphe Vuilleumier
- UMR 8640 ENS-CNRS-UPMC, Département de Chimie, 24 rue Lhomond, École Normale Supérieure, 75005 Paris, France
- UPMC Université Paris 06, 4, Place Jussieu, 75005 Paris, France
| |
Collapse
|
19
|
Bredtmann T, Diestler DJ, Li SD, Manz J, Pérez-Torres JF, Tian WJ, Wu YB, Yang Y, Zhai HJ. Quantum theory of concerted electronic and nuclear fluxes associated with adiabatic intramolecular processes. Phys Chem Chem Phys 2015; 17:29421-64. [DOI: 10.1039/c5cp03982g] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Example of concerted electronic (right) and nuclear (left) fluxes: isomerization of B4.
Collapse
Affiliation(s)
- Timm Bredtmann
- State Key Laboratory of Quantum Optics and Quantum Optics Devices
- Institute of Laser Spectroscopy
- Shanxi University
- Taiyuan 030006
- China
| | - Dennis J. Diestler
- Freie Universität Berlin
- Institut für Chemie und Biochemie
- 14195 Berlin
- Germany
- University of Nebraska-Lincoln
| | - Si-Dian Li
- Nanocluster Laboratory
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| | - Jörn Manz
- State Key Laboratory of Quantum Optics and Quantum Optics Devices
- Institute of Laser Spectroscopy
- Shanxi University
- Taiyuan 030006
- China
| | | | - Wen-Juan Tian
- Nanocluster Laboratory
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| | - Yan-Bo Wu
- Nanocluster Laboratory
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| | - Yonggang Yang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices
- Institute of Laser Spectroscopy
- Shanxi University
- Taiyuan 030006
- China
| | - Hua-Jin Zhai
- Nanocluster Laboratory
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
20
|
Scherrer A, Vuilleumier R, Sebastiani D. Nuclear Velocity Perturbation Theory of Vibrational Circular Dichroism. J Chem Theory Comput 2013; 9:5305-12. [DOI: 10.1021/ct400700c] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A. Scherrer
- UMR 8640 ENS-CNRS-UPMC, Département de
Chimie, 24 rue Lhomond, École Normale Supérieure, 75005 Paris, France
- UPMC Université Paris 06, 4, Place Jussieu, 75005 Paris, France
- Institute
of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz
4, 06120 Halle (Saale), Germany
| | - R. Vuilleumier
- UMR 8640 ENS-CNRS-UPMC, Département de
Chimie, 24 rue Lhomond, École Normale Supérieure, 75005 Paris, France
- UPMC Université Paris 06, 4, Place Jussieu, 75005 Paris, France
| | - D. Sebastiani
- Institute
of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz
4, 06120 Halle (Saale), Germany
| |
Collapse
|
21
|
Diestler DJ. Beyond the Born–Oppenheimer Approximation: A Treatment of Electronic Flux Density in Electronically Adiabatic Molecular Processes. J Phys Chem A 2013; 117:4698-708. [DOI: 10.1021/jp4022079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D. J. Diestler
- University of Nebraska-Lincoln, Lincoln, Nebraska 68583,
United States
| |
Collapse
|
22
|
Diestler DJ, Kenfack A, Manz J, Paulus B, Pérez-Torres JF, Pohl V. Computation of the Electronic Flux Density in the Born–Oppenheimer Approximation. J Phys Chem A 2013; 117:8519-27. [DOI: 10.1021/jp4002302] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- D. J. Diestler
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
- University of Nebraska—Lincoln, Lincoln, Nebraska 68583, United States
| | - A. Kenfack
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - J. Manz
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
- Shanxi University, Laser Spectroscopy Laboratory, 92 Wucheng Road, Taiyuan 030006, PRC
| | - B. Paulus
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - J. F. Pérez-Torres
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - V. Pohl
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|